Overview

• The context of the problem
• Nearest related work
• Our contributions
• The intuition behind the algorithm
• Some details
• Qualitative, quantitative results and proofs
• Conclusion

Original

3.68 seconds

35 seconds
Context of Segmentation

- We want to take an image as input and produces regions of which are homogeneous
 - A *good* segmentation should result.
 - Algorithm should run fast
 - Regions should reflect global properties
Good Segmentation

• Given V, find a partition $S = \{C_1, C_2, \ldots, C_n\}$

• Let $D(C_i, C_j)$ denote a pairwise comparision Boolean function that is true if there is an evidence that the pair belongs to different components

• A segmentations T is a refinement of S when $\forall C \in T, \exists C' \in S$ such that $C \subset C'$

• A segmentation S

 – Is too fine where there is some pair of regions C_k, C_l for which D is false.

 – Is too coarse when there exists a proper refinement of S that is not too fine.

 – Is good if it is not too fine nor too coarse

• For any set V, there exists some good segmentation S
Graph Segmentation

- Let $G = (V, E)$ be a weighted undirected grid graph corresponding to the image.
- Each edge $(v_i, v_j) \in E$ has a corresponding weight w which is a non negative measure of the difference between neighbouring elements.
- To define D use the difference along the boundary of two components relative to the difference between neighbouring elements internal to each component:
 - Define $\text{Int}(C) = \max_{e \in \text{MST}(C, E')} w(e)$.
 - Define $\text{Diff}(C_1, C_2) = \min_{v_i \in C_1, v_j \in C_2, (v_i, v_j) \in E} w((v_i, v_j))$.
 - $D(C_1, C_2) = 1$ if $\text{Diff}(C_1, C_2) > \text{MInt}(C_1, C_2)$ where
 - $\text{MInt}(C_1, C_2) = \min(\text{Int}(C_1 + \tau(C_1), \text{Int}(C_2) + \tau(C_2))$ and
 - $\tau(C) = k/\|C\|$ (k is a constant)
- $\tau(C)$ can be any non-negative function of C
- Repeatedly merge components C_1 and C_2 if
Algorithm K

1. Sort E into $\pi = (o_1, o_2, \ldots, o_k)$ by non-decreasing edge weight.
2. Start with F^0 where each vertex is its own component.
3. Construct F^q given F^{q-1}
 - Let edge o_q connects vertices v_i and v_j, and let $v_i \in C_p$ and $v_j \in C_q$
 - Verify $C_p \neq C_q$. If equal proceed to next edge.
 - If $w(o_q) \leq Mint(C_p, C_q)$ (is small compared to the internal variation) then $F^q = F^{q-1} \cup \{o_q\}$ else $F^q = F^{q-1}$
 - Repeat above step for all edges
4. Return $S = F^k$
Our contributions

1. Uses a notion of a seed point and grows a region based on the seed. The seed is normally automatically chosen; however, when necessary, it supports segmenting only a part of a large image.

2. Uses identical parameters to those in Algorithm K. Since regions are grown sequentially, ‘what if’ analysis by varying the parameters is easier, and a segmentation can be abandoned earlier.

3. Algorithm K runs in $O(E \log E)$ time if there are E edges. In modeling non-grid graphs, the algorithm requires E to be $O(n)$ so that the overall algorithm runs in “almost” linear time. By using the Prim variation on MST and Fibonacci heaps, alternate algorithm has a theoretical running time of $O(E + n \log n)$ time. Therefore, there is no linearity requirement if the segmentation is to be performed in feature space.

4. Even without using Fibonacci heaps, implementation shows a faster running time in 82 out of 100 cases in images of size 768 × 768.
Intuition Behind Algorithm

• Start creating components by choosing a seed point
• Keep candidates for seed points in a priority queue Q2
• Decide to grow a component based on “how it interfaces with the outside world” using light edges
 – If chosen edge is too strong compared to the internal strength, stop the growth and pick another seed from Q2
 – Otherwise, update light edges (using queue Q1)
 – Don’t forget to delete candidate seed points from Q2

