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Abstract

We consider the problem of binary class prob-

ability estimation (CPE) when one class is rare

compared to the other. It is well known that stan-

dard algorithms such as logistic regression do not

perform well in this setting as they tend to under-

estimate the probability of the rare class. Com-

mon fixes include under-sampling and weight-

ing, together with various correction schemes.

Recently, Wang & Dey (2010) suggested the

use of a parametrized family of asymmetric link

functions based on the generalized extreme value

(GEV) distribution, which has been used for

modeling rare events in statistics. The approach

showed promising initial results, but combined

with the logarithmic CPE loss implicitly used in

their work, it results in a non-convex composite

loss that is difficult to optimize. In this paper,

we use tools from the theory of proper compos-

ite losses (Buja et al., 2005; Reid & Williamson,

2010) to construct a canonical underlying CPE

loss corresponding to the GEV link, which yields

a convex proper composite loss that we call the

GEV-canonical loss; this loss can be tailored to

CPE settings where one class is rare, and is easily

minimized using an IRLS-type algorithm similar

to that used for logistic regression. Our experi-

ments on both synthetic and real data suggest that

the resulting algorithm – which we term GEV-

canonical regression – performs well compared

to common approaches such as under-sampling

and weights-correction for this problem.

Proceedings of the 31
st International Conference on Machine

Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

1. Introduction

The problem of estimating class probabilities from data

with binary labels is a fundamental one in machine learn-

ing, and arises in several applications in practice, including

for example medical diagnosis, fraud prediction, click-rate

prediction in web advertising, etc. In many of these appli-

cations, one class is rare compared to the other: in medi-

cal diagnosis, only a few patients develop a given disease;

in fraud prediction, only a few transactions turn out to be

fraudulent; in web advertising, only a few ad impressions

result in clicks, and so on. Yet in all these applications,

it is important to accurately estimate the probability of the

rare class occurring: in medical diagnosis, these probabili-

ties help in deciding the right course of treatment; in fraud

prediction, these probabilities help in estimating the risk of

various actions; in web advertising, these probabilities help

in deciding how to rank or display various ads, and so on.

It is well known that classical approaches such as logis-

tic regression do not perform well in such settings, espe-

cially when the probability of the rare class is very small

and the number of training examples is limited (Czado &

Santner, 1992; King & Zeng, 2001; Zhang, 2004). The rea-

son for this is that the logistic loss used in logistic regres-

sion is symmetric in nature, i.e. it assigns equal penalty

for the losses on positive and negative examples. Common

fixes used in practice include under-sampling the majority

class to balance the two classes before training or weight-

ing losses on positive and negative examples differently,

and then applying some form of correction scheme when

estimating probabilities from the learned model (King &

Zeng, 2001; Wallace & Dahabreh, 2012).

The logistic loss can be viewed as a proper composite

loss that combines the well-known logarithmic loss for bi-

nary class probability estimation (CPE) with the symmet-

ric logit link, which is the ‘canonical’ link for the loga-
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rithmic loss (Buja et al., 2005; Reid & Williamson, 2010).

An alternative approach is to use an asymmetric link func-

tion that helps penalize mispredictions on positive exam-

ples differently from those on negative examples. Recently,

Wang & Dey (2010) suggested the use of a parametrized

family of asymmetric link functions based on the gener-

alized extreme value (GEV) distribution, which has been

used for modeling rare events in statistics (Kotz & Nadara-

jah, 2000; Embrechts et al., 1997); a similar approach

was used in (Calabrese & Osmetti, 2011). These works

use a probabilistic model together with maximum likeli-

hood/maximum a posteriori estimation, which effectively

composes the GEV links with the same logarithmic CPE

loss as that used in logistic regression; unfortunately, this

results in a non-convex optimization problem.

In this paper, we use tools from the theory of proper com-

posite losses, which are natural choices for CPE problems

in general (Buja et al., 2005; Reid & Williamson, 2010),

to construct a proper composite loss with desirable proper-

ties for CPE problems when one class is rare. Specifically,

we derive a family of underlying CPE losses for which the

GEV links form the ‘canonical’ link. The resulting proper

composite loss family, which we call the GEV-canonical

loss family, can be used to adapt to the degree of rarity

in the data and accordingly penalize wrong predictions on

positive examples more heavily than those on negative ex-

amples. In addition, due to properties of proper composite

losses formed using canonical links, each loss in the GEV-

canonical loss family is convex, allowing us to use an itera-

tive reweighted least squares (IRLS) algorithm for its min-

imization, similar to that used in common logistic regres-

sion implementations. The resulting algorithm, which we

term GEV-canonical regression, outperforms various base-

lines in experiments with both synthetic and real data, par-

ticularly when the number of training examples is limited.

