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Overview

• Background

• The naive algorithm

• The competition: randomized primality testing in logarithmic time

• The (slower) deterministic algorithm
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Introduction to deterministic primality testing

• Many application on the Internet using a scheme to generate large
prime numbers. (The popular https protocol does).

• Given an integer p, we want to isPrime(p) to return 1 if p is
prime, and 0 if p is composite.

• If the number turns out NOT to be prime, then we simply take
the next random number and try again. The number of primes is
plenty.

• The input p is given as a string of lg p bits and so ideally we would
like our algorithm to take Θ(lg p) time, or Θ(lg2 p) time or, in gen-
eral Θ(lgk p) time where k does not depend on p

http://www.cs.umd.edu/~sharat
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A naive algorithm

• (Trivial) Claim: If p is divisible by any odd number i between 3
and
√
p (p assumed to be greater than 2), then p is composite

public stat ic boolean isPr ime ( long n ) {
for ( int i =3; i ∗ i <=n ; i +=2)

i f ( n % i == 0) return fa l se
return true ;
}

• If any one of the odd numbers reports divisibility (i.e., i | p), we
immediately return 0

• Notice that we used the test for p being composite, and we return
1 when we are convinced that p is NOT composite.

• The algorithm is exponential in the size of the input. In order to
avoid exponential performance, we need to prevent intermediate
numbers being too large. Therefore use modular arithmetic.

http://www.cs.umd.edu/~sharat
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Using Fermat’s Little Theorem

• Claim: For any a, 0 < a < p, if ap−1 6= 1 (mod p), then p is
composite.

• Consider the randomized algorithm below

Random a = new Random ( ) ;
i f ( modularExponent ( a , p−1, p ) ! = 1 ) return fa l se ;
else return true ;
}

• Since modularExponent() can be computed in lg p time, the al-
gorithm is fast

• However, even if we try all p − 1 integers between 0 and p, and
modularExponent() returns 1 every single time, we cannot be sure
that p is prime, it may be prime or composite.

• Some numbers just don’t have good witnesses to their compositeness
if we use the Fermat little theorem.

• Despite this, for many numbers, the test is sufficient.

http://www.cs.umd.edu/~sharat
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Better Witnesses For Being Composite

• Claim: If x 6= ‖1‖ (mod p) AND x2 = 1 (mod p), then p is
composite.

• It turns out that using both tests mentioned TOGETHER, the
number of witnesses to p’s compositeness is at least p−1

2 . Thus
the chance of our random a being a witness being a witness is
independent of which number p is given

Random a = new Random ( ) ;
i f ( modularExponent ( a , p−1, p ) ! = 1 ) return fa l se ;
for ( l =0 ; l < l og ( p−1) ; i f++)

l ( aˆ l != 1 && aˆ l != −1 && aˆ2 l == 1 ) return fa l se ;
return true ;
}

• This algorithm takes log2 p time

• Since computing ap−1 requires a
p−1

2 , we can reduce the complexity

• For a random n the probability of wrongly classifying n to be prime
is about 0.25

http://www.cs.umd.edu/~sharat
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Rabin-Miller and The RSA primality test

• We can improve the error rate by simply running the test several
times

Random a = new Random ( ) ;
for ( int counter =0; counter < TRIALS ; counter++)
i f ( w i tne s s ( a , n ) ) return fa l se ;
return true ;
}

• If we the number of trials is 20, the error rate is about one in a
million million.

• In fact, using only 5 trials seem to be more than enough, and the
algorithm is extremely fast.

• https uses this test!

http://www.cs.umd.edu/~sharat
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Deterministic Testing

• Claim: For any a, a coprime to p, (x − a)p 6= (xp − a) (mod p)
implies p is composite, and vice-versa.

• This claim is bi-directional

• We could test the equivalence for a random a, so unlike the Rabin-
Miller algorithm, we don’t have to try various random numbers!

• Computing the left hand side requires the computation of a poly-
nomial (symbolically). It has p + 1 terms many of which we must
verify are zero (since the right hand side has only terms in xp and
x0).

• Not only should the coefficients not get very large, the powers should
not get very large either, otherwise it will take too long to compute.

http://www.cs.umd.edu/~sharat
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Deterministic Testing: Key result

• We now have an inferior claim

• Claim:

– If there exists a, r, where 0 < a < p, and 1 < r < n, and
(x− a)p 6= (xp − a) (mod (xr − 1) (mod p), p is composite.

– If we try all (a, r) pairs, and don’t find the inequality p is prime.
(Notice that a statement similar to the last one was absent for
Fermat’s little theorem.)

• Further, if p is composite, r is prime, q is a prime factor of r − 1,
q ≥ 4

√
r lg n, and n

r−1
q 6= 1 (mod p), then there exists an a ≤

2
√
r lg p such that the (x− a)p 6= (xp− a) (mod (xr− 1) (mod p).

• An r for which the above is true is nice.

• A nice r can be obtained in Θ(log9 p) time

http://www.cs.umd.edu/~sharat
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The Algorithm Skeleton

#define PRIMES = { 2 , 3 , 5 , 7 , 9 , 1 3 , . . . }
i = 3 ;
while ( ! i s N i c e (PRIMES[ i ] ) i ++;
r = PRIMES[ i ] ;
for ( int a =1; a < 2 ∗ s q r t ( r )∗ l og p ; a++)

i f ( w i tne s s ( a , n ) ) return fa l se ;
return true ;
}

• The while loop will find a nice r in log9 p time, and r itself is at
most log6 p.

• One iteration of the for loop takes r log2 p time

• The overall algorithm is Θ(log12 p

http://www.cs.umd.edu/~sharat
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Concluding Remarks

• Some ways to go before the randomized algorithm can be beaten

• Ironical that to test if a number is prime, we need a prime.

• Details of how to write the witness function has been skipped.
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