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Abstract—We consider the problem of best arm identification
in stochastic multi-armed bandits, in the setting that each arm
is sampled once in each round. This uniform sampling regime is
a conceptually simple setting that is relevant to many practical
applications. The aim is to stop and correctly identify the best
arm with probability at least 1− δ, while keeping the number of
rounds low. We derive a lower bound on the sample complexity
for this setting. Thereafter, we propose two natural stopping rules
for Bernoulli bandits: one based on PPR martingale confidence
sequences, and the other based on the GLR statistic. Both rules
are shown to match the lower bound as δ → 0. Our analysis
and experiments suggest that the relative performance of the
two stopping rules depends on a property of the bandit instance.

I. INTRODUCTION

We consider the problem of Best Arm Identification (BAI)
in stochastic multi-armed bandits. In contrast with the classical
task of regret-minimisation [1,2], BAI is a problem of “pure
exploration”. The aim is to identify the most rewarding (or
best) arm from a set by sampling the arms, without suffering
any explicit penalty for pulling inferior arms. Pure exploration
is relevant when experiments are conducted off-line. BAI in
particular finds a variety of applications, including reinforce-
ment learning [3], clinical trials [4], recommendation systems
[5], crowdsourcing [6,7], brain-computer interfaces [8], and
Monte Carlo tree search [9].

BAI has been studied in two main settings. In the fixed
budget setting, the algorithm is constrained to limit its ex-
perimentation to a given budget of T pulls [10]. The goal is
to minimise either the probability of mis-identifying the best
arm, or a related quantity called the “simple regret”. Literature
from the last decade has reduced the gap between upper and
lower bounds for BAI in the fixed budget setting [10]–[12],
although the gap remains open [13]. The second setting of BAI
is that of fixed confidence, wherein the input to the algorithm
is a mistake probability δ, and the aim is to minimise the
number of pulls to guarantee that the probability of error does
not exceed δ [3]. Our investigation is in the fixed confidence
setting, which has received extensive attention in the literature.

Among the earliest algorithms for BAI in the fixed confi-
dence setting are ones that sequentially eliminate arms, until
only the winner remains [3,11]. A common aspect of several
algorithms in this setting is for sampling and stopping both
to be guided by lower and upper confidence bounds on the
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unknown means of the arms [14]–[16]. Such algorithms enjoy
sample complexity upper bounds that depend on the problem
hardness, and are typically within a constant factor of the
dominant δ-dependent term in the lower bound.

Garivier and Kaufmann [17] ushered in a significant shift
in the analysis of algorithms in the fixed confidence setting.
These authors proposed the notion of asymptotic optimality;
the ratio of the sample complexity of their “track and stop”
algorithm to the applicable lower bound approaches 1 as
δ → 0. At the core of their algorithm is a calculation of
the fraction of pulls each arm must receive; unfortunately
this is an expensive numerical computation to be performed
after each pull. A more computationally feasible alternative is
presented in the form of several Bayesian algorithms, which
choose probabilistically between an estimated best arm and a
challenger at each round. Among such algorithms are “Top-
Two Thompson Sampling” [18], “Top-Two Transportation
Cost” [19], and “BayesElim” [20].

A. Our Contribution

The algorithms described thus far are all “fully sequential”,
in that the decision of which arm to pull next is recomputed
after every single pull (or a constant number of pulls). In
practice, the experimenter may not have the ability to contin-
uously monitor samples and carefully readjust the allocation of
samples. Moreover, in some applications, it is actually possible
to simultaneously sample multiple or even all the arms of the
bandit instance without paying an additional price. Examples
include computer simulations on a parallel cluster [21], and
surveys conducted across multiple geographical locations [22].

We study BAI in the fixed confidence setting, in the regime
of uniform sampling. Simply put, the learning algorithm
receives a fresh sample for each arm in every round; the only
decision to make is when to stop (at termination, it is arguably
optimal to return the empirically-best arm) as opposed to the
bandit setting where one also needs an appropriate sampling
rule. We reuse the template proposed by Kaufmann et al. [23]
to work out a lower bound on the round complexity for this
problem (Section III). We then propose two separate stopping
rules for Bernoulli bandits. The first rule, denoted PPR-JD,
is based on PPR martingale confidence sequences [24], which
were recently also applied to the closely-related problem of
PAC mode estimation [25]. The second rule, denoted U-CNF,
is based on the Chernoff rule [17]. After presenting these
stopping rules in Section IV, we show that indeed both are



asymptotically optimal in their sample complexity (while also
being computationally efficient). We validate our analytical
findings through experiments in Section V.

II. PROBLEM STATEMENT

We consider a stochastic bandit with K ≥ 2 arms, and
denote the set of arms by [K] := {1, 2, . . . ,K}. Each arm
a ∈ [K] has an associated distribution Πa over scalar rewards,
which is a priori unknown to the learner. When arm a is
pulled, it earns a random reward r ∼ Πa. Rewards from the
same arm a are i.i.d. samples from Πa. We denote by µa the
mean of Πa: in other words, if r ∼ Πa, then E[r] = µa.
In order that the problem of best arm-identification be well-
defined, we assume that any given bandit instance has a unique
best arm a∗ ∈ [K]. Without loss of generality, we can index
the arms in non-ascending order of their mean rewards. Thus,

µ1 > µ2 ≥ µ3 ≥ µ4 ≥ · · · ≥ µK . (1)

In best arm identification (BAI), the goal of the learner is
to correctly identify the arm with the highest mean using as
few samples as possible. The interaction between the learning
algorithm and the bandit instance proceeds in rounds. In
an unrestricted setup, the algorithm can specify an arbitrary,
single arm to be pulled in each round [3,23]. However, in this
paper, we consider the regime of uniform sampling, where
in each round, every arm is pulled exactly once. Devoid of
any need for decision making when it comes to sampling, the
algorithm may simply be viewed as a stopping rule, which at
the end of each round decides whether (1) to stop and declare
an estimate â for the best arm, or (2) to perform another
round of pulls. The input to the algorithm at the beginning of
each round is the history of outcomes registered thus far. The
indexing of the means in (1) is not available to the algorithm;
it is only used for our analysis.

