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Abstract. Policy Iteration (PI) is a widely used family of algorithms to compute

optimal policies for Markov Decision Problems (MDPs). Howard’s PI is one of the

most commonly used algorithms from this family. Despite its popularity, theoretical

analysis of the running time complexity of Howard’s PI has remained elusive. For 𝑛-

state, 2-action MDPs, the best known lower and upper bounds are Ω(𝑛) and 𝑂 (2𝑛/𝑛)
iterations, respectively. Based on computational evidence for a combinatorial relax-

ation of this problem, Hansen and Zwick (2012) conjectured that the upper bound

can be improved to 𝑂 (𝜙𝑛), where 𝜙 = (1 +
√

5)/2 is the golden ratio. We prove this

conjecture for Deterministic MDPs (DMDPs), albeit up to a poly(𝑛) factor.

More generally, we derive a non-trivial upper bound for DMDPs that applies to

the entire family of PI algorithms. We also derive an improved bound that applies

to all “max-gain” switching variants. These bounds hold both under discounted and

average reward settings. Combined with a result of Melekopoglou and Condon (1994),

our results imply that stochasticity makes 2-action MDPs harder to solve for PI. Our

analysis is based on certain graph-theoretic results, which may be of independent

interest.
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Policy iteration, Computational complexity
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1. Introduction. A Markov Decision Problem (MDP) (Puterman [49]) is an abstraction of a

decision-making task in which the effect of any given action from any given state is a stochastic

transition to a next state, coupled with a numeric reward. A policy (taken in this article to be

stationary and deterministic) for an MDP specifies the action to take from each state. The utility of

a policy is usually taken as some form of the expected long-term reward it yields. Two common

definitions of long-term reward are as a discounted sum of the individual rewards over an infinite

horizon, and as the limiting average reward. We focus on the discounted reward setting though

our results (theorems 1 and 2) also hold for the average reward setting, as we shall discuss later in

Section 4.3. For an MDP with a finite number of states and actions, the set of policies is also finite,

and this set contains an optimal policy, which maximises the expected long-term reward starting

from each state in the MDP (Puterman [49, Theorem 6.2.10]; see also Bellman [11, Chapter XI]).
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For a given MDP—specified by its sets of states and actions, transition probabilities, rewards, and

discount factor—the desired solution is an optimal policy for the MDP.

Policy Iteration (PI) (Howard [34]) is a widely used family of algorithms to solve MDPs. A PI

algorithm is initialised with some arbitrary policy, and iterates through a sequence of policies that

is guaranteed to terminate in an optimal policy. In each iteration, a set of “improving” actions is

identified for each state. Any policy obtained by switching one or more of the current policy’s actions

to improving actions is guaranteed to dominate the current policy, and hence can be selected as the

subsequent iterate. A policy with no improving actions is guaranteed to be optimal. Algorithms from

the PI family are distinguished by their choice of improving actions for switching to at each step. An

alternative perspective of PI algorithms emerges by considering a Linear Program (LP) 𝑃𝑀 induced

by the input MDP 𝑀 (Puterman [49, see Section 6.9.1]). The vertices of the feasible polytope of

𝑃𝑀 are in bijective correspondence with policies for 𝑀 . PI algorithms restricted to changing the

action only at a single state essentially perform a Simplex update on the feasible polytope. On the

other hand, the generic PI update, which could involve changing actions at multiple states, amounts

to a block-pivoting step. The classical simplex method of Dantzig with most-negative-reduced-cost

pivoting rule [14] and Howard’s PI [34] are arguably the most commonly used variants of PI.

More generally, linear programming, policy iteration, and value iteration are the three major

approaches to computing optimal policies for MDPs (Puterman [49]). It is well known that solving

MDPs is 𝑃-complete (Papadimitriou and Tsitsiklis [46]). The natural next question is whether

there exists a strongly polynomial algorithm for solving MDPs: this means that if any arithmetic

or relational operation can be performed in constant time, regardless of the size of the operands,

then the total number of such operations required is at most a polynomial in the number of states

and actions, with no dependence on other input parameters. Ye [59] showed that Dantzig’s simplex

algorithm with most-negative-reduced-cost pivoting rule and Howard’s PI are strongly polynomial

for MDPs with a fixed discount factor. On the other hand, Feinberg and Huang [23] showed

that value iteration is not strongly polynomial for MDPs with a fixed discount factor. Moreover,

Fearnley [22] and Hollanders et al. [32] showed that Howard’s PI is exponential (in particular, not

strongly polynomial) for MDPs with a general discount factor. Let 𝑛 denote the number of states and

𝑘 denote the maximum number of actions per state in the input MDP. Notably, in the constructions

of Fearnley [22] and Hollanders et al. [32], 𝑘 grows to infinity as 𝑛 goes to infinity. Since many

natural tasks can be modelled as MDPs with at most a constant number of actions at each state, the

following question emerges.



