
In Proc. IJCAI 2024. To appear.

Linear-Time Optimal Deadlock Detection for Efficient Scheduling in
Multi-Track Railway Networks

Hastyn Doshi , Ayush Tripathi , Keshav Agarwal ,
Harshad Khadilkar , Shivaram Kalyanakrishnan

Department of Computer Science and Engineering, IIT Bombay
{200070025,harshadk,shivaram}@cse.iitb.ac.in, {ayush33143314,kshvgrwal}@gmail.com

Abstract
The railway scheduling problem requires the com-
putation of an operable timetable that satisfies con-
straints involving railway infrastructure and re-
source occupancy times, while minimising aver-
age delay over a set of events. Since this problem
is computationally hard, practical solutions typi-
cally roll out feasible (but suboptimal) schedules
one step at a time, by choosing which train to move
next in every step. The choices made by such algo-
rithms are necessarily myopic, and incur the risk of
driving the system to a deadlock. To escape dead-
locks, the predominant approach is to stay away
from states flagged as potentially unsafe by some
fast-to-compute rule R. While many choices of R
guarantee deadlock avoidance, they are suboptimal
in the sense of also flagging some safe states as
unsafe. In this paper, we revisit the literature on
process scheduling and describe a rule R0 that is
(i) necessary and sufficient for deadlock detection
when the network has at least two tracks in each
resource (station / track section), (ii) computable in
linear time, and (iii) yields lower delays when com-
bined with existing scheduling algorithms on both
synthetic and real data sets from Indian Railways.

1 Introduction
Railway networks around the world form the backbones
of national economies. However, due to the constraints
imposed by movement on tracks, delays in railways have
particularly large domino effects [Goverde, 2010]. In the
US, the estimated cost of delays ranges from 200 USD to
more than 1000 USD per train-hour [Schlake et al., 2011;
Lovett et al., 2015]. Of the total delays in Britain in the 2000s,
40% was composed of primary delay (random events such
as train or infrastructure faults), and 60% was secondary de-
lay (caused by subsequent congestion) [Preston et al., 2009].
Khadilkar [2017a] observes that in India, 20% of passenger
train services are delayed by at least 10 minutes, and that dif-
ferent scheduling strategies have a significant effect on oper-
ational efficiency. This fact motivates us to look at schedul-
ing strategies in detail, with a particular focus on deadlocks,
which affect both computation time and schedule efficiency.

The railway scheduling problem is a blocking ver-
sion [Strotmann, 2007; Liu and Kozan, 2009] of the famous
job shop scheduling problem (JSSP) [Manne, 1960]. The
JSSP is a class of problems in which a number of jobs or
processes (in this case, trains) need to be scheduled to pass
through a pre-specified sequence of machines or resources
(in this case, stations and inter-station track sections) in some
“optimal” way. The blocking variant implies that once a job
is loaded on a machine (train enters a track), it must be fully
processed through that step before the unit (track) becomes
available for the next job (train). Various versions of optimal-
ity exist in the literature, from makespan (time duration from
start of the first job to the end of the last job) and average
queueing time to average delay. Several JSSP variants have
been shown NP-complete [Mascis and Pacciarelli, 2002].

With solving for optimality ruled out, common approaches
for railway scheduling proceed by “rolling out” schedules
over time [Khadilkar, 2018; Prasad et al., 2021]. Abstractly,
such algorithms begin from an initial state in which trains are
located in respective resources. Then, at each time step, a
train is chosen from those eligible to move, and moved for-
ward. This process is continued until (possibly) all the trains
complete their journeys. Since the decision of which train to
move at each step is made myopically, there is a possibility
of reaching a deadlock state, from which no further progress
is possible unless some train moves backward—which is ex-
pensive and induces large delays in practice. Figure 1 shows a
network with three resources, with one free track in the mid-
dle resource. If a train heading right is moved into this free
track, there is a deadlock. However, deadlock can be avoided
by moving a train heading left into the free track.

Interestingly, detecting deadlocks in the general JSSP is
also NP-complete [Araki et al., 1977; Cocco and Monasson,
2001]. It has consequently been accepted wisdom in the rail-

Figure 1: Illustration of possible deadlock. The moves correspond-
ing to red (solid) arrows lead to deadlock, while those corresponding
to green (dashed) arrows admit a solution without deadlocks.

way scheduling community [Törnquist and Persson, 2007;
Pachl, 2012; Khadilkar, 2017b; Vujanic and Hill, 2022]
that deadlock detection for railway scheduling is also NP-
complete in all its forms. The motivation for our work is a
result by Reveliotis et al. [1997] for a variant of JSSP called
single-unit resource allocations systems (SURAS), showing
that in many reasonable situations and for an arbitrary net-
work topology, a necessary and sufficient condition for dead-
lock detection can be computed in polynomial time.

We make an explicit connection between the SURAS
polynomial-time deadlock detection condition given by Rev-
eliotis et al. [1997] and the railway scheduling problem. In
the case where every resource (station and track section) has
at least two tracks, we show that this condition can be eval-
uated for arbitrary network states with a linear complexity in
the number of trains (slightly more efficiently than Reveliotis
et al.). Thereafter, we demonstrate the significant benefit of
implementing not just sufficient but necessary conditions for
deadlock-free movement on real-world railway networks in
India. These include single-track as well as multi-track lines,
thus showcasing the wide applicability of the algorithm.

