Projector-camera Based Solutions for Simulation Systems

by Nilesh Heda

http://www.cse.iitb.ac.in/ \sim nil

under the guidance of

Prof. Sharat Chandran

http://www.cse.iitb.ac.in/~sharat

Home Page

Title Page

Page 1 of 24

Go Back

Full Screen

Close

Quit

Overview

- Motivation
- Projector-camera based system
- Previous work
- Problem definition
- Our approach

Home Page

Title Page

Page 3 of 24

Go Back

Full Screen

Close

Quit

Office of the future

- Ceiling mounted digital cameras and projectors.
- Anywhere multi-projector display.

Projector Based System

- Offers dense pixels over wider area.
- Advantages of projector based system
 - Size of projector
 - Size of displayed image
 - Multi-projector Display
 - Blending of heterogeneous image
 - Display surface

Issues Regarding Projector Based System

Issues Regarding Projector Based System

• Geometric Issues:

Issues Regarding Projector Based System

• Geometric Issues:

• Image Intensity and color:

- Non-uniform Intensity
- Overlapped region

Home Page

Title Page

Page 6 of 24

Go Back

Full Screen

Close

Quit

6

Projector-camera based System

- Display surface
- Projectors
- Stationary cameras
- Projector-camera homography

$$\begin{pmatrix} xw \\ yw \\ w \end{pmatrix} = \begin{pmatrix} p_1 & p_2 & p_3 \\ p_4 & p_5 & p_6 \\ p_7 & p_8 & p_9 \end{pmatrix} \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix}$$

Previous Work

- Automatic keystone correction
- Laser pointer based presentation control
- Multi-planar display system
- Multi-Projector display system

Automatic Keystone Correction

What is Keystone?

Automatic Keystone Correction

What is Keystone?

Distortion in projected image due to misalignment between projector and display surface.

- Why it is undesirable:
 - Distracting to user
 - Detrimental to interpretation of visual information

- Why it is undesirable:
 - Distracting to user
 - Detrimental to interpretation of visual information
- How it can be prevented:

- Why it is undesirable:
 - Distracting to user
 - Detrimental to interpretation of visual information
- How it can be prevented:
 - By aligning projector's optical axis perpendicular to screen.

- Why it is undesirable:
 - Distracting to user
 - Detrimental to interpretation of visual information
- How it can be prevented:
 - By aligning projector's optical axis perpendicular to screen.
 - * But suitable for fixed projector.
 - * Alignment will be tedious for portable projector.

Solution using Projector-camera System

- Determine the rectangular region in the camera image where contents should appear.
- Use the Homography to back-project this rectangle into projector coordinates.
- Determine the projective transform that warps the slide to this desired quadrilateral.

Results of Projector-camera Based Solution

Projector image

Camera image

Audience sees

Results of Projector-camera Based Solution

Camera image

Audience sees

What about alignment of camera?

Improved Solution using Projector-camera System

- Need to model Projector-screen distortion.
- Apply the pre-warp so that application image appear rectilinear adn best-fitted after projection through misaligned projector.

Results of Improved Projector-camera Based Solution

Projector image

Camera image

Audience sees

• Traditional ways: Keyboard or mouse.

- Traditional ways: Keyboard or mouse.
 - Awkward as diverts attention.

- Traditional ways: Keyboard or mouse.
 - Awkward as diverts attention.
- Pointer device for projector camera system:
 - Laser pointer is tracked in camera image.
 - Mapping is derived from projector-camera homography.

- Traditional ways: Keyboard or mouse.
 - Awkward as diverts attention.
- Pointer device for projector camera system:
 - Laser pointer is tracked in camera image.
 - Mapping is derived from projector-camera homography.
- Interface provided:
 - Active regions
 - Freehand drawings

Multi-planar Display

• Simple projector system: single-projector single-planar.

Multi-planar Display

- Simple projector system: single-projector single-planar.
- Planar surface is not always available.
 - Can make use of room corners, columns, desktop.