Goenka et al.: Upper Bounds for Policy Iteration Algorithms on Deterministic MDPs
4 Article submitted to Mathematics of Operations Research

QUESTION 1. Does Howard’s PI converge in poly(𝑛) steps for 𝑛-state MDPs with a maximum

of 𝑘 actions at each state, where 𝑘 is a fixed constant?

Consider an MDP with 𝑛 ≥ 2 states and 𝑘 ≥ 2 actions, with the convention that each of the 𝑘

actions is available from each state. This convention is justified because if there are less than 𝑘

available actions at a state, then the existing actions at that state can be duplicated to ensure exactly

𝑘 available actions. The total number of policies, 𝑘𝑛, is a trivial upper bound on the number of

iterations taken by any PI algorithm. Mansour and Singh [41] showed that this trivial bound can be

improved to 𝑂 (𝑘𝑛/𝑛). In the simplest case 𝑘 = 2, one can identify the set of actions at each state

with {0,1} so that each policy corresponds to an 𝑛-bit binary vector. Hansen [28] showed that when

these binary vectors associated with the policies visited by Howard’s PI are arranged as rows of a

binary matrix, the resulting matrix satisfies the so-called order regularity property (Hollanders et

al. [33, Definition 1]). Moreover, they made the following conjecture (they stated it for acyclic

unique sink orientations but we restrict to 2-action MDPs in the statement below).

CONJECTURE 1 (Conjecture 3.3.2, Hansen [28]). For 𝑛 ∈ N, let 𝑓 (𝑛) denote the maximum

number of rows in any order regular matrix with 𝑛 columns. Then

(1) 𝑓 (𝑛) = Fib(𝑛 + 2), where Fib(𝑚) denotes the 𝑚-th Fibonacci number, and

(2) consequently, the number of steps taken by Howard’s PI to find the optimal policy for 2-action

MDPs is 𝑂 (𝜙𝑛), where 𝜙 = (1+
√

5)/2 is the golden ratio.

Hollanders et al. [33] disproved the first part of Conjecture 1 by showing that 𝑓 (7) = 33 < 34 =

Fib(9). However, it is still possible that 𝑓 (𝑛) ≤ Fib(𝑛 + 2) so that the second part of Conjecture 1

is true. In this paper, we consider Conjecture 1 in the context of Deterministic MDPs (DMDPs)—

MDPs in which the transitions are all deterministic. In other words, for every state 𝑠 and action 𝑎

in a DMDP, there is a unique state 𝑠′ which is reached whenever 𝑎 is taken from 𝑠. A special case

of our main result (Theorem 1) settles Conjecture 1 for DMDPs, albeit up to a poly(𝑛) factor.

THEOREM 1. The number of iterations taken by any PI algorithm on any 𝑛-state, 𝑘-action

DMDP is at most

5𝑛3𝑘2 · 𝛼(𝑘)𝑛, where 𝛼(𝑘) =
𝑘 − 1+

√︁
(𝑘 − 1)2 + 4
2

. (1)

In particular, Howard’s PI takes 𝑂 (𝑛3 · 𝜙𝑛) steps to find an optimal policy for 2-actions DMDPs.

With the challenge of stochasticity removed, DMDPs would appear to be an easier class of

problems to solve than MDPs—and several results affirm this intuition. For example, solving



Goenka et al.: Upper Bounds for Policy Iteration Algorithms on Deterministic MDPs
Article submitted to Mathematics of Operations Research 5

DMDPs is in 𝑁𝐶 (Papadimitriou and Tsitsiklis [46]). Moreover, it has been established that DMDPs

can be solved in strongly polynomial time. Madani et al. [40] propose a specialised algorithm for

DMDPs that enjoys a strongly polynomial upper bound, while Post and Ye [48] establish that the

classical simplex method of Dantzig also runs in strongly polynomial time on DMDPs.