From an infrastructure perspective, laying two tracks has
only modest additional cost compared to laying one track,
because the land and utilities infrastructure already exists.
Hence the only places where single tracks are typically laid
are ones where the traffic is low (in which case sophisticated
algorithms are not needed) or where the terrain is tough. In-
deed it is apparent even from data sets used in the academic
literature [Pappaterra et al., 2021; Prasad et al., 2021] that
nodes in real-world railway lines usually contain more than
one track. Even where single tracks exist (we have empir-
ical results in Section 5), we can handle them so long as a
set of feasible moves exist for moving trains to the nearest
multi-track resource. At this point, we can drop empty single
tracks from the analysis (since they effectively connect two
resources, rather than act as independent resources) and the
remaining analysis is valid. In the case of scheduling algo-
rithms, we simply ensure that a train that moves into a single
track must be moved on to a multi-track section before an-
other train move is attempted.

After discussing related work in Section 2, we formalise
the railway deadlock detection problem in Section 3. In Sec-
tion 4, we present a novel and conceptually simple interpreta-
tion of the detection rule of Reveliotis et al. [1997] for multi-
track networks. In Section 5, we empirically validate the util-
ity of this rule in scheduling. We conclude in Section 6.

2 Related Work
The railway scheduling problem is that of establishing a
feasible timetable for a set of ‘services’ between given
origins and destinations [Törnquist and Persson, 2007].
Previous work [Cai and Goh, 1994; Liu and Kozan, 2009;
Strotmann, 2007] shows that the Job Shop Scheduling
Problem (JSSP) and railway scheduling are reducible to each
other; their decision variants are both NP-complete. The train
scheduling problem can be solved at leisure, combining exact
and randomised search algorithms [Higgins et al., 1996;
Törnquist and Persson, 2007]. The train rescheduling

problem involves a disruption externally imposed on the
timetable, from which one must quickly compute a set of
recovery actions to return to the original timetable [Sinha et
al., 2016]. Delays in this context can be computed relative
to the corresponding event times in the original timetable.
Deadlocks are also important in this context since disruptions
to the timetable may require changes in the order of train
moves, with uncertain implications for operational feasibility.
In this paper, we consider both scheduling and rescheduling,
with the understanding that computational complexity has
more impact on rescheduling (disruption recovery) than on
scheduling (timetabling).

Rescheduling and Deadlock Avoidance in Railways. While
exact formulations of rescheduling as an optimisation prob-
lem are available [Higgins et al., 1996; Törnquist and Pers-
son, 2007], they are not scalable. Practical approaches in-
stead use heuristics [Higgins et al., 1997; Chen et al., 2015]
or pretrained policies [Šemrov et al., 2016; Khadilkar, 2018;
Prasad et al., 2021] to move trains forward through the net-
work (in a manner analogous to checkers pieces) until they
reach their destinations. The order of train movements, their
timings, and track allocations vary by the algorithm. How-
ever, as illustrated in Figure 1, the risk in all such finite-
lookahead methods is that of deadlock, or a situation where
some or all trains are unable to move forward because of a
circular dependence on each other [Pachl, 2012].

Pachl [2012] proposes four conditions which are necessary
to create deadlocks. If a scheduling strategy ensures that at
least one of these conditions is not met, it is sufficient to avoid
deadlocks. Similarly, Mackenzie [2010] proposes sufficient
conditions for avoiding deadlock, including the conservative
path-to-destination approach. Khadilkar [2017b] proposes
the critical-first approach for railway lines, which focuses on
prioritising occupants of the most constrained resources in or-
der to avoid bottlenecks. The condition in this case is to keep
moving trains forward until at least one additional free track
is available for other trains to pass. Vujanic and Hill [2022]
make this more concrete by defining the notion of a safe state
as one where all nodes (resources) have an unoccupied slot.
If initialised from a compliant initial state, their procedure
takes polynomial time for scheduling.

The basis for all these studies is that the NP-completeness
of the general deadlock detection problem makes it hard
to detect deadlocks in instances encountered in practice.
Therefore, deadlock detection is typically performed by
rules that provably detect deadlocks, but might also flag
false positives. The novelty of our paper is in identifying
the applicability of an optimal polynomial-time deadlock
detection algorithm in JSSP to the railway context (the notion
of optimality is formally defined below).

Deadlock Avoidance in JSSP. We shall first define the
various terms used in this paper. The problem of evaluat-
ing an arbitrary state of the railway network, for the pres-
ence/absence of present/future deadlock, is deadlock detec-
tion. Any subsequent scheduling policies that reduce the
probability of deadlock (but not eliminate it) are called dead-
lock avoiding policies, while scheduling policies that guaran-

tee the absence of deadlock are called deadlock free policies.
Similar to the railway scheduling case, it is well known

that optimal deadlock detection in JSSP is also NP-complete.
Araki et al. [1977] consider the question: “given a state
S, is S safe?” They reduce the 3-SAT problem [Cocco
and Monasson, 2001] to optimal deadlock detection in
JSSP, thereby proving the latter to be NP-complete. Fanti
et al. [1997] derive necessary and sufficient conditions
for deadlock in production systems with resource sharing,
and then propose a ‘restriction policy’ that is tractable and
provably correct (in the sense of sufficiency). Gold [1978]
considered the question from a more practical perspective,
examining under what restrictions on state S one can effi-
ciently detect deadlock. They derived some conditions under
which deadlock detection can be solved in polynomial time.

Optimal Deadlock Detection. Previously published studies
also consider two forms of optimality in the present context.
The first definition of optimality implies the minimisation of
delays in the schedule with respect to a reference timetable,
or the minimisation of the makespan of the schedule if no ref-
erence timetable is available [Törnquist and Persson, 2007].
The second definition of optimality [Reveliotis et al., 1997]
refers to the removal of unsafe transitions from the current
state, with the objective of identifying the smallest (hence
optimal) set of unsafe transitions that ensures the absence of
present or future deadlocks. In this paper, by optimal rule we
refer to the second definition: to a rule that characterises nec-
essary and sufficient conditions of states or transitions to be
safe, and hence can be used for deadlock-free scheduling.

