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Overview

1. Sample problems from computer vision (fade out computer vision gurus

e The problem of shape
e The problem of obtaining 3D information
e The problem of motion

2. The beauty of mathematics (fade out math gurus)

e The method of the calculus of variations

e Allied mathematical methods: Singular Value Decomposition, and
the Method of Lagrange Multipliers

3. Sample solution to problems posed (or how computer scientists
teach/cheat)

4. Concluding remarks
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e When placed out of context,
images can be quite involved

e What you get is not what you
see (WYGINWYS)

e What you want to compute: A
contour (useful for obtaining
properties such as size)

e Key mathematical concept:
parametric curve:(s), y(s)
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Motion

e Optical flow is an intensity-
based approximation to image
motion from sequential time-
ordered images

e Key mathematical concept:
Two functions: u(z,y) and
v(z,y)

e What does it look like?

e How do we compute optical
flow?
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Application of Optical Flow
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Two Problems

e Determine the equation of the
curve joining two points(xz, y1)
and(x,, y») on the plane such that
the length of the curve joining
them is minimum

e Goal: Prove that your answer is correct

e Similar problem: Determine the equation of the support so that a ball
placed at(x,, ;) reaches (due to gravity)r,, 3,) in the least possible
time
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Functions and Functionals

e Differential segment length i6dz” + dy®)'/? where dx and dy are
infinitesimal lengths in the x and y directions along the curve.

e Therefore the length of the curve joining the two end points y,) and
(72, y2) I8

J :/ JO+ ) da
:/ F(z,y,y)dz

e For the first problem, what should the functigroe so that/ is mini-
mized?

e Compare: Findcy such thaty = f(z) is minimum.

e J is afunctional a quantity that depends on functions rather than depen-
dent variables.
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Solution to the Shortest Length Problem

e The Euler-Lagrange equation is a necessary condition for minimiging

d
Fy——F;=0 (1)

e In our problem,F’ = /1 + y'. Applying Equationl we get

¥ _y—o
de ' /I+y

e Solution:y' is a constant.

e The shortest distance curve is a straight line.
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Detour: Why the Euler equation

e J = [*F(x,f, f') dx with boundary conditionsf(z1) = f; and
f(3) = fo.

e Letn(x) be a test function. Defornfi by en(x). Then, dJ/de = 0 at
the “right” place.

e This is true for all test functiong(z). The boundary conditions assert
n(@1) = n(xs) =0

o If f(x) is replaced byf(z) + en(x) then f'(x) will be replaced by
f'(x) + en/ ().

e The integral then becomes

J:/ F(x,f+en, f'+en)dx
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Detour: Why the Euler equation

e If F'is differentiable, expand the integrand in a Taylor series
e Differentiate with respect te and set to zero

e Apply integration by parts to get

[ i@ Fde = weyE - [ e

X x1

e The first term is zero due to the boundary conditions

i) dF/
Fy — —)dz =
| @ - G

e Hence
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Bottom Line Euler Equations

e Various generalizations are possible

— Higher order derivatives] = [* F(x, f, ', f", ...)dx
— Integrand may depend on several functions instead of only one
— Finding functions that have two independent variables

_ / / F(z,9, f, for f,)dudy

e The bottom line

Function to optimize

The Euler-Lagrange equatio

[ F(z,u,)dx F,— < Fum =0
[ F(x, uy, Uy, )da F,—4F, dTgFum =0
[ F(z,uy,v,)dz Fu — <R
dTF% = o

[ Fz,y, uy, u,)dzdy

R 1F, =0
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The Snake Formulation

e Start with any old curve (a “snake”). o
Mathematically deform it to be the de- S R STt S
sired shape (based on image data). RERT

o Curveisv(s) = (z(s),y(s)). Defineen- . » ™
ergy of the curve to be Ty

1 e R T
E(v(s)) :/ Eopare(v(s))ds  (2) Remember, actual im-
0 age is not so clean!

WhereEsnake - Eint + Eea:t
e Find the curve that minimizes Equati@n
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More on Formulation

e The energy functional is given by = fo int(V(8)) + Eing(v(s)) +
Eecon(v(s))) ds

® By = (a(s)|vy(s)I" + B(5)|vis(5)[")/2

o B = —k(v(s) — z)°

® Eimg = WiineFiine(V(8)) + Wedge Ledge(V(8)) + Wierm Ererm(V(8))
— Line energy isE,..(v(s)) = Z(z, y)
— Edge energy i€.q,.(v(s)) = — |VZ(z, y)|’
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Applying Euler-Lagrange to Snakes