By upper-bounding the complexity of specific algorithms on DMDPs, the preceding results

indirectly upper-bound the running time of the best algorithm from some corresponding class of

algorithms. In Theorem 1, we adopt a complementary perspective as we derive running-time upper

bounds that apply to the entire family of PI algorithms, and hence to the worst among them. The

significance of Theorem 1 is most apparent for the special case of 𝑘 = 2 actions. Melekopoglou

and Condon [44] constructed an 𝑛-state, 2-action MDP on which a specific variant of PI visits

all the 2𝑛 policies. On the other hand, our result establishes that no PI algorithm can exceed

poly(𝑛) · 𝜙𝑛 iterations on any 𝑛-state, 2-action DMDP. Therefore, we conclude that stochasticity

makes 2-action MDPs harder to solve for PI. In other words, the worst PI algorithm takes strictly

longer to solve 2-action MDPs than 2-action DMDPs. This observation is also consistent with our

current understanding of the best (PI) algorithms for MDPs: strongly polynomial (PI) algorithms

are known for DMDPs but not for MDPs.

The “LP digraph” (Avis and Moriyama [10]) of an LP has vertices corresponding to the vertices

of the feasible polytope, and directed edges from vertices to neighbours that improve the objective

function. A direct consequence of Theorem 1 is that the upper bound (1) also holds for the length of

the longest directed path in the LP digraph induced by the LP 𝑃𝑀 arising from any 𝑛-state 𝑘-action

DMDP 𝑀 . This is interesting since the length of the longest path in the LP digraph is an intrinsic

characteristic of the LP, and not dependent on any specific algorithm.

When a state has multiple improving actions, one common rule to select the action to switch to

is based on the actions’ “gains”. The gain of an action 𝑎 is the difference in utility arising from

replacing the current policy with 𝑎 for only the very first time step. Switching to an action with the

maximum gain (“max-gain”) plays a role in the proof of the strongly polynomial upper bound for

the simplex method with Dantzig’s pivoting rule on DMDPs (Post and Ye [48]). Max-gain action

selection has also been observed to be efficient in practice with other PI variants (Taraviya and

Kalyanakrishnan [57]). We obtain a smaller upper bound than (1) for sufficiently large 𝑘 when we

restrict the PI algorithm to perform max-gain action selection (while the algorithm is still free to

select on which states to switch actions).
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THEOREM 2. The number of iterations taken by any max-gain PI algorithm on any 𝑛-state,

𝑘-action DMDP is at most

(𝑛 + 1)𝑛2𝑘 (𝑘 + 1)!(𝑛−1)/(𝑘+1) =𝑂

(
𝑛3 ·

(
𝑘

𝑒

(
1+𝑂

(
log 𝑘
𝑘

)))𝑛)
. (2)

For the specific case of Howard’s PI on DMDPs, theorems 1 and 2 give a non-trivial improvement

over Mansour and Singh’s [41] bound. However, these bounds are still exponentially far from the

much stronger conjectured upper bound of 𝑛𝑘 steps by Hansen and Zwick [31].

We briefly sketch our proofs for theorems 1 and 2. Every DMDP 𝑀 induces a directed multigraph

𝐺𝑀 in which the vertices are the states, and the edges are the actions in 𝑀 . In turn, each policy

induces a subgraph of 𝐺𝑀 , with the restriction of having a single outgoing edge from each vertex.

For each state (equivalently vertex) 𝑠, the long-term reward accrued by a policy is fully determined

by a directed path starting at 𝑠, and a directed cycle that the path reaches. Since each PI iterate

strictly dominates the preceding one, it follows that the digraph induced by any newly visited policy

contains a path-cycle that does not appear in any of the previous policy digraphs. Following this,

we bound the number of path-cycles in two suitable modifications of 𝐺𝑀 by proving new bounds

on the number of cycles in such digraphs (theorems 3 and 4). Correspondingly, we obtain upper

bounds on the running time of PI algorithms: (1) for arbitrary PI variants, and (2) for variants that

perform “max gain” action selection.

THEOREM 3. The maximum number of cycles in any multi-digraph on 𝑛 vertices with outdegree

𝑘 such that each multi-edge has multiplicity at most 𝑘 − 1 is Θ(𝛼(𝑘)𝑛), where 𝛼(𝑘) is as in (1).