Reveliotis et al. [1997] develop necessary and sufficient
conditions for deadlock prevention in “single-unit sequential
resource allocation systems” (SURAS). They show that dead-
lock detection in polynomial-time is possible in the special
case where every resource in the system has a minimum ca-
pacity of 2 units. If the number of resources is m and C̄
is the maximum capacity among these nodes, their detection
condition has O(m2C̄) complexity. The intuition behind this
number is that a search algorithm makes m passes through the
set of m resources, eliminating one eligible resource in each
pass. Our observation is that this result applies to the case of
arbitrary railway network topologies (branching and straight
lines) as long as there are at least two tracks in each node
(in railway terminology, at stations and inter-station track
sections). Furthermore, (i) the result can actually be imple-
mented in linear (and not quadratic) complexity, and (ii) we
can handle single-resource nodes under reasonable assump-
tions, as explained in Section 1.

3 Deadlock Detection
In this section, we specify the problem of (optimal) dead-
lock detection. We begin from the broader context of railway
scheduling, within which this problem arises.

3.1 Railway Scheduling Problem
Railway Infrastructure. A railway network is made up
of a number of resources, each containing some number of
parallel tracks running from one end of the resource to the

other. Tracks admit traffic in both directions. Stations (where
trains may halt) as well as the inter-station track sections
between them (where trains do not have scheduled halts) are
modeled as resources. A resource connects to other resources
through one of its ends. Typically, terminal resources have
all their connections only from one end, but in general we
could have cycles in the network topology. Figure 2 shows an
illustrative railway network with branching and a cycle; the
example in Figure 1 has a linear topology (often called a line).

Desired Schedule. The dynamic aspect of the scheduling
problem arises from the movement of a set of trains through
resources. The target is to meet a desired schedule Sdesired,
which may be represented as a set of N events:

Sdesired = {e[i], 1 ≤ i ≤ N},where
e[i] = (train[i], start res[i], next res[i], time[i]).

Event e[i] specifies that train train[i] must be moved from
resource start res[i] to the adjoining resource next res[i] at
time time[i]. Now, it may not be possible to execute Sdesired,
due to constraints imposed by the railway infrastructure. For
instance, if three events all mean to push trains into the same
resource at the same time, but this resource only has two free
tracks, then at least one of the events will have to be delayed.
The goal of scheduling is to compute an operable schedule
Soperable that is feasible to execute, but at the expense of de-
laying a subset of events in Sdesired. For each event e[i], the
operable schedule has a replacement e[i] with a new time
time[i] ≥ time[i]:

Soperable = {e[i], 1 ≤ i ≤ N},where

e[i] = (train[i], start res[i], next res[i], time[i]).

Formally, the objective function to be minimised while com-
puting Soperable is the average departure delay

ADD =
1

N

N∑
i=1

(time[i]− time[i]). (1)

Since the problem of computing an operable schedule that
minimises ADD is NP-hard [Mascis and Pacciarelli, 2002],
one practical alternative is to roll out schedules over time,
ensuring operability, while making greedy choices to reduce
delays [Khadilkar, 2018; Prasad et al., 2021].

3.2 Roll-Out Algorithms
A roll-out algorithm executes the set of events {e[i], 1 ≤ i ≤
N} one by one. The algorithm begins with a counter τ set
to the earliest event time, with state sτ associating each train
with its initial resource. An event i is said to be executed (and
inserted into Soperable) when the algorithm sets time[i].

Figure 2: Example of a network topology. Two trains are shown.

At each counter value τ , the algorithm compiles the list of
events that are eligible: these are events e[i], 1 ≤ i ≤ N , such
that (i) train[i] is in start res[i] in state sτ ; (ii) there is a free
track in resource next res[i] in sτ ; and (iii) time[i] ≥ τ .
If, indeed, there are eligible events, one of these events i is
selected and executed by setting time[i] = τ . The updated
event e[i] is moved into Soperable, and e[i] is no longer eligible.
As long as there are eligible events at τ , these are repeatedly
executed, until there are no eligible events at τ ; in this case
τ is incremented and the procedure continues. Since train
journeys are a sequence of contiguous resources, any train
can be in at most one eligible event at any time step. Hence,
it is sometimes convenient to view the set of eligible events at
τ as the set of trains that are eligible to be moved at τ .

By construction, the set of events that have already been
executed by a roll-out algorithm have no internal conflicts.
Hence, if all N events in Sdesired get executed, we are guar-
anteed an operable schedule Soperable. However, the ADD of
Soperable depends on the delays introduced while executing the
events. The choice of which event among the eligible ones
to execute at any step also has the long-term consequence
of which events become eligible in subsequent time steps.
By and large, roll-out algorithms make this choice greed-
ily [Khadilkar, 2018; Prasad et al., 2021]. An unfortunate
consequence is the possibility of a deadlock, wherein there
remain events to execute, but these cannot become eligible at
the current counter value τ or anything larger.

3.3 Deadlock Detection Problem
Abstractly, the progress of a roll-out algorithm for generat-
ing a schedule can be viewed as a sequence of state transi-
tions. The background data from the problem instance, which
guide and constrain these transitions, are (1) the set of re-
sources U ; (2) resource capacities encoded by C̄ : U → N;
(3) the set of trains T ; and (4) the set of train journeys
D = {(t, u1, u2, . . . , ult), t ∈ T}. In D, each journey
(t, u1, u2, . . . , ult) contains a train t ∈ T and the identities
of some lt ≥ 1 resources through which t must pass in se-
quence. Exact event times are not needed for deadlock de-
tection. As motivated in Section 1, we make the following
“multi-track” assumption while devising and analysing our
algorithm, which is presented in Section 4.

Assumption 1. For all u ∈ U , C̄(u) ≥ 2.

However, the problem statement presented below does not
depend on this assumption.