Related Work. In addition to the work mentioned above,

there has been much interest in learning in class imbalance

settings in general, with several workshops, survey articles,

and editorials devoted to the topic over the years (Provost,

2000; Japkowicz, 2000; Chawla et al., 2004; Van Hulse

et al., 2007; He & Garcia, 2009). Much of this work fo-

cuses on classification in class imbalance settings, where

again approaches such as weighting the two classes dif-

ferently, subsampling the majority class or over-sampling

the minority class before training, and using calibration

to correct predictions afterwards are widely used (Chawla

et al., 2002; Drummond & Holte, 2003; Van Hulse et al.,

2007; Lee et al., 2012). Such techniques are also used for

cost-sensitive learning (Elkan, 2001; Zadrozny et al., 2003;

Masnadi-Shirazi & Vasconcelos, 2010), wherein different

misclassification errors are penalized differently. A differ-

ent approach to cost-sensitive learning, which bears some

relation to our work, is that of Guerrero-Curieses et al.

(2004), who designed loss functions to predict class prob-

abilities accurately around a given classification threshold

in order to minimize classification errors. In this paper, our

interest is primarily in CPE problems in class imbalance

settings, where we wish to estimate reliably the class prob-

abilities, particularly in the region of small probabilities but

in other regions as well, despite the imbalance in the data.

Organization. We start with preliminaries and background

on proper loss functions, link functions, the GEV link

family, and proper composite losses in Section 2. Sec-

tion 3 derives the proper loss for which the GEV link forms

the ‘canonical’ link, constructs the GEV-canonical proper

composite loss, and describes the resulting GEV-canonical

regression algorithm. Section 4 gives our experimental re-

sults comparing the GEV-canonical regression algorithm

with several baselines on both synthetic and real data. We

conclude with a brief discussion in Section 5.

2. Preliminaries and Background

Notation. We denote R = (−∞,∞), R = [−∞,∞],
R+ = [0,∞), and R+ = [0,∞]. For z ∈ R, we denote

z+ = max(0, z).

Problem Setup. We consider binary CPE problems where

there is an instance space X , binary label space Y = {±1},
and an underlying (unknown) probability distributionD on

X × {±1} from which both training examples and future

test examples are assumed to be drawn i.i.d. Let (X,Y ) de-

note a random example drawn from D. Let p = P(Y = 1)
denote the overall probability of the positive class underD,

and let η : X→[0, 1] denote the associated class probabil-

ity function: η(x) = P(Y = 1 |X = x). Given a training

sample S = ((x1, y1), (x2, y2), · · · , (xn, yn)) ∼ Dn, the

goal is to learn from S a CPE model η̂S : X→[0, 1] that ac-

curately estimates the true class probability function η. We

are interested in settings where one class (say the positive

class) is rare, so that p≪ 0.5.

CPE Loss Functions and Proper Losses. A CPE loss

function is any loss function c : {±1}× [0, 1]→R+ that as-

signs a penalty c(y, η̂) for predicting η̂ ∈ [0, 1] as the prob-

ability of a positive label when the true label is y ∈ {±1}.
A CPE loss c can equivalently be defined through its par-

tial losses c1 : [0, 1]→R+ and c−1 : [0, 1]→R+, given by

cy(η̂) = c(y, η̂). A popular CPE loss is the logarithmic

loss clog : {±1}× [0, 1]→R+, with partial losses given by

clog1 (η̂) = − ln(η̂) ; (1)

clog−1(η̂) = − ln(1− η̂) . (2)

For any CPE loss function c, define the point-wise c-risk

Lc : [0, 1]× [0, 1]→R+ as follows:1

1Note that we overload notation and use η to denote both the
class probability function and a number in [0, 1]; the usage should
be clear from context.
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Lc(η, η̂) = η c1(η̂) + (1− η) c−1(η̂) .

A CPE loss c is said to be proper if the point-wise c-risk

Lc(η, η̂) is minimized by η̂ = η for all η ∈ [0, 1], i.e. if

η ∈ argmin
η̂∈[0,1]

Lc(η, η̂) ∀η ∈ [0, 1] ,

and strictly proper if in addition this minimizer is unique.

This is a desirable property for any CPE loss as it ensures

that minimizing the loss yields the correct probability es-

timates. Proper losses are related to proper scoring rules

that have been used in the probability forecasting literature

(Savage, 1971; Hendrickson & Buehler, 1971; Schervish,

1989; Gneiting & Raftery, 2007), and have received signif-

icant interest in the machine learning community recently

(Buja et al., 2005; Reid & Williamson, 2009; 2010; Agar-

wal, 2013). It can be verified that the logarithmic loss clog

defined above is strictly proper.

Link Functions and the GEV Link Family. In practice,

when learning a CPE model η̂S : X→[0, 1], one usually

learns a real-valued scoring model fS : X→V for some

V ⊆ R, and then maps the real-valued scores to probabil-

ity estimates in [0, 1] via a link function. A link function

is any strictly increasing function ψ : [0, 1]→V; one then

uses the inverse link function ψ−1 : V→[0, 1] to map scores

fS(x) ∈ V to probability estimates η̂S(x) = ψ−1(fS(x)).
One of the most widely used link functions is the logit link

ψlogit : [0, 1]→R, defined as

ψlogit(η̂) = ln
( η̂

1− η̂

)
.

