
Search and Transitioning for Motion Captured Sequences

Suddha Basu∗
IIT Bombay

Shrinath Shanbhag†

IIT Bombay
Sharat Chandran‡

University of Maryland & IIT Bombay

Abstract
Animators today have started using motion captured (mocap) se-
quences to drive characters. Mocap allows rapid acquisition of
highly realistic animation data. Consequently animators have at
their disposal an enormous amount of mocap sequences which iron-
ically has created a new retrieval problem. Thus, while working
with mocap databases, an animator often needs to work with a sub-
set of “useful” clips. Once the animator selects a candidate working
set of motion clips, she then needs to identify appropriate transition
points amongst these clips for maximal reuse.

In this paper, we describe methods for querying mocap databases
and identifying transitions for a given set of clips. We preprocess
clips (and clip subsequences), and precompute frame locations to
allow interactive stitching. In contrast with existing methods that
view each individual clips as nodes, for optimal reuse, we reduce
the granularity.

1 Introduction
Virtual humanoid characters are often driven by hierarchical skele-
tons consisting of 30 or more degrees of freedom. Animating such
characters manually is a daunting task at best. Instead, in recent
times, the data for such characters can be acquired directly from a
live performer using motion capture devices. Indeed, this method
has gained wide acceptance as motion capture is the fastest way to
generate rich, realistic animation data.

While working on a new animation sequence, animators may either
choose to capture the data afresh or they may choose to synthesize
the sequence using existing precaptured clips. The decision is in-
fluenced by several factors. The number of existing clips available
for reuse, suitability of existing clips for creating the new sequence,
suitability of current state of the art techniques for reusing existing
clips, availability of the performer for capturing a new sequence,
time and cost required for capturing the new sequence are all rele-
vant. Nevertheless, with time, the number of clips already captured
increases relentlessly.

Recent ([Bruderlin and Williams 1995], [Unuma et al. 1995], [Gle-
icher 1997][Gleicher 1998], [Lee and Shin 1999]) motion editing
methods allow animators to synthesize new animation in a number
of interesting ways. While attempting such synthesis the animator
needs to perform two fundamental tasks – search the collection of
existing clips for clips matching certain criteria, and compute tran-
sition points within a working set of such clips. The complexity of
each of these tasks increases exponentially with number of clips.
Hence schemes to assist the animator are in order.

Prior schemes such as [Kovar et al. 2002] are one way to compute
transition information between clips. However, our observation is
that such techniques, when operated at a clip level, do not pos-
sess the desired granularity to allow transitioning out at arbitrary
frames. This is because they view entire motion clips as a node and
only record a single transition between any two given clips. Other
schemes such as [Arikan and Forsyth 2002] do not allow the anima-
tor to explicitly choose motion clips except for allowing selection of

∗e-mail: skbasu@cse.iitb.ac.in
†e-mail: svs@it.iitb.ac.in
‡e-mail: sharat@acm.org

frames at sparsely defined constraint points. While such schemes
are able to approximate specified motion requirements, animators
often demand more control over the process of motion assembly.

In summary, then, there are two seemingly contrary issues plaguing
reuse of motion capture data. The first is the problem of selecting
clips that the animator deems relevant. The second is the process
of taking parts of these clips for synthesis in a animator controlled
way. Too small a set in the first step enables manual control at the
expense of variety.

1.1 Our contributions
To address the second issue, we automatically chop individual clips
and collect similar sub-clip sequences. Such a subsequence could
be even half a dozen frame long. As a result, reuse is possible at
a much smaller granularity. Seeminglyunrelated clipsare brought
together and thus potentially reused. All such sequences are col-
lected into nodes in acluster graphthat works much the same way
as motion graphs. Further, we show how subsequences within a
node in a cluster graph can be aligned to enable smooth stitching.

To address the first issue, our method allows the animator toquery
by examplethe motion database. The number of resulting frames
is large but the size of the selected clips is a small fraction of the
original motion capture database. As a result we avoid creating too
large a cluster graph (technically a hypergraph) from the chopped
clips.