For δ ∈ (0, 1], algorithm A is said to be δ-PAC if on every
bandit instance I, PI(â ̸= a∗) ≤ δ. In other words, δ upper-
bounds the mistake probability of A on every bandit instance
I. For a given instance I, let random variable Nδ,I denote
the number of rounds taken by A to terminate when run on
I. Informally, our goal is to construct δ-PAC strategies for
which Nδ,I is “small”. Formally, we seek δ-PAC algorithms
that minimise E[Nδ,I ], which is the round complexity and K
times the sample complexity. Before proceeding, we introduce
some notation that will be used in the upcoming sections.

A. Notation

A bandit instance I fixes the probability distribution Πa of
each arm a ∈ [K]. We denote by KL(P ∥ Q), the Kullback-
Leibler divergence between the two probability distributions
P and Q. Denote by Ω the set of all bandit instances that
have each arm’s reward distribution drawn from the set of
probability measures Π satisfying, 0 < KL(P ∥ Q) < ∞ for
P,Q ∈ Π , P ̸= Q. Such a set of bandit models Ω is called
identifiable [23]. Denote by B the set of all bandit instances
where each arm’s reward distribution is Bernoulli. Since bandit
instances in B can be fully parameterised by their means, we

denote such a bandit instance by µ̄ := (µ1, µ2 . . . , µK), which
defines the instance Πa = Bernoulli(µa), for all a ∈ [K]. We
also specifically define the term:

d(x, y) := x log

(
x

y

)
+ (1− x) log

(
1− x

1− y

)
along with the additional convention that d(0, 0) = d(1, 1) =
0, which ensures d(x, y) = 0 whenever x = y. Note that
d(µa, µb) = KL(Bernoulli(µa) ∥ Bernoulli(µb)) is the relative
entropy between two Bernoulli distributions. All logarithms in
this paper are natural logarithms.

We shall use (i) t for counting the overall time—that is,
the number of pulls up to that point, (ii) n for counting the
number of rounds, (iii) τ for the stopping time, and (iv) N for
the stopping round. In the case of uniform sampling, observe
that τ = NK.

In our algorithms, we shall use µ̂a to represent the empirical
mean of arm a up to the current time τ or round n (implicit
from context). We also maintain an ordering of the empirical
means of the arms satisfying µ̂α1

≥ µ̂α2
≥ · · · ≥ µ̂αK

, where
αi denotes the arm with the ith highest empirical mean.

III. LOWER BOUNDS ON THE ROUND COMPLEXITY

In this section, we present lower bounds on the round
complexity of δ-PAC algorithms under uniform sampling. We
follow the same sequence of steps as Kaufmann et al. [23] for
the unrestricted setting, while making suitable modifications
to account for uniform sampling.

Theorem 1 (General Lower Bound): Let I ∈ Ω be any
identifiable bandit instance with a unique best arm. Given a
mistake probability δ ∈ (0, 1), any δ-PAC uniform sampling
algorithm on I with stopping round Nδ,I satisfies

E[Nδ,I ] ≥
log(1/2.4δ)

inf
I′∈Ω′(I)

K∑
a=1

KL(Πa ∥ Π′
a)

, (2)

where Ω′(I) = {I ′ |a∗(I ′) ̸= a∗(I), I ′ ∈ Ω} is the set of all
identifiable bandit instances having a best arm that is different
from that of I.
The above result follows immediately from [23, Lemma 1]
and by noting that under uniform sampling, the number of
samples is the same for all arms under any stopping rule. We
include the details in Appendix A for completeness (see the
extended version of this paper [26]). For Bernoulli bandits, we
obtain a closed form expression for the above lower bound.

Corollary 2 (Lower Bound for Bernoulli Bandits): Let µ̄
be an identifiable Bernoulli bandit instance with a unique
best arm. Given a mistake probability δ ∈ (0, 1), any δ-PAC
uniform sampling algorithm on µ̄ with stopping round Nδ,µ̄

satisfies
E[Nδ,µ̄] ≥

log(1/2.4δ)

D∗(µ1, µ2)
, (3)

where D∗(x, y) := d
(
x, x+y

2

)
+ d

(
y, x+y

2

)
.

The proof of Corollary 2 is provided in Appendix B. Our upper
bounds in Section IV for Bernoulli bandits asymptotically
match the lower bound from the corollary. While it may



be surprising that the lower bound depends only on the
separation between the top two arms, recall that under uniform
sampling, each round produces a sample from every arm. Our
experiments in Section V do suggest a slow growth in round
complexity as more sub-optimal arms are added while keeping
the top two fixed; analytically this growth comes from terms
that are sub-linear in log( 1δ ).

IV. δ-PAC STOPPING RULES FOR UNIFORM SAMPLING

A key technical challenge in the design of algorithms in the
fixed confidence setting is to deal with random stopping time,
which is necessary to be efficient on easy problem instances.
The recent development of “anytime” confidence bounds in the
literature addresses this issue. We develop stopping rules for
the uniform sampling setting based on two such approaches.
We propose these rules and analyse them in the context of
Bernoulli bandits. However, a standard procedure [27, See
Section 1.2] can generate consistent Bernoulli samples from
any reward distribution with a known, bounded support—so
our upper bounds apply to this wider range.

A. Prior-Posterior Ratio Martingale Based Stopping Rule

Consider any family of distributions {Πp}p∈P parame-
terised by p with the density function πp(x). Suppose there
is a “ground truth” parameter p∗ ∈ P , which we wish to
estimate. In the Bayesian approach, we take some initial
prior over P , say f0(p). Now, after collecting t samples
X ≡ (X1, X2, . . . , Xt) from the distribution Πp∗ , the pos-
terior ft(p) is given by:

ft(p) =
f0(p)Lp(X)∫

q∈P f0(q)Lq(X)dq
,

where Lp(X) (=
∏t

i=1 πp(Xi) if samples are i.i.d.) gives the
likelihood of the outcomes for a given parameter p. Then, the
prior-posterior ratio (PPR) at time t is the quantity

Rt(p) :=
f0(p)

ft(p)
.