We minimize
J = /(oz(s)a:i + B(s)x2,)/2 + E.(s)ds = /X(s,:c,a:’, z")ds

and
To= [(als)s? + A6 /2 + Eyls)ds = [ YV(s,0.4'9/)ds

For X (s, z,2', ") the Euler equation is

d d?
X, ——X,+—X,=0
ds + ds?
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More on Application

o X, =% X, = a(s)'(s), and X, = B(s)z"(s)
—4X, =az' + oz and
_ d%(X”(‘S» — ﬁ’l’” o+ 5371// and
_ j_;z(X”<S)> — 6//33// _|_ 26/37/// + /BCU////
e For purpose of illustration use only two termg: — o/a’ — az” = 0
e Numerically approximating we have
—- 9% ~ F,., — E; atlocation i
—a/(s) = a1 — o
—2'(8) ~ 2 — X
— o'z’ = (Oéi+1 — ai)(xi+1 - xz) — (Oéi+1 — ai)xﬂ-l — (Oéz'+1 — ai>xi
- 33'”(8) =Ty — 2561 + X1
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Reducing Snakes To A Matrix Equation

-1 1 ... 0 Ey
0 -1 ... 0B _
0 0 —1 b,
—(OZQ — Oé1> (042 — Oél) 0 0
0 —(Oég — leQ) (053 — 042) 0
0 0 0 _<Ofn+1 - an)
a\ /-2 1 0 0 0\ [z
| @ 1 -2 1 0 0| [=]_,
oy 0 o 0 ... =2 1 T

This can be written aglx = B, and solved using SVD.
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The Method of Lagrange Multipliers

Minimize a functionf (x, y) subject tog(x, y) = 0.
e For example, find a point on the linesin 8 — y cos # + p = 0 closest to
origin
e That is, minimizer? + y* subject to the given constraint.

In MOLM, we generate a new functioh = f + Ag and set the partial
derivatives with respect to, y and\ to zero.

In the example The solution is the obvious one
e 2x + Asinfl =0 e = —psind
® 2y + Acosf =0 ey =-+pcosf

® rsinf) —ycosf+p=0 _
The method can be generalized to larger number of constraints.
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Formulation for Motion

e Let F(x,y,t) be the intensity value at poifit;, y) in the image

e Due to motion, let this point correspond to a padint+ dx, y + dy) at
time instancée + ot

e Key assumption®(x, y,t) = E(x + dx,y + 0y, t + dt)
e Two parts to determine(x, y) andv(z, y)

— Use Taylor’s theorem to gét, v + E,v + £} = 0

— Introduce a smoothness constraifitu, v, u,, v, t,, v,) = u,> +
uy® + v, + v,°

e Using MOLM we have a functional that needs to be minimized

flu, v, u,, v, U, v,) + g u,v,thxdy
Y~y

// u,” + u,” +v,” + v, + N Euu + Eu + Et)2 dxdy
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Applying Euler-Lagrange for Optical Flow

e \We have

F,—£F, - £F, =0 F,— 5:F, — 5,5, =0
e Applying these we get

F,=2\E,(E,u+ E,v+ E})

F., = 2u,, %Fux = U,y Fy, = 2u,, a%Fuy = 2uy,
e And F, =2)\E,(E,v + Ev + E;)
F,. = 2v,, %va = 204, F,, = 2v,, a%Fvy = 20y,

e This implies a coupled system of equations

Au = NE,u+ Ep+ E)E,
A*v = MNEu+ Ep+ E)E,
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Solution using Euler Lagrange

Discretizing we have

® U, Upt1 Upi+1 Up—17 Uk —1: W component of the velocity at points
(k, 1), (k+1,1), (k,l+ 1), (k—1,1)and(k,l — 1) respectively.

® Upi, Ukt1l Uki+1 Uk—11 Ugg—1. U component of the velocity at points
(k,0), (k+1,0), (k, 1+ 1), (k—1,1)and(k,l — 1) respectively.

Wy — AE,E,  v,E,E,
1+ AE,2 1+ AE,°
_ T —AEE,  uyE.E,

14+ \E,2 1+ )\E,’
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Uses of Euler Lagrange

Problem

Regularization principle

Contours

Area based Optical flow

FEdge detection

Contour based Optical flow
Sur face reconstruction
Spatiotemporal approximation
Colour

Shape from shading

Stereo

J Esnake(v(s))ds

Jl(ua® + uy® + v2® + vy%) + M(Ezu + Eyv + i4)?)|dzdy
JUST =) + A (fee)’)dz

JIV- N = VMY A

JUS-f— d? + A(faz + 2fzy2 + fyyz)]dxdy

JIS - f =3+ XVf-V + ft)’|dedydt

JUE = R(f,9))* + A(fo> + f,> + 92° + g,°)|dzdy
J{IV?G * (L(z,y) — R(z + d(z,y),y))]* + A(Vd)*}dzdy
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Concluding Remarks

e Two interesting problems have been described
e Defined and derived the Euler Lagrange equations

e Used mathematics to solve the computer vision problem
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