Unknown, Irregular Light Sources in Dynamic Global Illumination

Sharat Chandran
http://www.cse.iitb.ac.in/~sharat

(Joint work with Mayur Srivastava)
October 21, 2002
Overview

• The nature of the problem
• Background of existing methods
 – Pre-1995 methods
 – Recent methods
• Setting for our solution
• The intuition behind the algorithm
• Some details
• Some results
• Conclusion, limitations, and prospects
Why consider this problem?

- Sudden changes in lighting are common (If the geometry of the light sources are known in advance, existing incremental radiosity techniques can be used.)
Why consider this problem?

- Sudden changes in lighting are common (If the geometry of the light sources are known in advance, existing incremental radiosity techniques can be used.)

- However, lighting may change unpredicatably
Why consider this problem?

- Sudden changes in lighting are common (If the geometry of the light sources are known in advance, existing incremental radiosity techniques can be used.)

- However, lighting may change unpredicatably
Some other situations to consider

• Partial pulling of window blinds or closing of curtains
Some other situations to consider

- Partial pulling of window blinds or closing of curtains
- Appearance of daylight in room because of motion of parked cars
Some other situations to consider

- Partial pulling of window blinds or closing of curtains
- Appearance of daylight in room because of motion of parked cars
- Bathing of interiors as the full moon appears past overcast clouds
Some other situations to consider

- Partial pulling of window blinds or closing of curtains
- Appearance of daylight in room because of motion of parked cars
- Bathing of interiors as the full moon appears past overcast clouds
- Effects created in operas and theaters
Some other situations to consider

- Partial pulling of window blinds or closing of curtains
- Appearance of daylight in room because of motion of parked cars
- Bathing of interiors as the full moon appears past overcast clouds
- Effects created in operas and theaters
- Revolving police search beams, particularly during dusk and dawn
Some earlier work
Some earlier work

- Precomputations (*Dorsey et al. 1991*)
Some earlier work

- Precomputations (*Dorsey et al.* 1991)

 Problem: Run time light changes is not permissible
Some earlier work

- Precomputations (*Dorsey et al. 1991*)
 Problem: Run time light changes is not permissible

- Creating new patch, and shooting possibly negative energy (*Chen 1990*)
Some earlier work

- Precomputations (*Dorsey et al. 1991*)
 Problem: Run time light changes is not permissible

- Creating new patch, and shooting possibly **negative** energy (*Chen 1990*)
 Problem: Calls for **re-computation**
Some earlier work

- Precomputations (*Dorsey et al. 1991*)
 Problem: Run time light changes is not permissible

- Creating new patch, and shooting possibly **negative** energy (*Chen 1990*)
 Problem: Calls for **re-computation**

Some earlier work

- Precomputations *(Dorsey et al. 1991)*
 Problem: Run time light changes is not permissible

- Creating new patch, and shooting possibly **negative** energy *(Chen 1990)*
 Problem: Calls for **re-computation**

 Problem: Only **local** Illumination changes are handled
Some earlier work

- Precomputations (*Dorsey et al. 1991*)
 Problem: Run time light changes is not permissible

- Creating new patch, and shooting possibly *negative* energy (*Chen 1990*)
 Problem: Calls for *re-computation*

 Problem: Only *local* Illumination changes are handled

- Caching (*Tole et al. 2002*)
Some earlier work

- Precomputations (*Dorsey et al. 1991*)
 Problem: Run time light changes is not permissible

- Creating new patch, and shooting possibly **negative** energy (*Chen 1990*)
 Problem: Calls for **re-computation**

 Problem: Only **local** Illumination changes are handled

- Caching (*Tole et al. 2002*)
 Problem: Cache defeated by **new** patch inclusion
How do we define dynamic?

- Scene geometry does not change
How do we define dynamic?

- Scene geometry does not change
- Light sources (of arbitrary shape) can be added or removed
How do *we* define dynamic?

- Scene geometry does not change
- Light sources (of arbitrary shape) can be added or removed
- Straightforward solution
 - Introduce a new patch that models the light source, and recompute energy values
 - To turn off light source, shoot negative energy (keep the patch in memory, we may need it later on?)
 - Creation of patch and recomputing solution is time consuming.
- Our approach
 - Can we take an incremental solution for adding?
 - Can we modify the best solution out there?
Hierarchical Radiosity

- Trade complexity for error in a disciplined way
- Computation of geometric configuration ("formfactors") is more time consuming than energy calculation
- Preprocess scenes by setting up energy exchange links.
Hierarchical Radiosity Interaction Computation