Other common links include the probit link ψprobit :
[0, 1]→R, defined as

ψprobit(η̂) = Φ−1(η̂) ,

where Φ denotes the standard normal CDF, and the comple-

mentary log-log (cloglog) link ψcloglog : [0, 1]→R, defined

as
ψcloglog(η̂) = ln(− ln(1− η̂)) .

The logit and probit links are both symmetric, in that they

satisfy ψ(η̂) = −ψ(1− η̂); the cloglog link is asymmetric.

A general method for constructing a link function is to use

the inverse CDF of a continuous real-valued random vari-

able, just as the probit link uses the inverse standard nor-

mal CDF. Recently, Wang & Dey (2010) proposed the use

of the CDF of the generalized extreme value (GEV) dis-

tribution, used in statistics for modeling rare events (Kotz

& Nadarajah, 2000; Embrechts et al., 1997), for construct-

ing a parametric family of asymmetric links. Specifically,

the CDF of the GEV distribution with location parameter

µ = 0, scale parameter σ = 1, and shape parameter ξ ∈ R,

which we shall denote as Fξ : R→[0, 1], is defined as

Fξ(v) = exp(−(1 + ξv)
−1/ξ
+ ) .

Clearly, this distribution has support [− 1
ξ ,∞) for ξ > 0;

(−∞,− 1
ξ ] for ξ < 0; and R for ξ = 0; taking the limit in

the above as ξ→0, one recovers the Gumbel distribution:

F0(v) = exp(− exp(−v)). Denote the extension of the

above support by Rξ:

Rξ =





[− 1
ξ ,∞] if ξ > 0

[−∞,− 1
ξ ] if ξ < 0

R if ξ = 0.

The corresponding GEV link, parametrized by ξ ∈ R and

which we denote as ψGEV(ξ) : [0, 1]→Rξ, is then defined as

ψGEV(ξ)(η̂) =
1

ξ

(
1

(
− ln(η̂)

)ξ − 1

)
∀ξ ∈ R\{0} .

In the limit ξ→0, it leads to the standard log-log link:

ψGEV(0)(η̂) = − ln(− ln(η̂)). The parameter ξ can be ad-

justed to yield different degrees of asymmetry in the above

link, which in turn can be used to fit different degrees of rar-

ity in the data. This is similar to how the GEV distribution

is used traditionally, where one selects the most appropri-

ate distribution in the GEV family to model the underlying

data by adjusting the parameter ξ .

Proper Composite Losses and Canonical Links. A com-

mon way to learn a real-valued scoring function fS : X→V
(for V ⊆ R as above) is to minimize a loss function ℓ :
{±1} × V→R+ on the training sample S, i.e. to minimize∑n

i=1 ℓ(yi, f(xi)) over some suitable class of functions f ,

where ℓ(y, v) can be viewed as the penalty assigned by ℓ for

predicting a score v ∈ V when the true label is y ∈ {±1}.
Again, any such loss ℓ can equivalently be defined through

its partial losses ℓ1 : V→R+ and ℓ−1 : V→R+, given by

ℓy(v) = ℓ(y, v). A popular loss operating on scores in R

is the logistic loss ℓlogistic : {±1}×R→R+ used in logistic

regression, defined as

ℓlogistic(y, v) = ln(1 + e−yv) .

A loss function ℓ : {±1} × V→R+ is said to be proper

composite (Buja et al., 2005; Reid & Williamson, 2010) if

it can be written as a composition of a proper CPE loss

c : {±1} × [0, 1]→R+ and a link ψ : [0, 1]→V , so that

ℓ(y, v) = c(y, ψ−1(v)) ∀y ∈ {±1}, v ∈ V ,

and strictly proper composite if in addition c is strictly

proper. It is easy to verify that the popular logistic loss

is a strictly proper composite loss, composed of the strictly

proper logarithmic CPE loss and the logit link. It is com-

mon to compose the logarithmic CPE loss with other link

functions as well, such as the probit or cloglog links. The

approach in (Wang & Dey, 2010; Calabrese & Osmetti,

2011) uses the GEV link in a probabilistic model and per-

forms maximum likelihood or maximum a posteriori esti-

mation under a suitable prior, which also amounts to ef-

fectively composing the GEV link with the logarithmic
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Table 1. Summary of proper composite losses considered in this paper.

COMPOSITE LOSS INVERSE LINK UNDERLYING CPE LOSS FLEXIBLE LINK? CONVEX?

ℓ(y, v) ψ−1(v) c(y, η̂)

LOGISTIC ln(1− e−yv) 1/(1 + e−v) SEE EQS. (1-3) ×
√

PROBIT c(y, ψ−1(v)) Φ(v) SEE EQS. (1-3) ×
√

CLOGLOG c(y, ψ−1(v)) 1− e−ev SEE EQS. (1-3) ×
√

GEV-LOG(ξ) c(y, ψ−1(v)) exp(−(1 + ξv)−1/ξ) SEE EQS. (1-3)
√

×

GEV-CANONICAL(ξ) c(y, ψ−1(v)) exp(−(1 + ξv)−1/ξ) SEE EQS. (3-4)
√ √

CPE loss (and possibly adding regularization to the result-

ing minimization problem). Unfortunately, this results in a

non-convex optimization problem.