The rest of the paper is organized as follows. In the next section, we
discuss our work in the context of related work. Section 3 has the
three main parts of our work. We first discuss how matching clips
can be retrieved when presented with a query. Next, we discuss how
these clips can be placed into a cluster graph. Finally, we show the
process of stitching subsequences by entering a cluster graph node,
visiting one of the clip subsequences therein, transiting to another
subsequence within the node, and then exiting to another clip. In
the last section, we make concluding remarks.

2 Related Work
[Kovar et al. 2002], [Lee et al. 2002] describe techniques to create
new motion sequences from a corpus of motion data. Each tech-
nique essentially clusters similar motion into nodes. Then it builds
a graph of nodes, where each edge represents a transition between
nodes. A walk through the cluster node graph results in synthesis
of new motion sequences. The techniques differ in metrics used
for clustering, pruning schemes and control criteria for node walk.
[Arikan and Forsyth 2002] describe a technique using novel search
method based around dynamic programming to interactively syn-
thesize motion from annotations. The user paints a timeline with
annotations and the system assembles the motion sequence by ex-
tracting suitable frames from a motion database. A scheme for syn-
thesizing missing degree of freedoms and adding details to speci-
fied degrees of freedom for a roughly specified motion sequence is
described in [Pullen and Bregler 2000], [Pullen and Bregler 2002].
Their method uses correlation between the various degrees of free-
dom within each motion sequence. Research in indexing mocap
data for quick search is in its nascent stage. [Keogh et al. 2004]
have proposed a novel technique to speed up similarity search under
uniform scaling, based on bounding envelopes for indexing human



motion. [Liu et al. 2005] demonstrate a data-driven approach for
representing, compressing and indexing human-motion based on
piecewise-linear components obtained using K-means clustering.

3 Our Method
In this section we describe ourquery by exampleandcluster graph
scheme to enable search and transitions for mocap data. We view
motion data consisting of a bundle of signals. Each signal rep-
resents a sequence of sampled values for one degree of freedom
(DOF) of an articulated skeletal model. These signals are sampled
at discrete instances of time with a uniform sampling interval to
yield a motion clip. In each frame, the sampled values of the differ-
ent DOFs at each joint determine the configuration of an articulated
figure for that frame. Often the root of the skeletal hierarchy con-
tains six DOFs (three for translation and three for rotation about
x, y and z axis), whereas the rest of the nodes contain three DOFs
(only rotation).

3.1 Query By Example
Our first step is to search for the ‘matching clips in the mocap
database, corresponding to an animator sketched sequence. For the
sake of exposition, we use only the signal corresponding to the most
significant DOF. Later, we relax this and consider a set of signals.
Thus we have the problem

“Given a setS of N signals, and a query signal, find the bestP
matches for this query fromS.”

The first step in retrieving queries is to identify the continuous
monotonic portions (termedfragments) of the signals. The sig-
nals are clipped at points where the first derivative changes sign.
This is a reasonable choice for a motion sequence as at these points
the joint angles just start changing from one direction to another.

Fragmentsare important in our method. For example, matches are
allowed to be disjoint. That is, matches found may not necessarily
have theith and(i + 1)th fragments occurring consecutively in the
original signal. Fragments enable “mining” of possibly unusually
related clips. Fragments also enable robust scaling. For instance, if
the query signal is sampled at half or double the rate, the method
returns similar matches. For brevity, we skip details of scaling in
this version of the paper.

3.1.1 Matching
Matching between two fragments of equal length is easy and related
to the error erri, j between fragmenti of the query signal and candi-
date fragmentj of one of the target signals. For eachi, we find the
K minimum values of erri, j ∀ j and store the corresponding values
of j. These values are the indices of the best matching fragments
for fragmenti and enable us to determine useful clips.

For the sake of determining the quality of the match, we not only
retrieved clips, but also stitched portions of them together. We con-
structed (as in [Pullen and Bregler 2002]) our matching windows in
a way so as to maximize the number of consecutive fragments in
the path.

3.1.2 Multiple DOF Consideration
Here the query consists of a set ofssignals, each representing some
different degree of freedom for some joint angle but occurring at
the same time. Similarly, the search space now consists ofN sets
of signals. Each set hass signals, and theqth signal represents the
same joint angle as theqth signal in the query set.