States, Actions, Transitions. Each state s in our system
contains a subset of trains T ′

s ⊆ T that are yet to complete
their journeys. In s, each train t ∈ T ′

s is in some resource
u ∈ U . Hence, a state can be represented as a set of pairs
(t, u) ∈ T × U . Let S denote the set of all states. The de-
sired terminal state s⊤ ∈ S is the one in which all trains have
reached their destinations. Destinations typically connect to
“yards” with effectively infinite capacity, so trains do not oc-
cupy regular tracks at their destinations. Hence s⊤ = ∅.

A useful quantity to associate with each state s ∈ S is its
“potential” ϕ(s), which we define to be the sum of the dis-
tances of the trains present in s to their respective termini.

Concretely, suppose s = {(ti, ui), 1 ≤ i ≤ m}, where the
remaining sequence of resources for train ti to visit after de-
parting ui is u1

i , u
2
i , . . . , u

ℓi
i for some ℓi ≥ 1. Then we have

ϕ(s) =
∑m

i=1 (1 + ℓi) . Observe that ϕ(s⊤) = 0.
The set of actions available from state s ∈ S is denoted

A(s). Each action a ∈ A(s) corresponds to moving some
train from its current resource to the next one on its journey.
Naturally, only moves corresponding to eligible events are
present as actions in A(s).

When an action from A(s) is performed on state s ∈ S,
we denote the resulting state s+ a. Suppose action a ∈ A(s)
moves train t in s, where t is in resource u, to its next resource
u′. If u′ is the terminal resource for t, then s+a = s\{(t, u)};
otherwise s+a = (s\{(t, u)})∪{(t, u′)}. Notice that when
an action from A(s) is performed on s, progress is achieved
in the sense that ϕ(s + a) = ϕ(s) − 1. Since trains cannot
move backwards, this progress cannot be undone. However,
as we see next, an action may lead to a state from which
further progress is not possible.

Safe and Unsafe States. By definition, the desirable terminal
state s⊤ = ∅ is a safe state; so also is every state for which
there exists a sequence of actions to reach s⊤. We may write
down recursively: for s ∈ S,

SAFE(s) ⇐⇒ (s = s⊤) ∨ (∃a ∈ A(s) : SAFE(s+ a)) .

This recursive definition gives rise to a straightforward pro-
cedure to compute SAFE(s), since any state s+ a in the RHS
has a potential value ϕ(·) one unit lower than s. However,
there is branching by a factor of |A(s)|, implying exponential
complexity for a naive implementation. Our main observa-
tion, described in the next section, is that SAFE(s) can be
computed in time that is only linear in the size of s.

An unsafe state is a state that is not safe. A deadlocked
state is a state containing trains, but on which no valid action
can be performed. For s ∈ S,

UNSAFE(s) ⇐⇒ ¬SAFE(s);

DEADLOCK(s) ⇐⇒ (s ̸= s⊤) ∧ (A(s) = ∅).
Since our system contains a finite number of trains, and their
journeys are also finite, it follows that ϕ(·) has a finite upper
bound. Since ϕ(·) decreases by 1 unit after each action, the
length of any action sequence starting from any initial state
s0 is also guaranteed to be finite. It follows that if s is unsafe,
then any sequence of actions starting from s will lead to a
deadlocked state, from which no further actions are available.

Computational Problem. We require a procedure that can
efficiently identify whether a given state s ∈ S is safe or not.
It is convenient to view this procedure as a rule or proposition
R(s), which evaluates to a boolean value. R(s) may depend
both on s and on the journey details of the trains in D, but
must be efficient to compute. Several “sufficient” rules R
from the literature guarantee that R(s) =⇒ SAFE(s). We
require a “necessary and sufficient” rule, also called an opti-
mal rule, which satisfies R(s) ⇐⇒ SAFE(s).

As described in Section 1, optimal rules are computation-
ally hard on unrestricted problem instances. On the other
hand, we show next that if Assumption 1 is satisfied, then
an optimal rule can be implemented in only linear time.

4 Linear-Time Algorithm
The algorithm presented here is due to Reveliotis et
al. [1997], who proposed it in the context of resource
allocation and implemented it with quadratic complexity. We
describe this algorithm from the perspective of deadlock de-
tection in railway networks, using the vocabulary introduced
in Section 3. We provide a concise proof of correctness based
on a graph-theoretic model, and also show that a linear-time
implementation is possible.

Next-Stop Graph. The main data structure involved in spec-
ifying R0 is a directed graph constructed based on input state
s. The construction also requires the resource capacities en-
coded by C̄ and the set of train journeys D. We denote this
directed graph Gs = (V,E,C), where V is the set of vertices,
E the set of edges, and C : V → {red, black} a function that
associates a colour with each vertex.

Recall that Ts is the set of trains in s. A resource u ∈ U is
a vertex v ∈ V in Gs if and only if u is the current resource
for some train t in s, or it is the next resource for some train
t in s (as specified in t’s journey in D). The colour C(v) of a
vertex v ∈ V is red if the corresponding resource has at least
one free track (that is, the number of trains in this resource
is strictly smaller than the capacity). Fully-occupied vertices
are coloured black. Each train t in state s gives rise to an edge
from the vertex of its current resource u to the vertex of its
next resource u′. Hence, each edge e ∈ E corresponds to one
or more trains in s. Notice that every vertex v ∈ V must have
at least one edge, either incoming or outgoing (but possibly
one or more of each type).

Surprisingly, one does not need to access the extended
journeys of trains in s in order to construct Gs: one only
needs the trains’ current and next resources. For this reason,
we may refer to Gs as the “next-stop graph” of s. Notice that
the number of edges in Gs is at most the number of trains in
s: that is, |E| ≤ |T |. Clearly Gs does not exceed the size
of s or of the journey data D beyond a constant factor, as
both s and D use Ω(|T |) space. Even so, Gs provides all the
information required for optimal deadlock detection.