Waudby-Smith and Ramdas [24, see Proposition 2.1] define

Ct :=

{
p ∈ P |Rt(p) <

1

δ

}
,

and show that (Ct)
∞
t=0 is a confidence sequence, as below.

Proposition 3 (PPR Martingale): For any prior f0(p) on
P that assigns non-zero mass everywhere, the sequence of
prior-posterior ratios evaluated at the true parameter p∗, that
is (Rt(p))

∞
t=0), is a non-negative martingale with respect to

(Ft = σ(X))∞t=0. Further, the sequence of sets Ct forms a
(1− δ) confidence sequence for p∗: that is,

P(∃t ≥ 0 : p∗ /∈ Ct) ≤ δ ⇐⇒ P(∀t ≥ 0 : p∗ ∈ Ct) ≥ 1− δ.

In other words, the true parameter p∗ remains inside the
confidence sequence for all time t with probability at least
1− δ. This result generalises to the estimation of multiple pa-
rameters [24]. Following a similar approach as the application
of this idea to estimate the mode of a discrete distribution [25],
we work out a rule for BAI with uniform sampling.

1) K = 2 Bernoulli Arms: Consider the case where we
have only K = 2 Bernoulli arms with means µ1 and µ2. We
will try to jointly estimate the two parameters (µ1, µ2). Since,
Bernoulli random variables work with the Beta distribution as
a conjugate prior, and we need a prior with non-zero mass
everywhere, a uniform prior is a suitable choice. Therefore,
we have the prior given by f0(p1, p2) = 1 for p1, p2 ∈ [0, 1].

After n rounds, suppose arm 1 has yielded sn1 1’s and fn
1

0’s, while arm 2 has yielded sn2 1’s and fn
2 0’s. Note that,

sn1 + fn
1 = sn2 + fn

2 = n. Since the reward distributions are
independent and Bernoulli, we have,

fn(p1, p2) = Beta(p1; sn1 +1, fn
1 +1)Beta(p2; sn2 +1, fn

2 +1).

The corresponding (1− δ) confidence sequence becomes

Cn =
{
(p1, p2) ∈ [0, 1]2 | fn(p1, p2) > δ

}
.

Now, we aim to determine which arm dominates the other.
So, it suffices for us to stop when Cn only contains points
(p1, p2) such that (1) all points satisfy p1 > p2, in which case
1 is the winner, or (2) all points satisfy p2 > p1, making 2
the winner. Without loss of generality, assume that 1 is the
empirically superior class: that is, sn1 > sn2 (if sn1 = sn2 , a
reasonable algorithm will not stop). Hence, at termination,
Cn will necessarily have (p1, p2) pairs in which p1 > p2.
In general, could Cn also have pairs in which p2 ≥ p1? The
following lemma (proven in Appendix C) provides an easy
way to verify.

Lemma 4: Consider (p1, p2) ∈ [0, 1]2 such that p1 < p2,
and let p̄ := p1+p2

2 . If sn1 > sn2 , then fn(p1, p2) < fn(p̄, p̄).
The lemma implies that if 1 is the empirically superior class,

then Cn can contain “bad” points, (p1, p2) with p1 ≤ p2 only if
it also contains some point of the form (p, p). Consequently,
for us to stop, it suffices for Cn to separate from the line
p1 = p2. Our algorithm can be simplified to stop as soon as
Cn no longer contains any point of the form (p, p), and then
declaring the empirically superior arm as the winner. We make
another useful observation in this regard. For p ∈ [0, 1]:

fn(p, p) = Beta(p; sn1 + 1, fn
1 + 1)Beta(p; sn2 + 1, fn

2 + 1)

=
ps

n
1 (1− p)f

n
1 ps

n
2 (1− p)f

n
2

B(sn1 + 1, fn
1 + 1)B(sn2 + 1, fn

2 + 1)

=
B(sn1 + sn2 + 1, fn

1 + fn
2 + 1)

B(sn1 + 1, fn
1 + 1)B(sn2 + 1, fn

2 + 1)

×Beta(p; sn1 + sn2 + 1, fn
1 + fn

2 + 1).

In other words, fn(p, p) can be represented as a single Beta
pdf, with some multiplicative factors independent of p. The
mode of this Beta pdf occurs at µ̂1,2 :=

sn1 +sn2
2n = µ̂1+µ̂2

2 .
Hence, our stopping rule can effectively be stated as: stop as
soon as fn(µ̂1,2, µ̂1,2) ≤ δ, that is:

ln(sn1 !) + ln(sn2 !) + ln(fn
1 !) + ln(fn

2 !)− 2 ln((n+ 1)!)

−(sn1 + sn2 ) ln(s
n
1 + sn2 )− (fn

1 + fn
2 ) ln(f

n
1 + fn

2 )

+2n ln(2n) ≥ ln

(
1

δ

)
. (4)



Since we used the joint distribution over two arms for gener-
ating our confidence sequence, we call this rule PPR-JD. This
stopping rule needs only a constant number of arithmetic and
logarithmic operations on each round, since the “log factorial”
terms for round n+ 1 are computable in constant time if the
corresponding terms for round n are stored.

2) K ≥ 2 Bernoulli arms: The PPR-JD stopping rule can
be easily extended to instances with K ≥ 2 arms. Like the “1
versus 1” approach of Jain et al. [25], we consider all pairs of
arms, and check if there exists an arm that is empirically better
than every other arm according to the PPR-JD rule for two
arms. If such an arm exists, clearly it must be α1 (the empirical
best). Consequently it suffices to check the PPR-JD rule only
with the K−1 pairs that include α1. To ensure that the overall
mistake probability does not exceed δ, each pair must follow
the PPR-JD rule with δK = δ/(K − 1). In summary, our rule
could be to stop if and only if fn(µ̂α1,b, µ̂α1,b) ≤ δ

K−1 for b ∈
[K]\{α1}. Interestingly, a working in Appendix D shows that
fn(µ̂α1,α2 , µ̂α1,α2) ≥ fn(µ̂α1,b, µ̂α1,b) ∀ b ∈ [K] \ {α1, α2},
where α2 is the arm with the second highest empirical mean.
Hence, the PPR-JD rule further simplifies to comparing only
the top two empirically best arms.