Two significant changes are required to apply the single DOF al-
gorithm to this multi-signal case. First the error calculation is over
thessignals. Additionally we choose adriving signalwhich drives
the fragmentation of the signals. Fragmentation of each individual
signal at points where the first derivative changes sign would be
an incorrect approach simply because these break points would not
coincide in time. Thus we first choose an indexqd and fragment
the qth

d signal in each set using the method discussed earlier. The
remaining signals in each set are fragmented at same points of time
as theqth

d signals are broken.

3.1.3 Experimental Results and Observations
The aim of experimentation was to see how the above methods
work on real data sets. For our experiments, we have used vari-
ous .bvhfiles [bvh 2004]. In all the examples cited here, we have
taken walk sequences as queries.

Single Sequence Queries

As shown in Fig. 1(c), we find the results quite satisfactory. Note
that the resulting output from the dance clip consists of non-
contiguous fragments. We also observe that there is a significant re-
semblance of the query subsequence from walk clip with the dance
sequence for the joint angle and degree of freedom considered.

0 200 400 600 800 1000 1200 1400 1600 1800
−5

0

5

10

15

20

(a) Input: A
dance clip ap-
pearing in the
database

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

(b) Input: A
query sequence
extracted from a
walk clip

0 20 40 60 80 100 120 140 160 180
−1

0

1

2

3

4

5

6

7

(c) Output:
Stitched se-
quence from
the dance clip
overlaid on the
query.

Figure 1: Sample result of querying by example.

We carried out a series of experiments to examine the qualitative
performance of the algorithm. Different sub-sequences, as in 1(b),
from the walk clip were queried against the dance clip in Figure
1(a). The performance was judged using the total error in the best
match found and the number of sudden jumps in the synthesized
paths as parameters. Table 1 shows some results of the experiments.

ObservationsQuery-by-example using a single degree of freedom
allows us to mine mocap database, retrieve interesting fragments,
and stitch them together. Two drawbacks stymie this approach,
however.

First, the time complexity for finding the min-cost path is expo-
nential w.r.t. the number of fragments in the query (O(KNf rag)
whereNf rag is the number of fragments of the query signal. For
K matches, the total number of paths isKNf rag. Here a path is just
an ordered tuple of indices{ j1, j2, j3, . . . , jNf rag}, where eachj i is
among the bestK matches for fragmenti. Although,K is chosen to
be 3, andNf rag varies from 2 to 7 in most cases, the optimization
of this step is very essential. In our implementation, we discarded
paths which do not have any ‘0-cost’ transition (paths in which all
joining fragments are non-consecutive). This reduces the storage
space to vary linearly with the total number of ‘0-cost’ transitions.



Nevertheless, whenNf rag is large, we do not have the luxury of
choosingK too generously.

Second, and perhaps as significant, when we ran the method using
multiple degree of freedoms, we found the quality of the match to
be not acceptable.

3.2 Cluster Graph
Our experiments in the previous section forced a different approach.
Instead of trying to provide a fully automated way of searching and
synthesizing a motion clip, we use only the first step to retrieve can-
didate clips. Subsequences of these candidate clips are organized
into a cluster graph. The cluster graph is then used for synthesizing
new clips.

The cluster graph structure consists of nodes and edges. Nodes con-
tain frames from one or more clips. Frames within a node are “sim-
ilar;” that is, the error between any two frames is below a threshold.
Edges are obtained from the natural sequential ordering of clips
within nodes. Figure 2 shows an example.

Cluster Node

C1

C2

C3

C4

Clip Transitions

In Transitions
Out Transitions

Clip-frame sequence

Clip-frame sequence

Clip-frame sequence

Figure 2: Cluster graphs contain clip subsequences organized effi-
ciently.

Within a node, the frames are sorted by clips and time. Contiguous
sequences of frames are collected together into a structure called
clip-frame sequence. We maintain out-transitions for each clip-
frame sequence for each cluster node. Maintaining one transition
per clip-frame sequence automatically prunes away transitions from
contiguous frames.