For any strictly proper loss, there is a unique ‘canonical’

link for which the resulting composite loss satisfies vari-

ous desirable properties, including convexity; conversely,

for any link function, there is a unique ‘canonical’ strictly

proper loss (Buja et al., 2005; Reid & Williamson, 2010).

The logit link and logarithmic loss form a canonical pair.

Below we construct a proper composite loss using the GEV

link and its corresponding canonical proper loss.

3. GEV-Canonical Regression

In this section we examine the GEV link family more

closely through the lens of proper composite losses. Us-

ing results of (Buja et al., 2005; Reid & Williamson, 2010),

we derive a parametric proper CPE loss for which the GEV

link forms the canonical link. This allows us to maintain

the attractive properties of the GEV link for CPE settings

when one class is rare, namely flexibility of the link func-

tion to adapt to varying degrees of rarity in the data, as

well as obtain desirable properties for the overall compos-

ite loss, such as convexity in the second argument. We term

the resulting proper composite loss the GEV-canonical loss

(see Table 1 and Figure 1 for a summary). This loss can be

minimized efficiently using an IRLS algorithm similar to

that used in logistic regression implementations; we term

the resulting algorithm GEV-canonical regression.

3.1. GEV-Canonical Loss

As described in (Buja et al., 2005; Reid & Williamson,

2010), for any link function ψ : [0, 1]→V , the strictly

proper CPE loss c : {±1}× [0, 1]→R+ that yields a canon-

ical pair with ψ is given by

c1(η̂) =

∫ 1

η̂

(1− q)ω(q) dq ;

c−1(η̂) =

∫ η̂

0

q ω(q) dq ,

where ω : (0, 1)→R+ is a weight function given by

ω(q) = ψ′(q) ∀q ∈ (0, 1) .

Applying this result to the parametric GEV link, we get that

for any ξ ∈ R, the following is the unique strictly proper

CPE loss for which the GEV link with parameter ξ forms

the canonical link:

c
GEV-can(ξ)
1 (η̂) =

∫ 1

η̂

1− q

q(− ln q)1+ξ
dq ; (3)

c
GEV-can(ξ)
−1 (η̂) =

∫ η̂

0

1

(− ln q)1+ξ
dq . (4)

The resulting proper composite loss, which we refer to as

the GEV-canonical loss, is given by

ℓGEV-can(ξ)
y (v) = cGEV-can(ξ)

y

(
ψ−1

GEV(ξ)(v)
)
∀v ∈ Rξ .

This loss is not available in closed form, but is guaranteed

to be convex on Rξ for all ξ, and moreover, as we describe

below, can be minimized efficiently using an IRLS algo-

rithm. Plots of the GEV-canonical loss for various values

of ξ (obtained using numerical integration) are shown in

Figure 1. As can be seen, different values of ξ yield dif-

ferent forms of asymmetry; for larger values of ξ, the loss

effectively penalizes mispredictions on positive examples

more heavily than those on negative examples.

For comparison, Figure 1 also shows plots of the logistic,

probit and cloglog losses, as well as the GEV-log loss effec-

tively used in (Wang & Dey, 2010; Calabrese & Osmetti,

2011), which is composed of the GEV link together with

the logarithmic CPE loss:

ℓGEV- log(ξ)
y (v) = clogy

(
ψ−1

GEV(ξ)(v)
)
∀v ∈ Rξ .

The GEV-log loss is non-convex for ξ /∈ [−1, 0.1), making

its minimization prone to local minima.

3.2. IRLS Algorithm for GEV-Canonical Regression

In the following, fix any ξ ∈ R. (In practice, ξ will be

selected based on the training data, by cross-validation or

by using a validation set.) For Euclidean instance spaces,

we show how the GEV-canonical loss for any fixed ξ ∈ R

can be minimized over linear functions using an IRLS

algorithm; extension to non-linear functions or to non-

Euclidean instance spaces via kernels is straightforward.

Let X = R
k for some k ∈ Z+, and let S = ((xi, yi))

n
i=1 ∈

(Rk × {±1})n. Since the GEV-canonical loss is defined
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Figure 1. Partial losses for various proper composite losses considered in this paper: logistic, probit, cloglog, GEV-log for various values

of ξ, and GEV-canonical for various values of ξ. The logistic, probit, cloglog, and GEV-log losses all use the symmetric underlying

logarithmic CPE loss (with different link functions); the GEV-canonical loss uses an asymmetric underlying CPE loss for which the

GEV link forms the canonical link. GEV-log and GEV-canonical losses with with ξ = −0.2567 can be used when one wants the

composite loss to be (close to) symmetric. More interestingly, for larger values of ξ, GEV-log and and GEV-canonical losses penalize

mispredictions on positive examples more heavily than those on negative examples, which is desirable in CPE settings when one class is

rare. For ξ /∈ [−1, 0.1), the GEV-log loss is non-convex. On the contrary, the GEV-canonical loss is guaranteed to be convex for all ξ.

only for scores in V = Rξ, we consider learning a ‘clipped’

linear function fS : X→Rξ of the form

fS(x) = clipξ(β
⊤
x)

for some β ∈ R
k, where clipξ : R → Rξ clips values out-

side the interval Rξ to the closest endpoint of the interval:

clipξ(v) =





max(− 1
ξ , v) if ξ > 0

min(− 1
ξ , v) if ξ < 0

v if ξ = 0.