Multi-planar Display

- Simple projector system: single-projector single-planar.
- Planar surface is not always available.
 - Can make use of room corners, columns, desktop.
- Shape adaptive projector:
 - All point on display surface should be undistorted when viewed along the surface normal.

15

Multi-planar Display

- Simple projector system: single-projector single-planar.
- Planar surface is not always available.
 - Can make use of room corners, columns, desktop.
- Shape adaptive projector:
 - All point on display surface should be undistorted when viewed along the surface normal.
 - Need to determine the mapping between input image and corresponding areas on display surface.

Before correction

After correction

• Need:

- Large single logical display.
- High cost of single high resolution projector.

• Need:

- Large single logical display.
- High cost of single high resolution projector.
- Solution: Scalable alignment of multi-projector displays.
 - Images formed on the visible display surface originate from more than one display device.

• Need:

- Large single logical display.
- High cost of single high resolution projector.
- Solution: Scalable alignment of multi-projector displays.
 - Images formed on the visible display surface originate from more than one display device.

• Calibration:

- similar to single projector display system.
- Should use a common world coordinate system.

Need:

- Large single logical display.
- High cost of single high resolution projector.
- Solution: Scalable alignment of multi-projector displays.
 - Images formed on the visible display surface originate from more than one display device.

Calibration:

- similar to single projector display system.
- Should use a common world coordinate system.
- Issues: Brighter image at overlapped region.
 - Can be corrected by attenuating projector pixel intensities in the overlapped regions.

Home Page Title Page Page 17 of 24 Go Back Full Screen Close Quit

Multi-projector Display System

Images from individual projector

Images from individual projector

Image before and after brightness correction

Problem Definition

The aim of our project is to create a virtual environment, for shooting range simulation using projector-camera based solutions.

Our Approach

- Projector creates simulated environment.
- Shooter(s) are sitting in a simulated environment.
- Shoots with the laser-gun on a screen.
- The camera(s) captures the hit screen.

Important Components

• Virtual World:

- Created by system.
- Rendered as First Person View.

Home Page

Title Page

Page 20 of 24

Go Back

Full Screen

Close

Quit

Important Components

• Virtual World:

- Created by system.
- Rendered as First Person View.

• Shooter:

- Positioned in front of screen.
- Shoots with Laser-pointer gun.

Home Page

Title Page

Page 20 of 24

Go Back

Full Screen

Close

Quit

Important Components

Virtual World:

- Created by system.
- Rendered as First Person View.

• Shooter:

- Positioned in front of screen.
- Shoots with Laser-pointer gun.

• Projector-camera system:

- Projector projects virtual world.
- 20 Camera detects the hit.

July 27, 2004

Title Page

Page 20 of 24

Go Back

Full Screen

Close

Quit

Algorithm

- 1. The virtual world is created inside the computer.
- 2. The scene is rendered as first person view.
- 3. It is projected anywhere irrespective of *projector* position.
- 4. Shooter is positioned in front of display surface, facing the screen.
- 5. Shooter is asked to shoot the target on screen by laser-gun (Gun with laser pointer attached). The Laser point will help to detect the hit.
- 6. The hit by laser-gun will be detected by camera.
- 7. From projector-screen-camera homography, we can determine the actual hit in virtual world.
- 8. From target and hit information, accuracy of shooting can be determined.

- Displaying on any surface:
 - planar, multi-planar, or even curved surfaces.

- Displaying on any surface:
 - planar, multi-planar, or even curved surfaces.
- Pointer detection:
 - Important for accurate detection of Hit.

- Displaying on any surface:
 - planar, multi-planar, or even curved surfaces.
- Pointer detection:
 - Important for accurate detection of Hit.
- Homography between screen and projector:
 - Required for accurately mapping back screen coordinate to virtual world coordinate.

1. Implementation for single shooter planar display.

- 1. Implementation for single shooter planar display.
- 2. Displaying on any surface.

- 1. Implementation for single shooter planar display.
- 2. Displaying on any surface.
- 3. A multi-shooter team arena situation.

THANK YOU!!