Stop and return α1 iff fn(µ̂α1,α2
, µ̂α1,α2

) ≤ δ

K − 1
.

B. Chernoff’s Stopping Rule for Uniform Sampling

We now describe the δ-PAC guarantee obtained using Cher-
noff’s stopping rule along with an informational threshold, as
outlined in by Garivier and Kaufmann [17]. We adapt their
approach to uniform sampling.

The Generalized Likelihood Ratio statistic for arms a, b ∈
[K] gives the log ratio of the maximum likelihood of arm a
having higher mean than arm b, over the opposite hypothesis:

Λa,b(t) := log

(
maxµ′

a≥µ′
b
Lµ′

a
(Xa)Lµ′

b
(Xb)

maxµ′
a≤µ′

b
Lµ′

a
(Xa)Lµ′

b
(Xb)

)
.

Intuitively, a higher Λa,b(t) value places a higher belief on
arm a being better than arm b. It is well known that this
term has an analytical closed-form representation for Bernoulli
Bandits [17]. After adapting it to uniform sampling, we get:

Λa,b(n) = n

[
d

(
µ̂a(n),

µ̂a(n) + µ̂b(n)

2

)
+d

(
µ̂b(n),

µ̂a(n) + µ̂b(n)

2

)]
= nD∗(µ̂a(n), µ̂b(n)) (5)

if µ̂a ≥ µ̂b. By definition it follows that Λa,b(n) = −Λb,a(n).
Garivier and Kaufmann [17] suggest an intuitive “1 versus
1” stopping rule based on this statistic exceeding a suitable
threshold β(n, δ). They propose stopping if and only if

max
a∈[K]

min
b∈[K]\{a}

Λa,b(n) > β(n, δ).

Since Λa,b(n) is only non-negative when arm a is empirically
superior to arm b, the outer maximiser is clearly α1, the arm

with the highest empirical mean. Combining this with the fact
that D∗(x, y) is decreasing in y for x > y, we obtain:

Λ(n) = max
a∈[K]

min
b∈[K]\{a}

Λa,b(n) = min
b∈[K]\{α1}

Λα1,b(n)

= nD∗(µ̂α1
(n), µ̂α2

(n)).

To provide a δ-PAC guarantee, we must appropriately set the
threshold β(n, δ). To this end, Garivier and Kaufmann [17, see
Theorem 10] provide an informational threshold for Bernoulli
bandits, which they prove to be δ-PAC for any sampling
strategy. We can directly use their choice, to set

β(n, δ) = log

(
2nK(K − 1)

δ

)
.

The resulting stopping rule, which we denote U-CNF (for
Uniform-Chernoff), is as given below.

Stop and return α1 iff nD∗(µ̂α1
(n), µ̂α2

(n)) > β(n, δ).

Observe that both stopping rules only depend on the top
two empirically superior arms. This aspect is distinctive to the
setting of uniform sampling, and not generally true [17]. As
we see next, both rules are asymptotically optimal as δ → 0.

C. Asymptotic Optimality of the Stopping Rules
The following theorem, adapted from Garivier and Kauf-

mann [17, see Theorem 14], is central to our analysis. Al-
though PPR-JD and U-CNF are different rules, it is on account
of satisfying the conditions of this theorem that they become
asymptotically optimal.

Theorem 5 (Asymptotic Upper Bound): Let µ̄ be any K-
armed Bernoulli bandit instance. Then, under uniform sam-
pling, any rule that stops and returns α1 if and only if

Λ(n) > log

(
Cn

δ

)
for some positive constant C, satisfies the following upper
bound on its expected stopping time:

lim
δ→0

E[Nδ,µ̄]

log(1/δ)
≤ 1

D∗(µ1, µ2)
.

We obtain the following corollaries for PPR-JD and U-CNF.
Corollary 6 (Asymptotic Optimality of PPR-JD): Let µ̄ be

any K-armed Bernoulli bandit instance. Then, the stopping
rule PPR-JD satisfies the following upper bound on its ex-
pected stopping time:

lim
δ→0

E[Nδ,µ̄]

log(1/δ)
≤ 1

D∗(µ1, µ2)
.

Corollary 7 (Asymptotic Optimality of U-CNF): Let µ̄ be
any K-armed Bernoulli bandit instance. Then, the stopping
rule U-CNF satisfies the following upper bound on its expected
stopping time:

lim
δ→0

E[Nδ,µ̄]

log(1/δ)
≤ 1

D∗(µ1, µ2)
.

Detailed proofs of Theorem 5 and Corollary 6 are given in
appendices E and F, respectively. Corollary 7 follows directly
from Theorem 5 by taking C = 2K(K − 1).



V. EMPIRICAL RESULTS

In this section, we present an empirical evaluation and com-
parison of PPR-JD and U-CNF. To begin, we confirm that both
algorithms are indeed asymptotically optimal as δ → 0. Figure
1 shows the ratio of the round complexity of either method
to the lower bound in Corollary 2 on two different Bernoulli
bandit instances, both 2-armed. The round complexity is the
average of 200 independent runs; the plots also show one
standard error. The x axis in plots (a) and (b) shows mistake
probability δ varied in the range [10−311, 10−11]; notice that
the ratio approaches 1 for both methods at the lower end of
this spectrum.

For any fixed value of δ, which among our two methods
is more sample-efficient? Interestingly, we observe that on
“typical” instances, in which the arms’ means are well-
separated from 0 and 1, PPR-JD terminates well before U-CNF
(see, for example, Figure 1a). However, when the means are
close to 0 and 1 (see, for example, Figure 1b), U-CNF enjoys
a slight advantage. Note that the latter instance is actually
an easy instance for BAI, since the arms are well-separated.
The empirical trend noted here is predicted by Lemma 9 in
Appendix F. In particular, the “threshold” we obtain for PPR-
JD contains the quantity

hα1,α2
(n) =

√
µ̂α1(1− µ̂α1)µ̂α2(1− µ̂α2)

in the denominator (within the log). Clearly hα1,α2 will be
small when the top two means in the instance get close to the
extremes. Still, we find U-CNF to dominate only moderately,
that too only for means as close to 1 as 0.97 or close to 0
as 0.01. For most realistic bandit instances, PPR-JD would
appear to be the method of choice.

