Title Page

Overview

e The context of the problem
e Nearest related work
e Qur contributions

e The intuition behind the algo-
rithm

e Some details

e Qualtitative, quantitative re-
sults and proofs

e Conclusion

Original

3.68 seconds

e

35 seconds

http://www.cs.umd.edu/~sharat

Context of Segmentation

e We want to take an image as input and produces regions of which
are homogeneous

— A good segmentation should result.
— Algorithm should run fast

— Regions should reflect global properties

http://www.cs.umd.edu/~sharat

Good Segmentation

e Given V| find a partition S = {C4,C,, ..., C,}

e Let D(C}, () denote a pairwise comparision Boolean function that
is true if there is an evidence that the pair belongs to different
components

e A segmentations T is a refinement of S when VC' € T, 3C" € S
such that C' C '

e A segmentation S

— Is too fine where there is some pair of regions C},, C; for which
D is false.

— Is too coarse when there exists a proper refinement of S that is
not too fine.

— Is good if it is not too fine nor too coarse

e For any set V, there exists some good segmentation S

http://www.cs.umd.edu/~sharat

Graph Segmentation

e Let G = (V) F) be a weighted undirected grid graph corresponding
to the image.

e Fach edge (v;,v;) € E has a corresponding weight w which is a non
negative measure of the difference between neighbouring elements

e To define D use the difference along the boundary of two com-
ponents relative to the difference between neighbouring elements
internal to each component

— Define Int(C) = maxcenmsrc,m) w(e). i

— Define Di f(Ch, Co) = Millyec, 605 (uiy)er W((Vi, v;)) B

— D(Cl, 02) =11if sz(C'l, 02) > M[nt(C'l, CQ) where

— MInt(Cy, Cy) = min(Int(C, + 7(C}), Int(Cy) + 7(C5) and B
—7(C) = k/||C]| (k is a constant)

e 7(C') can be any non-negative function of C

e Repeatedly merge components C; and Cj if

http://www.cs.umd.edu/~sharat

Algorithm K

1. Sort E into m = (01, 09, . . ., 04) by non-decreasing edge weight.
2. Start with F'¥ where each vertex is its own component.
3. Construct FY given F91

e Let edge o, connects vertices v; and v;, and let v; € C, and
v; € C,

o Verity C, # C,. If equal proceed to next edge.

o If wo,) < Mint(C,,C,) (is small compared to the internal
variation) then F'7 = F7 ' U{o,} else F? = F97!

e Repeat above step for all edges

4. Return S = F*

http://www.cs.umd.edu/~sharat

Our contributions

. Uses a notion of a seed point and grows a region based on the

seed. The seed is normally automatically chosen; however, when
necessary, it supports segmenting only a part of a large image.

. Uses identical parameters to those in Algorithm K. Since regions

are grown sequentially, ‘what if” analysis by varying the parameters
is easier, and a segmentation can be abandoned earlier.

. Algorithm K runs in O(Flog F) time if there are F edges. In

modeling non-grid graphs, the algorithm requires E to be O(n)
so that the overall algorithm runs in “almost” linear time. By
using the Prim variation on MST and Fibonacci heaps, alternate
algorithm has a theoretical running time of O(E + nlogn) time.
Therefore, there is no linearity requirement if the segmentation is
to be performed in feature space.

. Even without using Fibonacci heaps, implementation shows a faster

running time in 82 out of 100 cases in images of size 768 X 768.

http://www.cs.umd.edu/~sharat

Intuition Behind Algorithm

e Start creating components by choosing a seed point
e Keep candidates for seed points in a priority queue)2

e Decide to grow a component based on “how it interfaces with the
outside world” using light edges

— If chosen edge is too strong compared to the internal strength,
stop the growth and pick another seed from Q2

— Otherwise, update light edges (using queue Q1)

— Don’t forget to delete candidate seed points from ()2

e Algorithm P1 uses only one queue

http://www.cs.umd.edu/~sharat

overall () {
nitQa();
for v.€ Vdo {
key|v] = oo;
insert@Q (v, key[v]);
}
1= 0;
while (@2 # { }) {
s = findMin (Q);
Q1.dec(s, 0);
grow (s, 1);
1= 1+1;
}
t

Algorithm P2

initQs () {
for v.e Vdo {
x = minAdjacent(v);
insert@s (v,x);
}
}

http://www.cs.umd.edu/~sharat

grow (s, 1) {

}

Algorithm P2

causesMerge(u, 1) {
if (key[u]<int(C;) + 1)
return TRUE;

doue = Laise else return FALSE;;