3.2.1 Cluster graph advantages
• Cluster graphs provide a level of granularity smaller than

those of motion graphs. Traditional motion graphs record
only one transition point between each pair of clips. As a
result this data structure has been used to find transitions be-
tween two clips without enforcing a hard time constraint. For
the realtime version, time is an important factor. We may need
to transition between two clips at precise, or more controlled
instants in time. Therefore it is useful to maintain as many
distinct transition points as possible. Note further that transi-
tion points occur in bunches. Cluster graphs prune multiple
transition points lying very close to each other temporally.

• Cluster graphs enable looping; that is it enables an animator
to create a walk sequence that can go on forever, instead of
being limited to the 10 second footage. A node containing
multiple clip-frame sequences from the same clip indicates
the possibility of looping.

3.2.2 Constructing cluster graphs
Once a similarity metric has been selected between two frames, an
algorithm reminiscent of Kruskal’s minimum spanning tree algo-
rithm is used to create clip-frame sequences. We first preprocess all
n frames so that we have the distance setD for all

(n
2

)
frames. Next,

1. SortD into π = (o1,o2, . . . ,ok) by non-decreasing values.

2. Start withF0 = {}.
3. Repeat Step4 for oq = o1, . . . ,ok,k = ‖D‖.
4. ConstructFq given Fq−1 as follows. Letoq correspond to

frame pair(i, j). If oq is small compared to a threshold, then

(a) Add frames(i, j) to Fq−1 and refer to this pair as a sin-
gle frame calledI j .

(b) Remove fromD all references to eitheri or j.

(c) Set distanceI j for all frame pairs(I j , p), p 6= i, k 6= j to
be the minimum of the distances(i,k) and( j,k). Insert
these distances maintaining the sorted order.

The algorithm can be efficiently implemented. Specifically each
insert and removal in Step 4 isO(logn).

3.3 Clip-frame Sequence Transitioning
Once clip-frame sequences are clustered in a graph, each cluster
node contains similar frames. We now find the best frames in each
motion clip within a node for smooth intra-cluster transitions.

First, we find the best point of transition between two motion clip-
frame sequences. We choose the frame pair for which the sum of
distances between them, and the derivatives at the respective points,
are minimum. Using derivatives ensures continuity of the stitched
motion curves. Next, we iteratively determine a set of orderedm-
tuple wherem is the number of clip-frame sequences. Each element
of the set containsm frame indices such that these frames in the cor-
responding clip-frame sequences are the closest matches for each
other. Hence, we transition between two clip-frame sequences in
the cluster node, at these frames, to get a smooth motion sequence.
Figure 3 shows plots for three degrees of freedom using this im-
plementation for transitioning between two clips. The transition
between the two clip-frame sequences is smooth and continuous.

0 20 40 60 80 100 120 140 160
−20

−10

0

10

0 20 40 60 80 100 120 140 160
−30

−20

−10

0

10

0 20 40 60 80 100 120 140 160
−40

−20

0

20

Figure 3: Two input clips are stitched. The first one is 150 frames
long, and is shown in two parts: solid and dotted. The second is
100 frames long and is shown as dashed. The stitching is overlaid
on the input to show the smoothness across three different degrees
of freedom. In any of these three, the output clip starts from the
first clip, and meets the second clip at the 103rd frame. The portion
starting from the 58th frame of the second clip is appended at this
transition point. Notice that the stitched sequence abandons the
dotted portion of the first clip.



No. Nf rag of query error in best match no. of sudden jumps
K = 2 K = 3 K = 4 K = 2 K = 3 K = 4

1 7 0.538 0.540 1.005 6 5 3
2 6 1.024 1.024 1.024 4 4 4
3 5 1.412 1.412 1.737 4 4 3
4 8 1.525 1.525 1.525 5 5 5
5 7 0.555 0.726 0.726 5 3 3
6 5 2.330 2.330 2.618 4 4 3
7 5 2.105 2.105 2.105 4 4 4
8 6 0.965 1.886 1.886 4 3 3
9 7 0.538 0.540 1.005 6 5 3
10 6 1.024 1.024 1.024 4 4 4
15 5 2.105 2.105 2.105 4 4 4
25 13 7.169 7.169 7.169 6 6 6

Table 1: Sample results from a series of experiments with the dance sequence (Figure 1(a)) as target. The number of fragments in the target
was approximately 319, and walk sequences similar to Figure 1(b) were the queries.