Table I illustrates the performance of our stopping rules as
the number of arms K is increased. Once again we report
the average number of rounds before stopping divided by the
lower bound from Corollary 2. As expected, notice that both
algorithms have a ratio quite close to 1 for the lower value of
δ = 10−261. The round complexity is largely determined by
the top two arms. As more arms are added (see rows 2–4),
there is an increase in the sample complexity (note that the
δ-dependent lower bound remains unaffected). The increase
due to more arms is gradual when the means of the arms are
well separated from the second best (rows 2–4), and more

(a) µ1 = 0.7, µ2 = 0.5 (b) µ1 = 0.99, µ2 = 0.01

Fig. 1: Plots on two 2-armed Bernoulli bandit instances
showing the ratio of the average number of rounds to the lower
bound as δ is varied.

TABLE I
Stopping times for K ≥ 2 Bernoulli arms. Results are

averages from 200 independent runs, and show one standard
error.

Bandit Instance (µ̄) δ
Average rounds / Lower bound

PPR-JD U-CNF

(0.7, 0.3)
10−11 1.215± 0.022 1.277± 0.023

10−261 1.007± 0.004 1.010± 0.004

(0.7, 0.3, 0.24)
10−11 1.257± 0.021 1.336± 0.022

10−261 1.013± 0.004 1.016± 0.004

(0.7, 0.3, 0.24, 0.18)
10−11 1.284± 0.021 1.378± 0.022

10−261 1.006± 0.004 1.010± 0.004

(0.7, 0.3, 0.24, 10−11 1.286± 0.021 1.390± 0.022

0.18, 0.12) 10−261 1.011± 0.004 1.015± 0.004

(0.7, 0.3, 0.3)
10−11 1.370± 0.022 1.455± 0.023

10−261 1.033± 0.004 1.036± 0.004

(0.7, 0.3, 0.3, 0.3)
10−11 1.472± 0.024 1.565± 0.024

10−261 1.044± 0.004 1.047± 0.004

(0.7, 0.3, 0.3, 10−11 1.503± 0.022 1.627± 0.023

0.3, 0.3) 10−261 1.052± 0.003 1.056± 0.003

pronounced when all sub-optimal arms are given the same
mean (rows 5–7). Nonetheless, these additional arms do not
affect the asymptotic sample complexity (as δ → 0).

In summary, these experiments validate our analytical find-
ings about PPR-JD and U-CNF, and suggest PPR-JD is prefer-
able except on instances with means very close to 0 or 1.

VI. CONCLUSION

We have considered the problem of BAI in the fixed
confidence setting, when all the arms get sampled in each
round. Our uniform sampling setting is relevant in applications
wherein arms can be sampled in parallel. Since only stopping
(rather than the choice of sampling) depends on the outcomes
of pulls in this setting, it is less affected by practical violations
such as delay in obtaining rewards [28,29].

From a theoretical standpoint, we provide a complete
characterisation of problem and solution. First, we suitably
adapt the lower bound for Kaufmann et al. [23] for uniform
sampling. Next, we propose two separate stopping rules, PPR-
JD and U-CNF, based on existing algorithmic frameworks in
the literature. Both rules are simpler and more computationally
efficient than “fully sequential” counterparts [17]–[19]. By
adapting existing analyses [17,25], we obtain instance-specific
upper bounds for both rules. We observe that both rules are
asymptotically optimal with respect to the lower bound for
Bernoulli bandits. However, as apparent from Figure 1, there
remains a gap between upper and lower bounds for finite
(non-asymptotic) values of δ. Future work could pursue a
supplementary lower bound possibly showing a dependence
on K, albeit as a coefficient to a sub-log( 1δ ) factor and extend
these methods to other reward distributions.

Our analytical results are reaffirmed by experiments, which
also provide guidance for choosing between PPR-JD and
U-CNF in practice. The conceptual simplicity of uniform
sampling, coupled with the ease of implementing PPR-JD and
U-CNF, is likely to benefit practitioners.
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APPENDIX A
PROOF OF THEOREM 1

Proof: This proof borrows from Garivier and Kauf-
mann [17], who, in turn, adapt the lower bound proof given
by Kaufmann et al. [23]. From [17, Proof of Theorem 1], we
have for δ ∈ (0, 1) and any valid sampling and stopping rule:

d(δ, 1− δ) ≤ inf
I′∈Ω′(I)

(
K∑

a=1

E
[
Na

δ,I
]
KL(Πa ∥ Π′

a)

)
where Na

δ,I denotes the number of pulls of arm a at stopping.
Since, under uniform sampling, E[Na

δ,I ] = E[Nδ,I ], we have:

d(δ, 1− δ) ≤ E[Nδ,I ] inf
I′∈Ω′(I)

(
K∑

a=1

KL(Πa ∥ Π′
a)

)
.

The above statement can be simplified using the easily verifi-
able inequality d(δ, 1− δ) ≥ log(1/2.4δ) leading to,

E[Nδ,I ] ≥
log(1/2.4δ)

inf
I′∈Ω′(I)

K∑
a=1

KL(Πa ∥ Π′
a)

APPENDIX B
PROOF OF COROLLARY 2

Proof: We have

Ω′(I) = {I ′ | a∗(I ′) ̸= a∗(I), I ′ ∈ Ω}

which for µ̄ ∈ B can be rewritten as

Ω′(µ̄) = {µ̄′ | a∗(µ̄′) ̸= 1, µ̄′ ∈ Ω}

=
⋃
a̸=1

{µ̄′ | µ′
a > µ′

1, µ̄
′ ∈ Ω}.

