
Home Page

Title Page

Contents

JJ II

J I

Page 1 of 19

Go Back

Full Screen

Close

Quit

Overview

• The context of the problem

• Nearest related work

• Our contributions

• The intuition behind the algo-
rithm

• Some details

• Qualtitative, quantitative re-
sults and proofs

• Conclusion

Original

3.68 seconds

35 seconds

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 2 of 19

Go Back

Full Screen

Close

Quit

Context of Segmentation

• We want to take an image as input and produces regions of which
are homogeneous

– A good segmentation should result.

– Algorithm should run fast

– Regions should reflect global properties

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 3 of 19

Go Back

Full Screen

Close

Quit

Good Segmentation

• Given V , find a partition S = {C1, C2, . . . , Cn}
• Let D(Ci, Cj) denote a pairwise comparision Boolean function that

is true if there is an evidence that the pair belongs to different
components

• A segmentations T is a refinement of S when ∀C ∈ T , ∃C ′ ∈ S
such that C ⊂ C ′

• A segmentation S

– Is too fine where there is some pair of regions Ck, Cl for which
D is false.

– Is too coarse when there exists a proper refinement of S that is
not too fine.

– Is good if it is not too fine nor too coarse

• For any set V, there exists some good segmentation S

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 4 of 19

Go Back

Full Screen

Close

Quit

Graph Segmentation

• Let G = (V,E) be a weighted undirected grid graph corresponding
to the image.

• Each edge (vi, vj) ∈ E has a corresponding weight w which is a non
negative measure of the difference between neighbouring elements

• To define D use the difference along the boundary of two com-
ponents relative to the difference between neighbouring elements
internal to each component

– Define Int(C) = maxe∈MST (C,E′)w(e).

– Define Dif (C1, C2) = minvi∈C1,vj∈C2,(vi,vj)∈E w((vi, vj))

– D(C1, C2) = 1 if Dif (C1, C2) > MInt(C1, C2) where

– MInt(C1, C2) = min(Int(C1 + τ (C1), Int(C2) + τ (C2) and

– τ (C) = k/‖C‖ (k is a constant)

• τ (C) can be any non-negative function of C

• Repeatedly merge components C1 and C2 if

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 5 of 19

Go Back

Full Screen

Close

Quit

Algorithm K

1. Sort E into π = (o1, o2, . . . , ok) by non-decreasing edge weight.

2. Start with F 0 where each vertex is its own component.

3. Construct F q given F q−1

• Let edge oq connects vertices vi and vj, and let vi ∈ Cp and
vj ∈ Cq

• Verify Cp 6= Cq. If equal proceed to next edge.

• If w(oq) ≤ Mint(Cp, Cq) (is small compared to the internal
variation) then F q = F q−1 ∪ {oq} else F q = F q−1

• Repeat above step for all edges

4. Return S = F k

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 6 of 19

Go Back

Full Screen

Close

Quit

Our contributions

1. Uses a notion of a seed point and grows a region based on the
seed. The seed is normally automatically chosen; however, when
necessary, it supports segmenting only a part of a large image.

2. Uses identical parameters to those in Algorithm K. Since regions
are grown sequentially, ‘what if’ analysis by varying the parameters
is easier, and a segmentation can be abandoned earlier.

3. Algorithm K runs in O(E logE) time if there are E edges. In
modeling non-grid graphs, the algorithm requires E to be O(n)
so that the overall algorithm runs in “almost” linear time. By
using the Prim variation on MST and Fibonacci heaps, alternate
algorithm has a theoretical running time of O(E + n log n) time.
Therefore, there is no linearity requirement if the segmentation is
to be performed in feature space.

4. Even without using Fibonacci heaps, implementation shows a faster
running time in 82 out of 100 cases in images of size 768× 768.

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 7 of 19

Go Back

Full Screen

Close

Quit

Intuition Behind Algorithm

• Start creating components by choosing a seed point

• Keep candidates for seed points in a priority queue Q2

• Decide to grow a component based on “how it interfaces with the
outside world” using light edges

– If chosen edge is too strong compared to the internal strength,
stop the growth and pick another seed from Q2

– Otherwise, update light edges (using queue Q1)

– Don’t forget to delete candidate seed points from Q2

• Algorithm P1 uses only one queue

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 8 of 19

Go Back

Full Screen

Close

Quit

Algorithm P2

overall () {
initQ2();
for v ∈ V do {
key[v] = ∞;
insertQ1(v, key[v]);
}
i = 0;
while (Q2 6= { }) {
s = findMin (Q2);
Q1.dec(s, 0);
grow (s, i);
i = i+1;
}
}

initQ2 () {
for v ∈ V do {
x = minAdjacent(v);
insertQ2 (v,x);
}
}

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 9 of 19

Go Back

Full Screen

Close

Quit

Algorithm P2

grow (s, i) {
done = false;
Ci = makeSet();
while not done do {
u = findMin(Q1);
if (causesMerge(u, i)) {
Ci = Ci