Thus we would like to minimize the following objective

over β:

L̂ξ(β) =

n∑

i=1

ℓGEV(ξ)-can
yi

(
clipξ(β

⊤
xi)
)
.

Now, while ℓ
GEV(ξ)-can
1 (v) and ℓ

GEV(ξ)-can
−1 (v) are both con-

vex in v over Rξ, the losses in the above sum are not always

convex in β. In particular, when ξ > 0, we have that for

any x ∈ R
k, ℓ

GEV(ξ)-can
−1

(
clipξ(β

⊤
x)
)

is convex in β for

all β ∈ R
k, but ℓ

GEV(ξ)-can
1

(
clipξ(β

⊤
x)
)

is convex in β

only for β : β⊤
x ∈ Rξ; the reverse is true when ξ < 0.

Therefore we would like to solve the following convex op-

timization problem:

min
β∈Cξ

L̂ξ(β) ,

where

Cξ =





{
β ∈ R

k
∣∣β⊤

xi ∈ Rξ ∀i ∈ [n] : yi = 1
}

if ξ > 0{
β ∈ R

k
∣∣β⊤

xi ∈ Rξ ∀i ∈ [n] : yi = −1
}

if ξ < 0

R
k if ξ = 0 .

While the objective above is not available in closed form,

its gradient and Hessian in Cξ can be expressed in closed

form:

∇βL̂ξ(β) = −
n∑

i=1

(
1(yi = 1)− ηi

)
xi ∀β ∈ Cξ ;

∇2
βL̂ξ(β) =

n∑

i=1

ηi
(
− ln(ηi)

)ξ+1
xix

⊤
i ∀β ∈ Cξ ;

where ηi = ψ−1
GEV(ξ)

(
clipξ(β

⊤
xi)
)
∀i ∈ [n].
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Algorithm 1 GEV-Canonical Regression (using IRLS)

Input: Data S = ((xi, yi))
n
i=1 ∈ (Rk × {±1})n

Initialize: X = [x1,x2, · · · ,xn]
⊤ ∈ R

n×k

η
(1)
i =

{
0.75 if yi = 1

0.25 if yi = −1
∀i ∈ [n]

v
(1)
i = ψGEV(ξ)(η

(1)
i ) ∀i ∈ [n]

t = 1
repeat

for i = 1 to n do

w
(t)
i = η

(t)
i (− ln(η

(t)
i ))ξ+1

choose a suitable step size γ(t)

z
(t)
i = v

(t)
i +γ(t)·

(
1(yi = 1)−η

(t)
i

)
·ψ′

GEV(ξ)(η
(t)
i )

end for

W
(t) = diag(w

(t)
1 , · · · , w

(t)
n )

β(t) = (X⊤
W

(t)
X)−1

X
⊤
W

(t)
z
(t)

// compute β(t) via weighted least squares (WLS)

for i = 1 to n do

v
(t+1)
i = (β(t))⊤xi

η
(t+1)
i = ψ−1

GEV(ξ)(clipξ(v
(t+1)
i ))

end for

t← t+ 1
until convergence

Output: Coefficient vector β(t−1) ∈ R
k

Given the gradient and the Hessian, one can use Newton’s

method iteratively:

βnew = βold − γ · (∇
2
βL̂ξ(β))

−1 (∇βL̂ξ(β))
∣∣
β=βold

,

where γ is a suitable step size. It can be verified that if

βold ∈ Cξ, then Newton’s update with an appropriate step

size will result in βnew ∈ Cξ. For simplicity, in our exper-

iments, we fix γ = 1, although it may be worth exploring

variable step size schedules in future work.

Implementing Newton’s method directly as above requires

inverting the Hessian, which turns out to be a costly opera-

tion. Therefore we use a variant of the iterative reweighed

least squares (IRLS) algorithm (Green, 1984) to implement

Newton’s method (see Algorithm 1). To avoid overfitting,

one can add L2-norm regularization by simply replacing

the WLS step in the algorithm with the following:

β(t) = (X⊤
W

(t)
X+ λI)−1

X
⊤
W

(t)
z
(t) ,

where λ is the regularization parameter, X, W are as de-

fined in Algorithm 1, and I is the k × k identity matrix.

4. Experiments

We conducted experiments with both synthetic and real

data. In the case of synthetic data (Section 4.1), we model

settings where η(x) is small for most x; this might be the

case, for example, in a web advertising application, where

most ad impressions have fairly small probabilities of re-

sulting in a click. Since here we know the true class prob-

ability function η, we measure performance of the learned

CPE model η̂S relative to η on a test set. In the case of real

data (Section 4.2), for which we use 12 data sets from the

UCI repository (Frank & Asuncion, 2010), we do not have

the true class probability function η, but only observed la-

bels y, and so we measure performance of the learned CPE

model η̂S relative to the observed labels y on a test set.