C; = makeSet();

while not done do { }
u = findMin(Q,);
if (causesMerge(u, 1)) { updateAdj(u) {
C;=C;u; for each v € adj(u) {
updateAdj(u); if (w € @ and
delete(Q1,u); w(u,v) < key[v]) {
delete(Qq,u); key[v] = w(u,v);
Q1.dec(v, key[v]);
else done = true; }
} t
}

http://www.cs.umd.edu/~sharat

Worst Case Asymptotic Time Complexity

e The overall algorithm picks items for growth from the priority queue
Q2 and runs grow()

e The time complexity of grow() depends on
— Time to perform an arbitrary delete in Q2 (O(log s;) if the num-
ber of times causesMerge () is true is s;)
— Time to update keys in Q1 (degree(u)O(1) if Fibonacci heaps
are used, otherwise degree(u)O(logn))
— Time to implement the addition of v in C; (which can be per-
formed as part of the updateAdj())
e Total time for grow() is » ;.. degree(i) + s;log s;

e Overall time is less than O(E) + >, . s log s which is O(E +
nlogn) when there are F edges in the graph and n pixels

http://www.cs.umd.edu/~sharat

Qualitative Results: 3 Component Image

e Synthetic gray
image (448x438)
with 3 percep-
tually different
regions

e Algorithm K
known to work

well (4.98s)

e Algorithm P2
(7.86s)

e Algorithm P1
(4.95s)

http://www.cs.umd.edu/~sharat

Qualitative Results: Dinasours

e Want only Original
one back-
ground
component

e Algorithm
K (34.98s)

e Algorithm
P2 (3.6s)

e Algorithm
P1 (2.4s)

http://www.cs.umd.edu/~sharat

Qualitative Results: Plane

e Mainly two Original
components

e Algorithm K
(23.29s)

e Algorithm
P2 (10.94s)

e Algorithm
P1 (6.8s)

http://www.cs.umd.edu/~sharat

e Many com-
ponents, dif-
ficult to seg-
ment

e Algorithm K
(5.14s)

e Algorithm
P2 (5.12s)

e Algorithm
P1 (3.6s)

Qualitative Results: Street

Original

http://www.cs.umd.edu/~sharat

Quantitative Results: Ratio of Running Time

aaaaaaaaaaaaaaaa

e Algorithm :f = . S
P2 <Im_ i e Tt Ll | % a0,
384x384 and ::| : o |
768x768) :

e Algorithm
P1 (Im— i e ! e
age sizes | g
384x384 and | i
768}(768) % e mm nﬂ‘“ . o i

http://www.cs.umd.edu/~sharat

Quantitative Results: Varying Image Size

Feaan

*ltl.dat? o]

cBEE8a

=
=
@ L
@
@
(e
@
=3l i D0 DDniD DD DNOE A0K A0K 00D 00D 100D IND INnD N nnD JND o NN nD 1N0 1n0E N JnND 00D 0NN 0D I0n00nnInn 00D ing ann
a i
@
R
o
A
a 3
- = F
L)
@
[1086 ooGE oaE OaoE A0 DK oo O DDOE 0OE 00K a0Ka0sa TR £ DDoE Jn6 aoa|
o
=
z @
S @
z @ [
=
=
ol

1886880

oo EEIEE o) o o] qﬂ o EE?E) o] Eqﬂ E[]MEH[IE Eqﬂmﬂl
=
@ @ = = @ = @ = = @ =
=) = =) = [=) = =) o =
— o o -+ s R s o o =
Image id -

The ratio of time taken by Algorithm P1 to algorithm K for 100 images
(with random images on the x-axis) of increasing sizes (y-axis). A box
indicates that P1 is faster, a dot without a box indicates that P1 takes
about the same time.

http://www.cs.umd.edu/~sharat

Segmentation S is not too fine

e In order for S to be too fine, there is some edge e between component
C; and V — () for which D returns false.

e Some edge e such that w(e) < Int(C;) + 7.
e But in this case, causesMerge () would have succeeded

e This contradicts the non existence of edge e in C;.

http://www.cs.umd.edu/~sharat

Segmentation S is not too coarse

e Suppose there is a proper refinement 7' that is not too fine.

e Thus some component C' € .S must be split into two or more distinct
components A and B, both € S.

e Of all the edges, consider the minimum weight edge e that is internal
to C' but connects A and B

e Since 7T is not too fine, let w(e) > Int(A) + 7(A)

e By construction, any edge connecting A to another subcomponent
of C' must have weight as large as w(e)

e Weights of edges in A is smaller than that of e.
e Source must have been selected from A in the method overall().
e Algorithm must have formed A before forming C.

e Existence of e would then have prevented the growth of A into C
which happened

http://www.cs.umd.edu/~sharat

Conclusions

e Algorithm is faster
e Algorithm produces good quality
e Proves that the algorithm produces a good segmentation

e Did not change the nature of how components to be broken (tweak-
ing this function results in a NP-hard problem)

http://www.cs.umd.edu/~sharat