Then,

inf
I′∈Ω′(I)

K∑
a=1

KL(Πa ∥ Π′
a) = inf

µ̄′∈Ω′(µ̄)

K∑
a=1

d(µa, µ
′
a)

= min
a ̸=1

inf
µ̄′:µ′

a>µ′
1

K∑
a=1

d(µa, µ
′
a)

= min
a ̸=1

inf
µ̄′:µ′

a≥µ′
1

d(µ1, µ
′
1)

+ d(µa, µ
′
a)

where the last equality comes from the fact that, for the inner
infimum, we can let µ′

b = µb ∀ b ∈ [K]\{1, a}. Now, the inner
infimum is a constrained convex optimization problem since
d(x, y) is convex. It can be shown that it has an analytical
solution given by D∗(µ1, µa). Therefore,

inf
I′∈Ω′(I)

K∑
a=1

KL(Πa ∥ Π′
a) = min

a ̸=1
D∗(µ1, µa).

It can be easily verified that D∗(x, y) is decreasing in y for
x > y. Therefore,

inf
I′∈Ω′(I)

K∑
a=1

KL(Πa ∥ Π′
a) = D∗(µ1, µ2).

The corollary then follows from plugging the above relation
in the statement of Theorem 1.

APPENDIX C
PROOF OF LEMMA 4

Define ∆ := p̄− p1 = p2 − p̄. We have,

fn(p1, p2)

= Beta(p1; sn1 + 1, fn
1 + 1)Beta(p2; sn2 + 1, fn

2 + 1)

=
(p1)

sn1 (1− p1)
fn
1 (p2)

sn2 (1− p2)
fn
2

B(sn1 + 1, fn
1 + 1)B(sn2 + 1, fn

2 + 1)

= (p1p2)
sn2 ((1− p1)(1− p2))

fn
1

× (p1)
sn1 −sn2 (1− p2)

fn
2 −fn

1

B(sn1 + 1, fn
1 + 1)B(sn2 + 1, fn

2 + 1)

= (p̄2 −∆2)s
n
2
(
(1− p̄)2 −∆2

)fn
1

× (p̄−∆)s
n
1 −sn2 (1− p̄−∆)f

n
2 −fn

1

B(sn1 + 1, fn
1 + 1)B(sn2 + 1, fn

2 + 1)

<
(p̄2)s

n
2

(
(1− p̄)2

)fn
1 (p̄)s

n
1 −sn2 (1− p̄)f

n
2 −fn

1

B(sn1 + 1, fn
1 + 1)B(sn2 + 1, fn

2 + 1)

= Beta(p̄; sn1 + 1, fn
1 + 1)Beta(p̄; sn2 + 1, fn

2 + 1)

= fn(p̄, p̄).

APPENDIX D
SUFFICIENCY OF TOP TWO ARMS FOR PPR-JD

In this section, we prove that implementing the PPR-JD rule
for K arms is equivalent to considering the PPR-JD rule for
just the top two arms in terms of empirical mean rewards. We
show this by arguing that,

fn(µ̂α1,α2
, µ̂α1,α2

) ≥ fn(µ̂α1,b, µ̂α1,b) ∀ b ∈ [K] \ {α1, α2}.
(6)

For ease of notation we drop the α’s and use numeric indices.
We prove the inequality (6) by showing that for any µ̂b such
that, µ̂1 > µ̂2 ≥ µ̂b, we have that,

fn(µ̂1,2, µ̂1,2) ≥ fn(µ̂1,b, µ̂1,b).

We can restate this in terms of the number of successes sa =
nµ̂a. Then, for g(sa, sb) := fn(µ̂a,b, µ̂a,b), we have to show
that:

g(s1, s2) ≥ g(s1, sb) ∀ sb ≤ s2 < s1. (7)

If we can show that

g(s1, s2) ≥ g(s1, s2 − 1) ∀ s1 > s2 ≥ 1 (8)

then (7) easily follows since

g(s1, s2) ≥ g(s1, s2 − 1) ≥ . . . ≥ g(s1, sb).

Therefore, we just need to prove inequality (8).



By expanding the inequality (8), we can simplify our
objective to showing that ∀n ≥ s1 > s2 ≥ 1:(

1− n− s1
2n+ 1− s1 − s2

)(
1 +

s1
s2

)
(
1 +

1

s1 + s2 − 1

)s1+s2−1

(
1− 1

2n+ 1− s1 − s2

)2n−s1−s2

≥ 1.

Now, we can easily check that the first two terms are decreas-
ing and the last two terms are increasing in s2. Therefore by
substituting s2 with s1 − 1 for the first two terms and by 1
for the last two terms, we have that:(

1− n− s1
2n+ 1− s1 − s2

)(
1 +

s1
s2

)
(
1 +

1

s1 + s2 − 1

)s1+s2−1

(
1− 1

2n+ 1− s1 − s2

)2n−s1−s2

≥
(
1− n− s1

2n+ 2− 2s1

)(
1 +

s1
s1 − 1

)
(
1 +

1

s1

)s1 (
1− 1

2n− s1

)2n−s1−1

=

(
n+ 2− s1

2(n+ 1− s1)

)(
2 +

1

s1 − 1

)
(
1 +

1

s1

)s1 (
1− 1

2n− s1

)2n−s1−1

.

Now, the first term is ≥ 1/2 and the last term is ≥ 1/e.
Therefore,(

n+ 2− s1
2(n+ 1− s1)

)(
2 +

1

s1 − 1

)
(
1 +

1

s1

)s1 (
1− 1

2n− s1

)2n−s1−1

≥ 1

2e

(
2 +

1

s1 − 1

)(
1 +

1

s1

)s1

≥ 1

2e

(
2 +

1

s1

)(
1 +

1

s1

)s1

=
1

2e

((
1 +

1

s1

)s1

+

(
1 +

1

s1

)s1+1
)
.

Now, if we can show that y(s1) := (1 + 1/s1)
s1 +

(1 + 1/s1)
s1+1 ≥ 2e, then we are done. We show that the

function y(x) is decreasing for x > 0. We differentiate and
get that,

y′(x) =

(
1

x
+ 1

)x(
ln

(
1

x
+ 1

)
− 1

x+ 1

)
+

(
1

x
+ 1

)x+1(
ln

(
1

x
+ 1

)
− 1

x

)
=

(
1

x
+ 1

)x((
2 +

1

x

)
ln

(
1

x
+ 1

)
− 2x2 + 2x+ 1

x2(x+ 1)

)
.