⋃
u;

updateAdj(u);
delete(Q1,u);
delete(Q2,u);
}
else done = true;
}
}

causesMerge(u, i) {
if (key[u]<int(Ci) + τ )
return TRUE;

else return FALSE;
}

updateAdj(u) {
for each v ∈ adj(u) {
if (w ∈ Q1 and
w(u,v) < key[v]) {
key[v] = w(u,v);
Q1.dec(v, key[v]);
}
}
}

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 10 of 19

Go Back

Full Screen

Close

Quit

Worst Case Asymptotic Time Complexity

• The overall algorithm picks items for growth from the priority queue
Q2 and runs grow()

• The time complexity of grow() depends on

– Time to perform an arbitrary delete in Q2 (O(log si) if the num-
ber of times causesMerge() is true is si)

– Time to update keys in Q1 (degree(u)O(1) if Fibonacci heaps
are used, otherwise degree(u)O(log n))

– Time to implement the addition of u in Ci (which can be per-
formed as part of the updateAdj())

• Total time for grow() is
∑

i∈Ci degree(i) + si log si

• Overall time is less than O(E) +
∑

k∈Ck sk log sk which is O(E +
n log n) when there are E edges in the graph and n pixels

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 11 of 19

Go Back

Full Screen

Close

Quit

Qualitative Results: 3 Component Image

• Synthetic gray
image (448x438)
with 3 percep-
tually different
regions

• Algorithm K
known to work
well (4.98s)

• Algorithm P2
(7.86s)

• Algorithm P1
(4.95s)

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 12 of 19

Go Back

Full Screen

Close

Quit

Qualitative Results: Dinasours

• Want only
one back-
ground
component

• Algorithm
K (34.98s)

• Algorithm
P2 (3.6s)

• Algorithm
P1 (2.4s)

Original K

P2 P1

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 13 of 19

Go Back

Full Screen

Close

Quit

Qualitative Results: Plane

• Mainly two
components

• Algorithm K
(23.29s)

• Algorithm
P2 (10.94s)

• Algorithm
P1 (6.8s)

Original K

P2 P1

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 14 of 19

Go Back

Full Screen

Close

Quit

Qualitative Results: Street

• Many com-
ponents, dif-
ficult to seg-
ment

• Algorithm K
(5.14s)

• Algorithm
P2 (5.12s)

• Algorithm
P1 (3.6s)

Original K

P2 P1

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 15 of 19

Go Back

Full Screen

Close

Quit

Quantitative Results: Ratio of Running Time

• Algorithm
P2 (Im-
age sizes
384x384 and
768x768)

• Algorithm
P1 (Im-
age sizes
384x384 and
768x768)

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 16 of 19

Go Back

Full Screen

Close

Quit

Quantitative Results: Varying Image Size

The ratio of time taken by Algorithm P1 to algorithm K for 100 images
(with random images on the x-axis) of increasing sizes (y-axis). A box
indicates that P1 is faster, a dot without a box indicates that P1 takes
about the same time.

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 17 of 19

Go Back

Full Screen

Close

Quit

Segmentation S is not too fine

• In order for S to be too fine, there is some edge e between component
Ci and V − Ci for which D returns false.

• Some edge e such that w(e) < Int(Ci) + τ .

• But in this case, causesMerge() would have succeeded

• This contradicts the non existence of edge e in Ci.

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 18 of 19

Go Back

Full Screen

Close

Quit

Segmentation S is not too coarse

• Suppose there is a proper refinement T that is not too fine.

• Thus some componentC ∈ S must be split into two or more distinct
components A and B, both ∈ S.

• Of all the edges, consider the minimum weight edge e that is internal
to C but connects A and B

• Since T is not too fine, let w(e) > Int(A) + τ (A)

• By construction, any edge connecting A to another subcomponent
of C must have weight as large as w(e)

• Weights of edges in A is smaller than that of e.

• Source must have been selected from A in the method overall().

• Algorithm must have formed A before forming C.

• Existence of e would then have prevented the growth of A into C
which happened

http://www.cs.umd.edu/~sharat


Home Page

Title Page

Contents

JJ II

J I

Page 19 of 19

Go Back

Full Screen

Close

Quit

Conclusions

• Algorithm is faster

• Algorithm produces good quality

• Proves that the algorithm produces a good segmentation

• Did not change the nature of how components to be broken (tweak-
ing this function results in a NP-hard problem)

http://www.cs.umd.edu/~sharat