Optimal Rule. Our rule R0 has an intuitive form.

Definition 2. For s ∈ S, R0(s) is the proposition: “In Gs,
every black vertex has a directed path to some red vertex.”

We formally show that under the multi-track assumption,
R0 is an optimal deadlock detection rule.

Theorem 3. If the problem instance satisfies Assumption 1,
then for s ∈ S, R0(s) ⇐⇒ SAFE(s).

Proof. Let Gs = (V,E,C). We prove the theorem by induc-
tion on ϕ(s). As base case, consider arbitrary s ∈ S for which
ϕ(s) = 1. If so, there is exactly one train t in the network, in a
resource that connects to t’s terminus. Clearly s is safe since
t can be moved into its terminus (thus s transitions into s⊤).
Also notice that in this case, Gs comprises exactly two ver-
tices r1, r2 ∈ V , with an outgoing edge from r1 to r2. Since
each resource has at least two tracks, r1 and r2 must both be
red, making R0(s) trivially true. In short, when ϕ(s) = 1,
R0(s) and SAFE(s) are both true, and thereby equivalent.

Our induction hypothesis is that for some integer m ≥ 1,
R0(s) ⇐⇒ SAFE(s) for all s ∈ S having ϕ(s) = m.
Now consider a state s ∈ S for which ϕ(s) = m + 1. We
separately prove the two implications in the theorem.

1. Proof of R0(s) =⇒ SAFE(s). Suppose that R0(s) is
true: that is, in Gs, every black vertex has a directed path to
some red vertex. We consider two complementary subcases.

1.1. Suppose Gs contains some red vertex r ∈ V with no
outgoing edges (Figure 3a). As in our base case, r must
contain an incoming edge from some vertex v ∈ V . Notice
that r has two or more empty tracks. Hence, we can move
a train t from v to r to obtain a state s′ with ϕ(s′) = m.
If there are any incoming edges into v in s, or v has trains
other than t in s, then v would also be a vertex in s′, but
now coloured red. Otherwise v would not be a vertex in Gs′ .
Depending on t’s next stop from s′, r could get a new edge
to an existing vertex or a new red vertex in Gs′ . Regardless,
notice that if any black vertex had a path to a red vertex in
Gs, it would continue to have a path to a red vertex in Gs′ .
Hence, if R0(s) is true, then R0(s

′) is also true. By the
induction hypothesis, s′ is safe, and hence s is also safe.

1.2. The second subcase is that every red vertex in Gs has
an outgoing edge (Figure 3b); every black vertex in Gs will
anyway have at least one outgoing edge. In this case, we
consider a subgraph G′ of Gs (Figure 3c), which differs only
in the set of edges. Indeed let G′ = (V,E′, C) so that (i)
each vertex v ∈ V has exactly one outgoing edge in E′, and
(ii) each black vertex in G′ has a directed path to some red
vertex in G′. A natural way to construct E′ would be to first
fix some outgoing edge to a red vertex from all black vertices
having such an edge in E, then to fix an outgoing edge to one
of those black vertices from all other black vertices having
such an edge in E, and proceeding similarly until all black
vertices have an outgoing edge. Thereafter each red vertex
can be given an arbitrary outgoing edge from E.

By its definition, G′ cannot have a directed cycle with only
black vertices (since that would imply that those vertices do

v1 v2

v3 v4

(a) Example
of Gs con-
taining a red
vertex with
no outgoing
edges.

v1 v2

v3 v4

v5 v6

(b) Example
of Gs in
which all red
vertices have
an outgoing
edge.

v1 v2

v3 v4

v5 v6

(c) G′ con-
structed for
Gs from
Figure 3b.

v1 v2

v3 v4

v5 v6

(d) Example
of Gs with
black vertices
not having a
path to any
red vertex.

Figure 3: Graphs illustrating cases in proof of Theorem 3.

not have a directed path to some red vertex in G, hence inval-
idating R0(s)). Also, since it has an outgoing edge for each
vertex, G′ must contain a directed cycle. In summary, we
infer that G′ must contain a directed cycle with at least one
red vertex. Indeed let such a cycle C contain the sequence of
vertices r, v1, v2, . . . , vm for some m ≥ 1, where r is a red
vertex. We are indifferent to the colours of v1, v2, . . . , vm.

Now consider the action of moving a train t from vm to r,
leading to next state s′. The set of vertices in Gs′ remains
identical to that of s, except that Gs′ may get a new red
vertex that is the next stop for t in s′. The set of edges in
Gs′ is also identical to that of Gs, except for (i) the possible
loss of the single edge from vm to r in case t was the only
train having that transition in s, and (ii) the possible gain of
a new outgoing edge from r. Regardless, vm is necessarily
a red vertex in Gs′ , and moreover, any black vertex that had
a directed path to r in Gs must have a path to vm in Gs′

(since r has a path through the sequence of vertices in C to
vm). Directed paths not involving C in Gs remain the same
in Gs′ . Hence, we conclude that if R0(s) is true, then R0(s

′)
is also true. Since ϕ(s′) = m, we obtain from the induction
hypothesis that s′ is safe. Since we can go from s to s′ by
moving t, we observe that s must also be safe.

2. Proof of SAFE(s) =⇒ R0(s). Suppose R0(s) is not true:
that is, there exists a black vertex b ∈ V with no directed path
to any red vertex in V (Figure 3d). b is fully occupied in s,
and so it must have outgoing edges in Gs. Since these edges
to do not lead to a red vertex in Gs, we surmise that there
exists a finite subset of black vertices B ⊆ V of size at least
two such that for each vertex in B, all outgoing edges lead
to other vertices in B. Since every vertex b′ ∈ B is fully-
occupied, no train can be moved out from or moved into any
vertex in B. If s is already in deadlock, by definition it is
unsafe. On the other hand, after any possible move of any
train outside of B in s to reach s′, B remains a finite set of
black vertices in Gs′ , with no directed path to any red vertex.
Since ϕ(s′) = m, the induction hypothesis gives us that s′ is
unsafe, and hence s is unsafe.