Now, the first term is positive. We will next show that the
second term is negative. Using the upper bound of inequality
(3) in [30], we have that:(

2 +
1

x

)
ln

(
1

x
+ 1

)
− 2x2 + 2x+ 1

x2(x+ 1)

≤
(
2 +

1

x

)
1

2x

2x+ 1

x+ 1
− 2x2 + 2x+ 1

x2(x+ 1)

=
2x2 + 2x+ 1/2

x2(x+ 1)
− 2x2 + 2x+ 1

x2(x+ 1)

= − 1

2x2(x+ 1)
< 0.

Hence, we have shown that y′(x) < 0, and therefore y(x) is
decreasing. It is easy to check that y(x) has the limit 2e for
x → ∞. Therefore, we have that, y(s1) ≥ 2e, as required.

APPENDIX E
PROOF OF THEOREM 5

Proof: Our proof proceeds along similar lines as the proof
of Theorem 14 in [17]. We begin by considering the event
that the empirical reward averages for all the arms are close
to their actual means, which is highly probable due to the
law of large numbers. Assuming this to be true, we then give
a bound on the stopping time under this condition. We then
bound the probability of the case where the arm’s empirical
reward averages are not close to their actual means and show
that the expected stopping time satisfies the upper bound in
the theorem statement, as δ → 0.

We define the event En(η) as the event that the empirical
reward averages for all the arms are in η-neighbourhood of
their actual means at round n. Formally,

En(η) :=
{
|µ̂a(n)− µa| < η ∀ a ∈ [K]

}
.

Now we can choose η′ small enough (η′ < mina,b∈[K] |µa −
µb|/2) such that there is no overlap between the neighbour-
hoods around each mean. Then under the event En(η′), we
have µ̂1(n) > µ̂2(n) ≥ µ̂3(n) · · · ≥ µ̂K(n). Therefore,
α1 = 1, α2 = 2, . . . αK = K. From here on, for brevity,
we abuse the notation µ̂a = µ̂a(n).

Continuing under this event En(η′) we would have at round
n that,

Λ(n) = nD∗(µ̂α1(n), µ̂α2(n))

= nD∗(µ̂1, µ̂2)

≥ inf
|µ̃a−µa|<η′

a=1,2

nD∗(µ̃1, µ̃2).

Now for any ϵ > 0, we can choose η′′ := η(ϵ) small enough
such that,

inf
|µ̃a−µa|<η′′

a=1,2

D∗(µ̃1, µ̃2) ≥
D∗(µ1, µ2)

1 + ϵ
.



Therefore, we have for η∗ := min(η′, η′′) that under the event
En(η∗), at round n,

Λ(n) ≥ nD∗(µ1, µ2)

1 + ϵ
.

We define the quantity N∗ ≡ N∗(δ, ϵ, µ̄),

N∗ :=
1 + ϵ

D∗(µ1, µ2)

[
log

(
1

δ
· Ce(1 + ϵ)

D∗(µ1, µ2)

)
+ log log

(
1

δ
· C(1 + ϵ)

D∗(µ1, µ2)

)]
.

By Lemma 8 below, we have that

nD∗(µ1, µ2)

1 + ϵ
≥ log

(
Cn

δ

)
∀n ≥ N∗.

Therefore, under the event EN∗(η∗), we have

Λ(N∗) ≥ log

(
CN∗

δ

)
=⇒ Nδ,µ̄ ≤ inf

{
n ∈ N

∣∣∣ Λ(n) > log

(
Cn

δ

)}
≤ N∗

where recall that Nδ,µ̄ denotes the number of rounds at
termination. In fact for any n ≥ N∗, under the event En(η∗),
we have that, Nδ,µ̄ ≤ n. This means that P(Nδ,µ̄ > n) ≤
P(EC

n (η∗))∀n ≥ N∗. We will now bound this probability
using Chernoff’s bound ([31, Theorem 2.1 and Corollary 4.1]).
For n ≥ N∗,

P(Nδ,µ̄ > n) ≤ P(EC
n (η∗))

≤
K∑

a=1

P(|µ̂a(n)− µa| > η∗)

≤
K∑

a=1

[
e−nd(µa+η∗,µa) + e−nd(µa−η∗,µa)

]
.

Now, we know that,

E[Nδ,µ̄] =

∞∑
n=0

P(Nδ,µ̄ > n)

≤ N∗ +

∞∑
n=N∗

P(Nδ,µ̄ > n)

≤ N∗ +

∞∑
n=N∗

K∑
a=1

[
e−nd(µa+η∗,µa) + e−nd(µa−η∗,µa)

]
≤ N∗ +

K∑
a=1

∞∑
n=0

[
e−nd(µa+η∗,µa) + e−nd(µa−η∗,µa)

]
≤ N∗ +

K∑
a=1

[
1

1− e−d(µa+η∗,µa)
+

1

1− e−d(µa−η∗,µa)

]
.

Since the right term only depends on ϵ and µ̄, we have that,

lim
δ→0

E[Nδ,µ̄]

log(1/δ)
≤ 1 + ϵ

D∗(µ1, µ2)
.

Since, this is true for all ϵ > 0, we have that:

lim
δ→0

E[Nδ,µ̄]

log(1/δ)
≤ 1

D∗(µ1, µ2)
.

We now state the lemma we used in the proof above.
Lemma 8: For any two constants c1, c2 > 0,

x0 =
1

c1

[
log

(
c2e

c1

)
+ log log

(
c2
c1

)]
is such that c1x ≥ log(c2x)∀x ≥ x0.

Proof: Follows directly from [17, Lemma 18], combined
with the fact that c1x − log(c2x) is increasing for x > 1/c1.

