Getting to understand deterministic primality testing

Sharat Chandran

August 21, 2002
Overview

- Background
- The naive algorithm
- The competition: randomized primality testing in logarithmic time
- The (slower) deterministic algorithm
Introduction to deterministic primality testing

• Many application on the Internet using a scheme to generate large prime numbers. (The popular https protocol does).

• Given an integer p, we want to $\text{isPrime}(p)$ to return 1 if p is prime, and 0 if p is composite.

• If the number turns out NOT to be prime, then we simply take the next random number and try again. The number of primes is plenty.

• The input p is given as a string of $\lg p$ bits and so ideally we would like our algorithm to take $\Theta(\lg p)$ time, or $\Theta(\lg^2 p)$ time or, in general $\Theta(\lg^k p)$ time where k does not depend on p.
A naive algorithm

• (Trivial) Claim: If \(p \) is divisible by any odd number \(i \) between 3 and \(\sqrt{p} \) (\(p \) assumed to be greater than 2), then \(p \) is composite

```java
public static boolean isPrime (long n) {
   for (int i = 3; i * i <= n; i += 2)
      if (n % i == 0) return false
   return true;
}
```

• If any one of the odd numbers reports divisibility (i.e., \(i \mid p \)), we immediately return 0

• Notice that we used the test for \(p \) being composite, and we return 1 when we are convinced that \(p \) is NOT composite.

• The algorithm is exponential in the size of the input. In order to avoid exponential performance, we need to prevent intermediate numbers being too large. Therefore use modular arithmetic.
Using Fermat’s Little Theorem

• Claim: For any a, $0 < a < p$, if $a^{p-1} \neq 1 \pmod{p}$, then p is composite.

• Consider the randomized algorithm below

```java
Random a = new Random();
if (modularExponent(a, p-1, p) != 1) return false;
else return true;
}
```

• Since `modularExponent()` can be computed in $\lg p$ time, the algorithm is fast

• However, even if we try all $p - 1$ integers between 0 and p, and `modularExponent()` returns 1 every single time, we cannot be sure that p is prime, it may be prime or composite.

• Some numbers just don’t have good witnesses to their compositeness if we use the Fermat little theorem.

• Despite this, for many numbers, the test is sufficient.
Better Witnesses For Being Composite

• Claim: If \(x \neq \|1\| \pmod{p} \) AND \(x^2 = 1 \pmod{p} \), then \(p \) is composite.

• It turns out that using both tests mentioned TOGETHER, the number of witnesses to \(p \)'s compositeness is at least \(\frac{p-1}{2} \). Thus the chance of our random \(a \) being a witness being a witness is independent of which number \(p \) is given.

```java
Random a = new Random();
if (modularExponent(a, p-1, p) != 1) return false;
for (l = 0; l < log(p-1); if++)
  if (a^l != 1 && a^l != -1 && a^2l == 1) return false;
return true;
```

• This algorithm takes \(\log^2 p \) time

• Since computing \(a^{p-1} \) requires \(a^{\frac{p-1}{2}} \), we can reduce the complexity

• For a random \(n \) the probability of wrongly classifying \(n \) to be prime is about 0.25
Rabin-Miller and The RSA primality test

• We can improve the error rate by simply running the test several times

```java
Random a = new Random();
for (int counter = 0; counter < TRIALS; counter++)
if (witness (a, n)) return false;
return true;
}
```

• If we the number of trials is 20, the error rate is about one in a million million.

• In fact, using only 5 trials seem to be more than enough, and the algorithm is extremely fast.

• https uses this test!
Deterministic Testing

- Claim: For any a, a coprime to p, $(x - a)^p \not\equiv (x^p - a) \pmod{p}$ implies p is composite, and vice-versa.

- This claim is bi-directional

- We could test the equivalence for a random a, so unlike the Rabin-Miller algorithm, we don’t have to try various random numbers!

- Computing the left hand side requires the computation of a polynomial (symbolically). It has $p + 1$ terms many of which we must verify are zero (since the right hand side has only terms in x^p and x^0).

- Not only should the coefficients not get very large, the powers should not get very large either, otherwise it will take too long to compute.
Deterministic Testing: Key result

• We now have an inferior claim
• Claim:
 – If there exists \(a, r \), where \(0 < a < p \), and \(1 < r < n \), and
 \[(x - a)^p \not= (x^p - a) \pmod{(x^r - 1) \pmod{p}}, \] \(p \) is composite.
 – If we try all \((a, r)\) pairs, and don’t find the inequality \(p \) is prime.
 (Notice that a statement similar to the last one was absent for Fermat’s little theorem.)
• Further, if \(p \) is composite, \(r \) is prime, \(q \) is a prime factor of \(r - 1 \),
 \[q \geq 4\sqrt{r} \lg n, \] and \(n^{\frac{r-1}{q}} \not= 1 \pmod{p} \), then there exists an \(a \leq 2\sqrt{r} \lg p \) such that the
 \[(x - a)^p \not= (x^p - a) \pmod{(x^r - 1) \pmod{p}}. \]
• An \(r \) for which the above is true is \textit{nice}.
• A nice \(r \) can be obtained in \(\Theta(\log^9 p) \) time
The Algorithm Skeleton

```c
#define PRIMES = { 2, 3, 5, 7, 9, 13, ... }
i = 3;
while (!isNice(PRIMES[i])) i++;
r = PRIMES[i];
for (int a=1; a < 2 * sqrt(r) * log p; a++)
    if (witness (a, n)) return false;
return true;
```

- The while loop will find a nice r in $\log^9 p$ time, and r itself is at most $\log^6 p$.
- One iteration of the for loop takes $r \log^2 p$ time
- The overall algorithm is $\Theta(\log^{12} p)$
Concluding Remarks

- Some ways to go before the randomized algorithm can be beaten
- Ironical that to test if a number is prime, we need a prime.
- Details of how to write the witness function has been skipped.