Although R0 is essentially a rephrasing of the rule given
by Reveliotis et al. [1997] for SURAS, its interpretation in
terms of a next-stop graph Gs is novel. The algorithm given
by Reveliotis et al. [1997] eliminates one node in each pass
through the set of resources, hence takes time that is quadratic
in the number of resources. On the other hand, it is easy
to see that R0(s) can be computed in time that is only lin-
ear in the number of edges in Gs, which is generally much
smaller than |U |2. The pseudocode in Figure 4 is for an im-
plementation of R0 by a standard search algorithm [Russell
and Norvig, 2022, see Chapter 3], taking O(|E|) operations
for input Gs = (V,E,C).

5 Experimental Validation
We compare our proposed rule R0 against other deadlock
avoidance algorithms on real railway schedules as well as
synthetically-generated ones. Data and code to reproduce
the results reported in this section are available at https:
//github.com/Hastyn/Linear-Time-Deadlock-Detection/.

Initialise FRONTIER to an empty stack.
For v ∈ V :

HASPATHTORED[v]← false.
If C[v] = red:

HASPATHTORED[v]← true.
FRONTIER.PUSH(v).

Initialise INCOMING[v] to an empty stack.
For (u, v) ∈ E:

INCOMING[v].APPEND(u).

While FRONTIER is not empty:
v← FRONTIER.POP().
For u ∈ INCOMING[v]:

If HASPATHTORED[u] = false:
FRONTIER.PUSH(u).
HASPATHTORED[u] = true.

For v ∈ V :
If HASPATHTORED[v] = false:

Return false.
Return true.

Figure 4: R0(s) implementation with input Gs = (V,E,C). The
frontier may be implemented either as a stack or as a queue.

5.1 Data Description

We use published timetables and infrastructure information
from three portions of the Indian Railway network. These
portions are from Ajmer (northwest India), Kanpur (north In-
dia) and Konkan (west coast). Of these, Ajmer and Kanpur
are predominantly multi-track at stations as well as the con-
necting sections between stations, while Konkan has multi-
track stations but mostly single-track connecting sections (we
handle this scenario by moving trains from one station to the
next without stopping in the connecting sections, as outlined
earlier). Details from these networks are summarised in Table
1. In addition to the real data sets, we also generate 8 hypo-
thetical lines and branching networks to have better control on
the characteristics. HYP-1 is a small toy dataset, HYP-2 and
HYP-3 share the same infrastructure, but HYP-3 has twice
the number of trains of HYP-2. HYP-4 and HYP-5 simulate

Instance Sn. Tns. Time Events Con. Density
Span Sec.

Ajmer 52 444 5.5 day 13129 51 0.016
Kanpur 27 190 1.4 day 3858 26 0.036
Konkan 59 85 2.2 day 2709 58 0.007
HYP-1 5 8 1.8 hrs 40 4 0.041
HYP-2 11 60 2.0 day 660 10 0.011
HYP-3 11 120 2.1 day 1320 10 0.021
HYP-4 4 350 0.8 hrs 1290 3 3.839
HYP-5 3 200 0.5 hrs 4766 2 31.773
HYP-6 6 6 0.8 hrs 23 5 0.044
HYP-7 26 500 3.0 hrs 4537 27 0.476
HYP-8 22 100 4.8 hrs 1046 21 0.084

Table 1: Data set description, giving number of stations (Sn.), trains
(Tns.), span of the reference timetable, total number of departure
events, number of connecting sections (Con. Sec.), and the traffic
density in events per resource per minute. Note that the number of
resources is the sum of stations and connecting sections.

https://github.com/Hastyn/Linear-Time-Deadlock-Detection/
https://github.com/Hastyn/Linear-Time-Deadlock-Detection/

very high traffic networks with only four stations but a large
number of trains. HYP-6, HYP-7, and HYP-8 are branch-
ing networks with HYP-7 having high traffic. In Table 1, the
density reported is the total number of events occurring per
minute per resource in the network.

5.2 Comparison With Baselines
The goal of our experiments is to test the reduction in ADD
(defined in (1)) as a result of dividing the action set in any
given state optimally into safe and unsafe labels. Considering
this to be a binary classification problem, we pick one base-
line rule Rg which allows false negatives (marking an actu-
ally unsafe state as safe) and one rule Rc which allows false
positives (marking an actually safe state as unsafe). We note
that the rules Rg and Rc correspond to ‘greedy’ [Prasad et
al., 2021] and ‘critical first’ [Khadilkar, 2017b] in their orig-
inal forms. Briefly, the greedy algorithm marks a train move-
ment as safe if it has at least two feasible forward moves.
Critical-first is a sufficient condition for deadlock free move-
ment, which allows a train to move ahead as long as it only
stops in a resource where at least one additional track is free.
For every compounded set of primitive moves, this results in
a state where every resource has at least one free track.

The critical first algorithm further provides a ranking order
when multiple train movements are marked as safe, based on
the number of presently free tracks in the resource the train
is currently occupying (criticality of the node). We use this
logic to rank train moves among the set marked safe by each
rule. The resulting ADD for all problem instances and algo-
rithms is summarised in Table 2. We emphasise that only the
safe action masking (by using R0, Rg , or Rc) differs among
the algorithms, and the remaining scheduling/rescheduling
policy is the same. In order to generate statistical results,
we generate perturbed versions of each instance by moving
the entire journey of each train in the reference timetable by
an amount picked uniformly at random in [−30, 30] minutes.
Refer to Prasad et al. [2021] for details of the perturbations.