S = L1,2
for i = 2 tom−1 do

T = {}
for each element(a, . . . , p) in S do

if (p,q) ∈ Li,i+1, then
Add (a, . . . , p,q) to T.

end if
end for
S = T

end for

Figure 4: The alignment algorithm.

3.3.1 Details
We apply a correlation-based technique on clip-frame sequencesMi
andMi+1 and get a listLi,i+1 of k most suitable pairs of frame in-
dices.Li,i+1 contains several pairs of indices(a,b), such that frame
f i
a and f i+1

b resemble each other, and can be obtained inO(nlogn)
expected time wheren is the size of a typical clip-frame (usually
small, between 10-100). Once allLi,i+1 are computed (1≤ i ≤m)
we look for common indices in adjacentLi,i+1 as seen in Figure 4.
This algorithm runs inO(m|S | ∗max|Li,i+1|) time. S andLi,i+1 are
usually no longer than 20, andm varies from 3-15.

S typically contains at least one index sequencej1, j2, . . . , jm. Thus
if we now want to transition from clipM4 to M7, we playM4 till
the jth4 frame and then switch to( j7 + 1)th frame in clipM7. The
transition is without any jerks and bumps.

4 Concluding Remarks
In this paper we have provided efficient schemes (with big-Oh ex-
pected running times, and supported by experimental results) for
the following activities

• Given a (possibly rough) animation sequence, search for clips
that contain frame sequences that are similar. Optionally
stitch these frame sequences in an optimal way

• Our theoretical and experimental studies indicate that the
stitching time is exponential. Sometimes the quality of the
automatic stitch may be less than desirable. We therefore cre-
ate a cluster graph data structure. Cluster graphs preserve the
fine granularity of fragments, can be created efficiently and
have several advantages (Section 3.2.1).

• Cluster graphs are used interactively by the animator. Al-
though we do not create a fully automated stitched sequence,
we efficiently compute the location of possible transition
points within a node in the cluster graph, and thus between
multiple clips.

References

ARIKAN , O., AND FORSYTH, D. A. 2002. Interactive Motion Generation
from Examples. InProc. of Siggraph ’02, 483 – 490.

BRUDERLIN, A., AND WILLIAMS , L. 1995. Motion Signal Processing. In
Proc. of Siggraph ’95.

2004.http://www.bvhfiles.com/bvharchive/. Dec.

GLEICHER, M. 1997. Motion Editing with Spacetime Constraints. InProc.
of the 1997 Symposium on Interactive 3D Graphics.

GLEICHER, M. 1998. Retargetting Motion to New Characters. InProc. of
Siggraph ’98.

KEOGH, E. J., PALPANAS, T., ZORDAN, V. B., GUNOPULOS, D., AND

CARDLE, M. 2004. Indexing large human-motion databases. InVLDB,
780–791.

KOVAR, L., GLEICHER, M., AND PIGHIN , F. 2002. Motion Grahs. In
Proc. of Siggraph ’02.

LEE, J., AND SHIN , S. Y. 1999. A Hierarchial Approach to Interactive
Motion Editing for Human like Figures. InProc. of Siggraph ’99.

LEE, J., CHAI , J., REITSMA, P. S. A., HODGINS, J. K., AND POLLARD ,
N. S. 2002. Interactive Control of Avatars Animated with Human Mo-
tion Data. InProc. of Siggraph ’02.

L IU , G., ZHANG, J., WANG, W., AND MCM ILLAN , L. 2005. A sys-
tem for analyzing and indexing human-motion databases. InSIGMOD
’05: Proceedings of the 2005 ACM SIGMOD international conference
on Management of data, ACM Press, New York, NY, USA, 924–926.

PULLEN , K., AND BREGLER, C. 2000. Animating by Multi-level Sam-
pling. In Proc. of IEEE Computer Animation 2000.

PULLEN , K., AND BREGLER, C. 2002. Motion Capture Assisted Anima-
tion: Texturing and Synthesis. InProc. of Siggraph ’02.

UNUMA , M., ANJYO, K., AND TAKEUCHI , R. 1995. Fourier principles
for emotion based human figure animation. InProceedings of Siggraph
’95.