In both sets of experiments, we compare our proposed

GEV-canonical regression algorithm with the following al-

gorithms as baselines (all implemented to learn a linear

function): logistic regression, probit regression, C-loglog

regression, under-sampled logistic regression with King &

Zeng’s correction to the learned β coefficients (King &

Zeng, 2001), weighted logistic regression with correction

to the learned β coefficients (Buja et al., 2005), and mini-

mization of the GEV-log loss used in (Wang & Dey, 2010;

Calabrese & Osmetti, 2011).2 In the case of weighted lo-

gistic regression, the weights are the inverse empirical class

probabilities, i.e. if p̂ is the fraction of positives in the

training sample, then the losses on positives are multiplied

by 1/p̂ and those on negatives by 1/(1 − p̂). In (Wang

& Dey, 2010; Calabrese & Osmetti, 2011), the parame-

ter ξ in the GEV-log loss is incorporated as a variable in

the optimization problem, which adds an additional layer

of non-convexity. In our experiments with both GEV-log

and GEV-canonical losses, we select ξ by validation from

the set {−1,−0.9, . . . , 0, 0.1, . . . , 1.5} ∪ {−0.2567}. This

range of ξ values covers a wide range of shapes for the GEV

link, and in our experiments, is sufficient to accurately es-

timate class probabilities for various degrees of rarity.

4.1. Experiments with Synthetic Data

We generated synthetic data inX = R
k (for k = 100) from

three distributions for which η(x) is small for most x ∈ X ,

and consequently, p is small. Details of the distributions

can be found in Appendix A; for the specific distributions

generated, we had p = 0.0158, p = 0.0312, and p = 0.095.

For each of the three distributions, we generated training

sets of increasing sizes, and tested the learned CPE mod-

els on a test set containing 5000 examples drawn indepen-

dently from the same distribution. Since we know the true

class probability function in this case, we used the root

mean squared error (RMSE) of the learned model relative

to the true class probability function as the performance

measure; for a test sample containing n points x1, . . . ,xn,

the RMSE of a CPE model η̂ : X→[0, 1] is defined as3

2We also tried under-sampling without any correction, but
it consistently gave worse performance than with the correction
step, so we do not report the results here.

3Again, we overload notation for η̂ (η̂ was earlier used to de-
note a number in [0, 1]); the usage should be clear from context.
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Figure 2. Results on synthetic data generated from various distributions with p ≪ 0.5. Left: ‘Sine’ distribution with r = 64 (p =
0.0158). Middle: ‘Sine’ distribution with r = 32 (p = 0.0312). Right: ‘Step’ distribution (p = 0.095). GEV-canonical regression

outperforms most baselines, especially for small training sample sizes. See Appendix A for details of the distributions used.

RMSE =

√√√√ 1

n

n∑

i=1

(
η̂(xi)− η(xi)

)2
.

We also used the RMSE on a seperately generated vali-

dation set containing 500 examples (drawn from the same

distribution as training set) to select the GEV parameter ξ.

The results, averaged over 10 random generations of train-

ing samples for each distribution, are shown in Figure 2.

As can be seen, the proposed GEV-canonical regression al-

gorithm has better RMSE performance than most baseline

algorithms, especially for small training sample sizes.

4.2. Experiments with Real Data

We conducted experiments with 12 real-world data sets

from the UCI repository (Frank & Asuncion, 2010). Prop-

erties of these data sets are summarized in Table 2. As can

be seen, the data sets have varying degrees of rarity: 4 data

sets have p ∈ (0, 0.1]; the next 4 data sets have (roughly)

p ∈ (0.1, 0.25], and the remaining 4 data sets have p ∈
(0.25, 0.35]. We randomly split each data set into 70% for

training and 30% for testing, and report average results over

10 such random splits. We used L2-norm regularization in

all the algorithms, and for each train/test split, further used

30% of the training set as a validation set to select the GEV

parameter ξ and regularization parameter λ; the latter is

chosen from the set {10−3, 10−2, 10−1, 1, 10, 100, 1000}.

As noted earlier, in the case of real-world data, we do not

know the true class probabilities, and therefore we can-

not directly evaluate the learned CPE models relative to

the true class probability function η. Instead, we use the

squared error with respect to the observed binary labels

y, more commonly referred to as the Brier score in the

probability forecasting literature (Brier, 1950), as one per-

formance measure; for a test sample containing n exam-

ples (x1, y1), . . . , (xn, yn), the Brier score of a CPE model

η̂ : X→[0, 1] is defined as

BS =
1

n

n∑

i=1

(
η̂(xi)− 1(yi = 1)

)2
.

Table 2. Characteristics of UCI data sets used in our experiments.