If we divide k patches into n elements, the total number of interactions is $O(n)$

```
Refine(Patch *p, Patch *q, float Feps, float Aeps) {
    float Fpq, Fqp;
    Fpq = FormFactEstimate(p, q);  Fqp = FormFactEstimate(q, p);
    if (Fpq < Fqp && Fqp < Feps) Link(p, q);
    else {
        if (Subdiv(q, Aeps)) {
            Refine(p, q.nw, Feps, Aeps); Refine(p, q.ne, Feps, Aeps);
            Refine(p, q.sw, Feps, Aeps); Refine(p, q.se, Feps, Aeps);
        } else
            Link(p, q);
    }
}}
```
Context of Prior Solution
Context of Prior Solution

- Introduce a **new** patch modeling light source (requires computation of the set of patches the user inputted light source may impact)
- Set up links again
- Implies throwing away some of the hardwork done
Context of *Our* Solution

![Diagram showing the process of obtaining geometry, computing links, refinement, and displaying results.]

- **Initialization**
- **Obtain Geometry**
- **Compute Links**
- **Refinement**
- **Display Results**

View
Context of *Our* Solution

Update links, rather than recompute
Intuition Behind Our Solution

- HR has subdivided the geometry
- What if nodes in our tree is a part of the unknown light source?
- Straightforward to update patch properties of these nodes
Intuition Behind Our Solution

• If the HR node is a proper subset of the light source …

• Expand the node

• Recursively process the node
Adaptive Refinement: AR

- Mark the nodes that are completely inside the light source
Adaptive Refinement: AR

- Mark the nodes that are completely inside the light source
- Sub divide nodes that partially intersects with the light source
Adaptive Refinement: AR

- Mark the nodes that are completely inside the light source
- Sub divide nodes that partially intersects with the light source
- Further refine node if it is a leaf in the hierarchical radiosity computation, and recurse
- Assign the emissivity of the light source to the marked nodes.

Algorithm Intersection(LightSource R, Quadtree Q)

if Disjoint(R, Q) then
 return NULL;
if Contained(R, Q) then /* Q is contained in R*/
 return Q;
else for each child_i of Q do
 Intersection (R, Q.child_i);
}
Adaptive Refinement: AR

- Mark the nodes that are completely inside the light source
- Sub divide nodes that partially intersects with the light source
- Further refine node if it is a leaf in the hierarchical radiosity computation, and recurse
- Assign the emissivity of the light source to the marked nodes.
- Distribute the emissivity of a marked node to its descendents

Algorithm Intersection(LightSource R, Quadtree Q)

if Disjoint(R,Q) then
 return NULL;
if Contained(R,Q) then /* Q is contained in R*/
 return Q;
else for each child \(i \) of Q do
 Intersection (R, Q.child\(i \));
}
What if there is too much adaptive refinement?

AR may take considerable time when:

- Scenes are dense
- User introduced light source is not axis aligned with patch boundaries
What if there is too much adaptive refinement?

AR may take considerable time when:

- Scenes are dense
- User introduced light source is not axis aligned with patch boundaries
- A faster solution (Fractional Emissivity (FE))
 - Do not refine the node if it is a HR leaf
What if there is too much adaptive refinement?

AR may take considerable time when:

- Scenes are dense
- User introduced light source is not axis aligned with patch boundaries
- A faster solution (Fractional Emissivity(FE))
 - Do not refine the node if it is a HR leaf
 - Calculate the fractional overlap (Δf) with the light source
 - $E_{node} = \Delta f \times E_{lightSource}$
 - Requires a clipping algorithm such as Sutherland-Hodgman
- Disadvantages of FE: Coarser approximation of light source
Standard Test Scene

A pigeon’s view of the Cornell Room.
Results

Naive method (126 sec) AR Rendering (3 sec) FE Rendering (0.8 sec)

Light filters through the southern wall onto the blue wall. The resulting scene is rendered incrementally in the two methods on the right.
Results

A second light appears on the eastern wall.

- Naive method (172 sec)
- AR Rendering (4 sec)
- FE Rendering (0.8 sec)
Results

Naive method (92 sec) AR Rendering (1.5 sec) FE Rendering (0.8 sec)

The light on the blue wall disappears to reflect the passage of time.
More Results

An office with two flat monitors, presumably with screen savers on. The appearance changes because mouse motion causes the windows to break out of the screen saver mode. The solution on the right is incrementally computed based on the illumination in the first by Algorithm AR.
Conclusion

- Considered a sub-class of dynamic global illumination environments
Conclusion

- Considered a sub-class of dynamic global illumination environments
- The method is fast and simple
Conclusion

• Considered a sub-class of dynamic global illumination environments
• The method is fast and simple
• The solution can be buried in more sophisticated schemes