APPENDIX F
ASMYPTOTIC OPTIMALITY OF PPR-JD

In this section, we first show that the PPR-JD stopping rule
can also be expressed in terms of the Generalized Likelihood
Ratio statistic Λ(n) crossing a threshold. This will then allow
us to apply Theorem 5 to prove the asymptotic optimality of
PPR-JD.

We start with the form of PPR-JD stopping rule for K = 2
arms that we had derived in (4). Using Stirling’s approximation
[32], we have for x ≥ 1,

ln(x!) = x ln(x)− x+
1

2
ln(2πx) +O

(
1

x

)
.

Substituting this for the factorial terms in our expressions and
simiplifying we get,

ln(sn1 !) + ln(sn2 !) + ln(fn
1 !) + ln(fn

2 !)− 2 ln((n+ 1)!)

− (sn1 + sn2 ) ln(s
n
1 + sn2 )− (fn

1 + fn
2 ) ln(f

n
1 + fn

2 )

+ 2n ln(2n)

= n [d (µ̂1, µ̂1,2) + d (µ̂2, µ̂1,2)] + ln(2π)

+
1

2
ln(µ̂1(1− µ̂1)µ̂2(1− µ̂2)) + ln(n) (9)

− 2 ln((n+ 1)) +O

(
1

n

)
. (10)

Now, recall from (5) that

Λ1,2(n) = n [d (µ̂1, µ̂1,2) + d (µ̂2, µ̂1,2)] .

Also, define:

h1,2(n) :=
√
µ̂1(1− µ̂1)µ̂2(1− µ̂2).

Substituting in (10) and using (4), we have that the PPR-JD
stopping rule for two arms can be expressed as:

Λ1,2(n) + ln(2πn) + ln(h1,2(n))

− 2 ln(n+ 1) +O

(
1

n

)
≥ ln

(
1

δ

)
⇐⇒ Λ1,2(n) ≥ ln

(
n+ 1/n+ 2

h1,2(n)
· e

O(1/n)

2πδ

)
. (11)

Using Stirling’s approximation [32], one can verify that
O(1/n) term < 1/6n above. In addition, noting from before
that we only need to check the PPR-JD rule for the top two
empirical mean arms with error probability δ/(K − 1), we



have the following lemma which relates the PPR-JD and the
Chernoff stopping rules.

Lemma 9: For uniform sampling with K Bernoulli arms,
the Chernoff stopping rule with threshold:

β(t, δ) = log

(
n+ 1

n + 2

hα1,α2(n)
· e

1/6

2π
· K − 1

δ

)
(12)

is sufficient for the PPR-JD rule to be applied. That is, the
PPR-JD algorithm stops before the Chernoff stopping rule with
the above threshold is triggered.

Remark 10: Comparing the thresholds for the U-CNF and
PPR-JD rules, we can see that the former has a K2 dependence
while the latter only has a linear dependence on K. This means
we expect PPR-JD to perform better, which we do observe in
our empirical results in Section V. However, one thing to note
is that the hα1,α2

(t) term in the threshold for PPR-JD becomes
small when the mean rewards are near the extremes. This
would suggest that the performance of PPR-JD will suffer in
such cases, which also we are able to verify in our simulation
results.

The above result also raises a more fundamental question
of whether there is a connection between the PPR martingale
methods and the Generalized Likelihood Ratio statistic meth-
ods. We were able to find a basic similarity between the two
rules for Bernoulli Bandits, and we conjecture that there is
possibly a similar connection for exponential family bandits
as well.

Next, we provide the proof of the asymptotic optimality
of PPR-JD in Corollary 6 which uses our derived sufficient
threshold for PPR-JD in conjunction with the proof of Theo-
rem 5. Due to the nature of hα1,α2(n) term, there are a few
more details to take care of, which we furnish next.

Proof of Corollary 6: From Lemma 9 we have that the
PPR-JD rule can be expressed in the form of Λ(n) crossing a
suitable threshold. Thus, we have

Nδ,µ̄ ≤ inf

{
n ∈ N

∣∣∣ Λ(n) > log

(
n+ 1

n + 2

hα1,α2(n)
· e

1/6

2π
· K − 1

δ

)}
≤ inf

{
n > 2

∣∣∣ Λ(n) > log

(
2n

hα1,α2
(n)

· e
1/6

2π
· K − 1

δ

)}
.

We then proceed along the same lines as the proof of Theo-
rem 5. We just need to additionally pick an η′′′ small enough
such that,

h1,2(n) =
√
µ̂1µ̂2(1− µ̂1)(1− µ̂2) ≥

√
µ1µ2(1− µ1)(1− µ2)

2

and we let η∗1 = min{η′, η′′, η′′′}. Then, we can define,

C ′ :=
2e1/6(K − 1)

π
√

µ1µ2(1− µ1)(1− µ2)

and if we take,

N∗
1 :=

1 + ϵ

D∗(µ1, µ2)

[
log

(
1

δ
· C

′e(1 + ϵ)

D∗(µ1, µ2)

)
+ log log

(
1

δ
· C ′(1 + ϵ)

D∗(µ1, µ2)

)]

then, for any N ≥ N∗
1 under the event EN (η∗1),

Nδ,µ̄ ≤ inf

{
n > 2

∣∣∣ Λ(n) > log

(
2n

h1,2(n)
· e

1/6

2π
· K − 1

δ

)}
≤ inf

{
n > 2

∣∣∣ Λ(n) > log

(
C ′n

δ

)}
≤ N∗

1 .

As before, we have that

E[Nδ,µ̄] ≤ N∗
1 +

∞∑
n=N∗

1

P(Nδ,µ̄ > n)

≤ N∗
1 +

K∑
a=1

[
1

1− e−d(µa+η∗
1 ,µa)

+
1

1− e−d(µa−η∗
1 ,µa)

]
.

Since the right term still only depends on ϵ and µ̄, we have
that,

lim
δ→0

E[Nδ,µ̄]

log(1/δ)
≤ 1 + ϵ

D∗(µ1, µ2)
.

Since, this is true for all ϵ > 0, we have that:

lim
δ→0

E[Nδ,µ̄]

log(1/δ)
≤ 1

D∗(µ1, µ2)
.