DATASET # EXAMPLES # FEATURES p

NURSERY 12960 27 .025
LETTER-A 20000 16 .039
CAR 1728 21 .040
GLASS 214 9 .079
ECOLI 336 9 .104
LETTER-VOWEL 20000 16 .194
CMC 1473 24 .226
VEHICLE 846 18 .251
HABERMAN 306 3 .265
YEAST 1484 9 .289
GERMAN 1000 61 .300
PIMA 768 8 .349

We also use the Brier score on the validation set to select

select the GEV parameter ξ and regularization parameter λ.

We note that Wallace & Dahabreh (2012) recently proposed

measuring the Brier score on only the positive examples,

without regard to the performance on negative examples;

we do not consider this here as our goal is to estimate the

full class probability function well.

We also evaluate the performance of all the algorithms

in terms of the calibration loss, which provides a more

fine-grained analysis of the class probability estimates

(Hernández-Orallo et al., 2012). Specifically, given n test

examples as above, we assign each example to one of 10

bins based on whether its predicted class probability η̂(xi)
falls in the range [0, 0.1], (0.1, 0.2], . . . , or (0.9, 1]. For

each of these 10 bins, we count the fraction of examples

assigned to that bin that are positive, and treat this as a

‘proxy’ true class probability for each example xi in that

bin, denoted η̃(xi). The calibration loss of the CPE model

η̂ w.r.t. these bins is then defined as

CL =
1

n

n∑

i=1

(
η̂(xi)− η̃(xi)

)2
.

The results in terms of the Brier score and in terms of the

calibration loss, both averaged over 10 random train-test

splits for each data set, are shown in Table 3 and Table 4,
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Table 3. Results on UCI data sets in terms of Brier score. The symbols * and ** against a method indicate that it is statistically

significantly different than the best method in the row (using the two-sided Wilcoxon test) with 90% and 95% confidence, respectively.

DATASET LOGISTIC PROBIT CLOGLOG UNDERSAMPLING WEIGHTED GEV-LOG GEV-CANONICAL

REGRESSION REGRESSION REGRESSION + KING-ZENG LOGISTIC REGRESSION REGRESSION

CORRECTION + CORRECTION

NURSERY 0.0084 0.0084 0.0088 ** 0.0124 ** 0.0090 ** 0.0172 ** 0.0084
LETTER-A 0.0079 ** 0.0084 ** 0.0074 0.0111 ** 0.0112 ** 0.0313 ** 0.0080 **
CAR 0.0266 ** 0.0262 0.0267 ** 0.0320 ** 0.0271 * 0.0296 ** 0.0259
GLASS 0.0670 0.0671 0.0744 ** 0.0623 0.0637 0.0614 0.0649
ECOLI 0.0646 0.0644 0.0689 ** 0.0756 ** 0.0635 0.0641 0.0641
LETTER-VOWEL 0.1392 ** 0.1392 ** 0.1400 ** 0.1416 ** 0.1414 ** 0.1405 ** 0.1367
CMC 0.1617 0.1617 0.1621 0.1642 ** 0.1615 0.1626 0.1622
VEHICLE 0.1399 0.1395 0.1422 0.1501 ** 0.1408 0.1497 ** 0.1394
HABERMAN 0.1828 * 0.1812 0.1907 ** 0.1823 * 0.1814 ** 0.1761 0.1769
YEAST 0.1634 ** 0.1635 ** 0.1666 ** 0.1646 ** 0.1635 ** 0.1621 0.1616
GERMAN 0.1721 0.1731 0.1737 0.1754 ** 0.1714 0.1787 ** 0.1727
PIMA 0.1617 ** 0.1623 ** 0.1652 ** 0.1662 * 0.1626 ** 0.1616 0.1603

Table 4. Results on UCI data sets in terms of calibration loss. The symbols * and ** against a method indicate that it is statistically

significantly different than the best method in the row (using the two-sided Wilcoxon test) with 90% and 95% confidence, respectively.

DATASET LOGISTIC PROBIT CLOGLOG UNDERSAMPLING WEIGHTED GEV-LOG GEV-CANONICAL

REGRESSION REGRESSION REGRESSION + KING-ZENG LOGISTIC REGRESSION REGRESSION

CORRECTION + CORRECTION

NURSERY 0.0007 0.0006 0.0006 0.0016 ** 0.0009 0.0010 ** 0.0008 *
LETTER-A 0.0005 0.0006 ** 0.0005 0.0009 * 0.0006 0.0038 ** 0.0006 *
CAR 0.0052 * 0.0049 * 0.0053 ** 0.0062 0.0068 ** 0.0033 0.0037
GLASS 0.0222 0.0235 0.0309 ** 0.0109 0.0266 0.0252 ** 0.0238
ECOLI 0.0230 0.0245 0.0264 0.0260 0.0266 0.0229 0.0202
LETTER-VOWEL 0.0059 ** 0.0061 ** 0.0047 ** 0.0090 ** 0.0088 ** 0.0042 0.0038
CMC 0.0056 ** 0.0054 0.0063 0.0057 0.0046 0.0047 0.0057 *
VEHICLE 0.0112 0.0116 0.0111 0.0195 ** 0.0127 ** 0.0097 0.0083
HABERMAN 0.0295 ** 0.0245 0.0331 ** 0.0291 0.0309 ** 0.0216 0.0236
YEAST 0.0083 0.0078 0.0090 ** 0.0087 * 0.0091 ** 0.0060 0.0064
GERMAN 0.0089 ** 0.0088 0.0101 ** 0.0067 0.0065 0.0105 0.0084
PIMA 0.0090 0.0106 ** 0.0112 * 0.0116 0.0107 * 0.0091 0.0081