From Table 2, we first confirm that both Rc (sufficient) and
R0 (necessary and sufficient) conditions result in deadlock-
free schedules for all instances. Second, R0 performs signif-
icantly better than Rc in all instances, in terms of schedule
efficiency. This demonstrates the advantage of employing an
optimal deadlock detection condition. Rg outperforms R0 in

Instance Critical First (Rc) Greedy (Rg) R0

Ajmer 4.76±0.07 4.19±0.08 4.12±0.09
Kanpur 1.35±0.07 3.57±0.09 1.29±0.05
Konkan 60.33±0.69 42.22±0.59 42.60±0.51
HYP-1 19.30±1.74 16.22±1.29 16.49±1.30
HYP-2 6.33±0.33 4.29±0.21 4.31±0.21
HYP-3 7.02±0.91 5.01±0.16 0.83±0.07
HYP-4 1773.73±12.79 deadlock 1170.11±2.46
HYP-5 654.9±17.26 568.07±2.71 524.23±2.39
HYP-6 12.07±1.43 deadlock 6.42±1.20
HYP-7 1487.88±22.11 deadlock 1228.30±1.61
HYP-8 776.96±27.74 215.74±2.04 169.48±1.90

Table 2: ADD values in minutes with their standard error averaged
over 10 perturbed versions of the reference timetables.

three instances, all of which have low traffic density (see Ta-
ble 1). However, the ADD for R0 is competitive even in these
instances. On the other hand, Rg deadlocks in instances with
high traffic density, and hence in general would not be a suit-
able choice for real-time rescheduling.

5.3 Policy Improvement
As a second experiment, we consider the effect of optimal
deadlock detection on the efficiency of resulting schedules,
by performing policy improvement using roll-outs [Tesauro
and Galperin, 1996; Agarwal, 2022]. Under policy improve-
ment, a base schedule is progressively improved by updating
each action to one that minimises delay when followed by a
roll-out policy. In Table 3, we start with the schedule pro-
duced by R0 in Table 2 for all three algorithms (for a fair
comparison). For every decision taken in the sequence, we
roll out the individual trajectories for all alternative actions
which are also marked as safe by the relevant rule. We choose
the schedule with the least ADD out of these results, move to
the next decision in the sequence, and repeat. The results in
Table 3 show that the rollouts using R0 (which provides the
maximal set of feasible actions) are predominantly more ef-
fective than those using Rc and Rg . In some cases, Rc and Rg

are unable to improve on the baseline schedule given by R0,
while R0 results in improvement over Table 2 in all instances.

6 Conclusion
In this paper, we show that in contrast to the accepted
characterisation of railway scheduling in the literature, a
polynomial-time deadlock detection method from the re-
source allocation literature applies to a large class of
(re)scheduling problems. Our version of the implementation
is in fact linear-time for arbitrary network topology, so long as
each resource (station or connecting section) has at least two
tracks. Further, we show that under a mild assumption (avail-
ability of a sequence of moves to bring all trains in single-
track resources to a multi-track resource), we can also handle
scheduling in the single-track scenario. Our empirical results
show that using an optimal deadlock detection strategy sig-
nificantly improves scheduling efficiency, in addition to pro-
viding feasibility guarantees. One important open question
for the future is to evaluate the usefulness of optimal action
masking while training data-driven scheduling policies.

Instance Rg Rollout Rc Rollout R0 Rollout
Ajmer 3.43±0.04 3.79±0.05 3.43±0.07
Kanpur 1.29±0.05 1.13±0.05 1.09±0.05
Konkan 39.67±0.57 42.59±0.51 40.24±0.61
HYP-1 15.75±1.26 16.18±1.28 15.74±1.26
HYP-2 3.99±0.24 4.19±0.18 4.08±0.20
HYP-3 0.83±0.07 0.82±0.07 0.74±0.06
HYP-4 1170.11±2.46 1170.11±2.46 1166.26±2.49
HYP-5 524.23± 2.39 524.23± 2.39 517.23±2.09
HYP-6 6.35±1.22 5.90±1.01 4.20±0.62
HYP-7 1215.73± 1.57 1228.3±1.61 1225.99±1.36
HYP-8 169.48±1.90 169.48±1.90 165.79±2.42

Table 3: Policy improvement starting with the baseline schedule pro-
duced by R0 in (the last column of) Table 2.

Acknowledgements
We thank Spyros Reveliotis for sharing full versions of rele-
vant literature that was otherwise not available. We thank Ab-
hiram Ranade from IIT Bombay for informative discussions,
and Shripad Salsingikar from TCS for providing railway data.

References
[Agarwal, 2022] Keshav Agarwal. Real-time railway

scheduling. Master’s thesis, Indian Institute of Technol-
ogy Bombay, 2022.

[Araki et al., 1977] Toshiro Araki, Yuji Sugiyama, Tadao
Kasami, and Jun Okui. Complexity of the deadlock avoid-
ance problem. In 2nd IBM Symp. on Mathematical Foun-
dations of Computer Science, pages 229–257, 1977.

[Cai and Goh, 1994] X Cai and C Goh. A fast heuristic for
the train scheduling problem. Computers & Op. Res.,
21(5):499–510, 1994.

[Chen et al., 2015] L Chen, C Roberts, F Schmid, and
E Stewart. Modeling and solving real-time train reschedul-
ing problems in railway bottleneck sections. IEEE Trans.
on Intelligent Transportation Systems, 16(4):1896–1904,
2015.

[Cocco and Monasson, 2001] Simona Cocco and Rémi
Monasson. Trajectories in phase diagrams, growth
processes, and computational complexity: How search
algorithms solve the 3-satisfiability problem. Physical
review letters, 86(8):1654, 2001.