• Algorithm P1 uses only one queue
Algorithm P2

overall () {
 initQ_2();
 for v \in V do {
 key[v] = ∞;
 insertQ_1(v, key[v]);
 }
 i = 0;
 while ($Q_2 \neq \{}$) {
 s = findMin (Q_2);
 Q_1.dec(s, 0);
 grow (s, i);
 i = i+1;
 }
}

initQ_2 () {
 for v \in V do {
 x = minAdjacent(v);
 insertQ_2(v, x);
 }
}
Algorithm P2

grow (s, i) {
 done = false;
 \(C_i = \text{makeSet}() \);
 while not done do {
 u = \text{findMin}(Q_1);
 if (\text{causesMerge}(u, i)) {
 C_i = C_i \cup u;
 \text{updateAdj}(u);
 delete(Q_1, u);
 delete(Q_2, u);
 } else done = true;
 }
}

doesMerge(u, i) {
 if (\text{key}[u] < \text{int}(C_i) + \tau)
 return TRUE;
 else return FALSE;
}

updateAdj(u) {
 for each v \in \text{adj}(u) {
 if (w \in Q_1 and w(u,v) < key[v]) {
 key[v] = w(u,v);
 Q_1.\text{dec}(v, key[v]);
 } else do nothing;
 }
}
Worst Case Asymptotic Time Complexity

- The overall algorithm picks items for growth from the priority queue Q2 and runs grow()
- The time complexity of grow() depends on
 - Time to perform an arbitrary delete in Q2 ($O(\log s_i)$ if the number of times causesMerge() is true is s_i)
 - Time to update keys in Q1 (degree(u)$O(1)$ if Fibonacci heaps are used, otherwise degree(u)$O(\log n)$)
 - Time to implement the addition of u in C_i (which can be performed as part of the updateAdj())
- Total time for grow() is $\sum_{i \in C_i} \text{degree}(i) + s_i \log s_i$
- Overall time is less than $O(E) + \sum_{k \in C_k} s_k \log s_k$ which is $O(E + n \log n)$ when there are E edges in the graph and n pixels
Qualitative Results: 3 Component Image

- Synthetic gray image (448x438) with 3 perceptually different regions
- Algorithm K known to work well (4.98s)
- Algorithm P2 (7.86s)
- Algorithm P1 (4.95s)
Qualitative Results: Dinosaurs

- Want only one background component
- Algorithm K (34.98s)
- Algorithm P2 (3.6s)
- Algorithm P1 (2.4s)
Qualitative Results: Plane

• Mainly two components
• Algorithm K (23.29s)
• Algorithm P2 (10.94s)
• Algorithm P1 (6.8s)
Qualitative Results: Street

• Many components, difficult to segment
• Algorithm K (5.14s)
• Algorithm P2 (5.12s)
• Algorithm P1 (3.6s)
Quantitative Results: Ratio of Running Time

- Algorithm P2 (Image sizes 384x384 and 768x768)
- Algorithm P1 (Image sizes 384x384 and 768x768)
Quantitative Results: Varying Image Size

The ratio of time taken by Algorithm P1 to algorithm K for 100 images (with random images on the x-axis) of increasing sizes (y-axis). A box indicates that P1 is faster, a dot without a box indicates that P1 takes about the same time.
Segmentation S is not too fine

- In order for S to be too fine, there is some edge e between component C_i and $V - C_i$ for which D returns false.
- Some edge e such that $w(e) < \text{Int}(C_i) + \tau$.
- But in this case, `causesMerge()` would have succeeded.
- This contradicts the non existence of edge e in C_i.
Segmentation \(S \) is not too coarse

- Suppose there is a proper refinement \(T \) that is not too fine.
- Thus some component \(C \in S \) must be split into two or more distinct components \(A \) and \(B \), both \(\in S \).
- Of all the edges, consider the minimum weight edge \(e \) that is internal to \(C \) but connects \(A \) and \(B \).
- Since \(T \) is not too fine, let \(w(e) > Int(A) + \tau(A) \)
- By construction, any edge connecting \(A \) to another subcomponent of \(C \) must have weight as large as \(w(e) \).
- Weights of edges in \(A \) is smaller than that of \(e \).
- Source must have been selected from \(A \) in the method \(\text{overall}() \).
- Algorithm must have formed \(A \) before forming \(C \).
- Existence of \(e \) would then have prevented the growth of \(A \) into \(C \) which happened
Conclusions

• Algorithm is faster
• Algorithm produces good quality
• Proves that the algorithm produces a good segmentation
• Did not change the nature of how components to be broken (tweaking this function results in a NP-hard problem)