respectively. As can be seen, GEV-canonical regression

performs well overall compared to other approaches. In

particular, even when it is not the best performer itself, it

is rarely significantly worse than the best performer, indi-

cating that its performance is generally close to that of the

best approach. In comparison to GEV-log loss, the GEV-

canonical loss is easier to optimize due to its convexity; in

our experiments, the optimization for GEV-canonical re-

gression also converged faster than that for GEV-log re-

gression (see Appendix B for run-time comparisons).

5. Conclusion

The problem of estimating class probabilities from data

with binary labels, where one class is rare compared to

the other, arises in several applications. We have consid-

ered a principled approach to this problem, based on the

notion of proper composite losses that have received sig-

nificant interest recently in the context of class probability

estimation problems, and have applied tools from the the-

ory of these losses to construct a flexible parametric family

of convex, proper composite losses based on the GEV dis-

tribution that can be used to adapt to the degree of rarity in

the data. Experiments with the resulting GEV-canonical re-

gression algorithm on both synthetic and real data demon-

strate improved class probability estimation performance

as compared to a wide variety of baseline algorithms.

Future directions include developing large-scale extensions

of our method, and studying statistical convergence rates

for GEV-canonical regression in comparison to other CPE

algorithms for distributions where one class is rare.
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Supplementary Material

A. Distributions for Synthetic Data

The first two distributions, which we call ‘sine’ distribu-

tions, can be described as follows (we used two different

settings for the ‘rarity’ parameter r):

1. Fix µ ∈ R
k and a symmetric positive semidefinite

matrix Σ ∈ R
k×k. (In our experiments, µ was sam-

pled from a k-variate standard normal distribution,

and Σ was sampled from a Wishart distribution with

parameters (I, k), where I is the k×k identity matrix.)

2. Fix β∗ ∈ R
k+1. (In our experiments, β∗ was sampled

from a (k + 1)-variate standard normal distribution.)

3. The distributionD onX ×{±1} is defined as follows:

To generate an example (x, y), sample x ∼ N (µ,Σ)
and let x̃ = [x ; 1]; then sample y ∈ {±1} according

to the conditional probability

η(x) =
1

r

(
sin
(π
4
(β∗)⊤x̃

)
+ 1
)
,

where r > 0 is a ‘rarity’ parameter that controls p: the

higher the value of r, the more rare the positive class.

In our experiments, we used two ‘sine’ distributions with

rarity parameters r = 64 (which for the specific distribu-

tion generated yielded p = 0.0158) and r = 32 (which for

the specific distribution generated yielded p = 0.0312).

The third distribution, which we call the ‘step’ distribution,

was defined similarly; the only difference was in the form

of the class probability function:

1. Same as for ‘sine’ distribution above.

2. Same as for ‘sine’ distribution above.

3. The distributionD onX ×{±1} is defined as follows:

To generate an example (x, y), sample x ∼ N (µ,Σ)
and let x̃ = [x ; 1]; then sample y ∈ {±1} according

to the conditional probability

η(x) =





0.10 if (β∗)⊤x̃ < −30
0.03 if −30 ≤ (β∗)⊤x̃ ≤ 30
0.13 if (β∗)⊤x̃ > 30.

The ‘step’ distribution in our experiments had p = 0.095.

B. Run-Time Comparisons for Real Data

Table 5 shows the time (in seconds; rounded off to the near-

est integer) it takes for the GEV-log and the GEV-canonical

method to run for the data sets listed in Table 2. This in-

cludes the time for training as well as for validation of pa-

rameters. The results were averaged over 10 runs.

Table 5. Average training time (in seconds, including validation

time) for GEV-log & GEV-canonical regression on UCI data sets.

DATASET GEV-LOG GEV-CANONICAL

NURSERY 21947 7242
LETTER-A 84037 39138
CAR 197 40
GLASS 7 1
ECOLI 7 2
LETTER-VOWEL 72628 6503
CMC 179 19
VEHICLE 39 5
HABERMAN 6 1
YEAST 200 27
GERMAN 114 13
PIMA 20 4

We observed that the optimization for GEV-canonical loss

converges faster than for GEV-log on all the data sets. This

is likely due to the Hessian of the GEV-canonical objective

being better conditioned (the eigenvalues of the Hessian

in this case are easily bounded, which is not the case for

the Hessian of the GEV-log objective); the Newton method

converges faster when the Hessian of the objective is well

conditioned (Boyd & Vandenberghe, 2004).