[Fanti et al., 1997] Maria Pia Fanti, Bruno Maione, Saverio
Mascolo, and A Turchiano. Event-based feedback con-
trol for deadlock avoidance in flexible production sys-
tems. IEEE Transactions on Robotics and Automation,
13(3):347–363, 1997.

[Gold, 1978] E Mark Gold. Deadlock prediction: Easy and
difficult cases. SIAM Journal on Computing, 7(3):320–
336, 1978.

[Goverde, 2010] Rob MP Goverde. A delay propaga-
tion algorithm for large-scale railway traffic networks.
Transportation Research Part C: Emerging Technologies,
18(3):269–287, 2010.

[Higgins et al., 1996] A Higgins, E Kozan, and L Ferreira.
Optimal scheduling of trains on a single line track. Trans-
portation Research Part B, 30(2):147–161, 1996.

[Higgins et al., 1997] A Higgins, E Kozan, and L Ferreira.
Heuristic techniques for single line train scheduling. Jour-
nal of Heuristics, 3(1):43–62, 1997.

[Khadilkar, 2017a] Harshad Khadilkar. Data-enabled
stochastic modeling for evaluating schedule robust-
ness of railway networks. Transportation Science,
51(4):1161–1176, 2017.

[Khadilkar, 2017b] Harshad Khadilkar. Scheduling of vehi-
cle movement in resource-constrained transportation net-
works using a capacity-aware heuristic. In 2017 Ameri-
can Control Conference (ACC), pages 5617–5622. IEEE,
2017.

[Khadilkar, 2018] Harshad Khadilkar. A scalable reinforce-
ment learning algorithm for scheduling railway lines.
IEEE Transactions on Intelligent Transportation Systems,
20(2):727–736, 2018.

[Liu and Kozan, 2009] S Liu and E Kozan. Scheduling trains
as a blocking parallel-machine job shop scheduling prob-
lem. Computers & Operations Research, 36(10):2840–
2852, 2009.

[Lovett et al., 2015] Alexander H Lovett, C Tyler Dick, and
Christopher PL Barkan. Determining freight train delay
costs on railroad lines in north america. Proceedings of
Rail Tokyo, 2015.

[Mackenzie, 2010] S. Mackenzie. Train scheduling on long
haul railway corridors. PhD thesis, University of South
Australia, 2010.

[Manne, 1960] Alan S Manne. On the job-shop scheduling
problem. Operations research, 8(2):219–223, 1960.

[Mascis and Pacciarelli, 2002] Alessandro Mascis and Dario
Pacciarelli. Job-shop scheduling with blocking and no-
wait constraints. European Journal of Operational Re-
search, 143(3):498–517, 2002.

[Pachl, 2012] Jörn Pachl. Deadlock avoidance in railroad op-
erations simulations. In PROMET Traffic & Transporta-
tion, pages 359–369, 2012.

[Pappaterra et al., 2021] Mauro José Pappaterra, Francesco
Flammini, Valeria Vittorini, and Nikola Bešinović. A sys-
tematic review of artificial intelligence public datasets for
railway applications. Infrastructures, 6(10):136, 2021.

[Prasad et al., 2021] Rohit Prasad, Harshad Khadilkar, and
Shivaram Kalyanakrishnan. Optimising a real-time sched-
uler for Indian railway lines by policy search. In 2021
Seventh Indian Control Conference (ICC), pages 75–80.
IEEE, 2021.

[Preston et al., 2009] John Preston, Graham Wall, Richard
Batley, J Nicolás Ibáñez, and Jeremy Shires. Impact of
delays on passenger train services: evidence from great
britain. Transportation research record, 2117(1):14–23,
2009.

[Reveliotis et al., 1997] Spiridon A Reveliotis, Mark A Law-
ley, and Placid M Ferreira. Polynomial-complexity dead-
lock avoidance policies for sequential resource alloca-
tion systems. IEEE transactions on automatic control,
42(10):1344–1357, 1997.

[Russell and Norvig, 2022] Stuart Russell and Peter Norvig.
Artificial intelligence : a Modern Approach. Pearson Ed-
ucation, 4th edition, 2022.

[Schlake et al., 2011] Bryan W Schlake, Christopher PL
Barkan, and J Riley Edwards. Train delay and economic
impact of in-service failures of railroad rolling stock.
Transportation research record, 2261(1):124–133, 2011.

[Šemrov et al., 2016] Darja Šemrov, Rok Marsetič, Marijan
Žura, Ljupčo Todorovski, and Aleksander Srdic. Rein-
forcement learning approach for train rescheduling on a
single-track railway. Trans. Res. Part B: Methodological,
86:250–267, 2016.

[Sinha et al., 2016] Sudhir Kumar Sinha, Shripad
Salsingikar, and Siddhartha SenGupta. An iterative
bi-level hierarchical approach for train scheduling.
Journal of Rail Transport Planning & Management,
6(3):183–199, 2016.

[Strotmann, 2007] Christian Strotmann. Railway scheduling
problems and their decomposition. PhD thesis, Univ. Os-
nabrück, 2007.

[Tesauro and Galperin, 1996] Gerald Tesauro and Gregory
Galperin. On-line policy improvement using monte-carlo
search. Advances in Neural Information Processing Sys-
tems, 9, 1996.

[Törnquist and Persson, 2007] Johanna Törnquist and Jan A
Persson. N-tracked railway traffic re-scheduling during
disturbances. Transportation Research Part B: Method-
ological, 41(3):342–362, 2007.

[Vujanic and Hill, 2022] Robin Vujanic and Andrew J Hill.
Computationally efficient dynamic traffic optimization of
railway systems. IEEE Transactions on Intelligent Trans-
portation Systems, 23(5):4706–4719, 2022.