THEOREM 4. The number of cycles in any simple digraph on 𝑛 vertices with outdegree at most

𝑘 is bounded above by (𝑘 + 1)!𝑛/(𝑘+1) .

We restate and prove the above theorems in Section 3 as theorems 7 and 6, respectively. The

problem of bounding the number of cycles in graphs has been considered by several authors

previously (see Section 3 for a brief literature review). However, to the best of our knowledge, this is

the first work to consider this problem on digraphs with degree constraints. Our main contribution

is Theorem 3, a special case of which gives an asymptotically tight “Fibonacci” upper bound on

the number of cycles in a 2-regular digraph on 𝑛 vertices. The proof of this theorem required some

new ideas. In particular, we use a hybrid proof approach, namely, enumeration if the graph has a

specific structure, and induction otherwise. Dvořák et al. [20] proved a more general version of

Theorem 4 for the case of undirected graphs, and the same proof idea also works for digraphs.
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The article is organised as follows. We provide requisite definitions and background along with

some related work in Section 2, before proving our graph-theoretic results in Sections 3 and

running-time complexity results for PI in Section 4. Finally, we end with some concluding remarks

and directions for future work in Section 5.

2. Policy Iteration. We begin by defining MDPs, and thereafter describe the PI family of

algorithms for solving them. Next, we present known upper bounds on the number of steps taken

by PI to find an optimal policy.

2.1. Markov decision problems.

DEFINITION 1. An MDP is a 5-tuple (𝑆, 𝐴,𝑇, 𝑅, 𝛾), where 𝑆 is a set of states; 𝐴 is a set of

actions; 𝑇 : 𝑆 × 𝐴 × 𝑆 → [0,1] is the transition function with 𝑇 (𝑠, 𝑎, 𝑠′) being the probability of

reaching state 𝑠′ ∈ 𝑆 by taking action 𝑎 ∈ 𝐴 from state 𝑠 ∈ 𝑆 (hence
∑

𝑠′ 𝑇 (𝑠, 𝑎, 𝑠′) = 1); 𝑅 : 𝑆×𝐴→R

is the reward function with 𝑅(𝑠, 𝑎) being the expected reward obtained on taking action 𝑎 ∈ 𝐴 from

state 𝑠 ∈ 𝑆; and 𝛾 ∈ [0,1) is the discount factor.

Given an MDP 𝑀 = (𝑆, 𝐴,𝑇, 𝑅, 𝛾), a policy (assumed deterministic and Markovian) 𝜋 : 𝑆→ 𝐴

specifies an action 𝑎 ∈ 𝐴 for each state 𝑠 ∈ 𝑆. We denote the set of all policies for a given MDP 𝑀

by Π𝑀 (or just Π if the underlying MDP 𝑀 is evident from the context). In this work, we assume

that 𝑆 and 𝐴 are finite, with |𝑆 | = 𝑛 ≥ 2 and |𝐴| = 𝑘 ≥ 2. Consequently, Π is also finite, and contains

𝑘𝑛 policies.

DEFINITION 2. For policy 𝜋 ∈ Π, the value function 𝑉𝜋 : 𝑆 → R gives the expected infinite

discounted reward obtained by starting from each state 𝑠 ∈ 𝑆 and following the policy 𝜋. Let

𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, . . . be the state-action-reward trajectory generated by 𝑀 over time (the subscript

indicates the time step). Then for 𝑠 ∈ 𝑆,

𝑉𝜋 (𝑠) := E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)
]
,

where 𝑠0 = 𝑠, and for 𝑡 ≥ 0, 𝑎𝑡 = 𝜋(𝑠𝑡), 𝑠𝑡+1 ∼ 𝑇 (𝑠𝑡 , 𝑎𝑡). The action value function 𝑄𝜋 : 𝑆 × 𝐴→ R

applied to 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 is the expected infinite discounted reward obtained by starting from 𝑠 taking

𝑎, and thereafter following 𝜋. Finally, the gain function 𝜌𝜋 : 𝑆 × 𝐴 → R provides the difference

between 𝑄𝜋 and 𝑉𝜋.
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All three functions, 𝑉𝜋, 𝑄𝜋, and 𝜌𝜋, can be computed efficiently (in poly(𝑛, 𝑘) arithmetic

operations) by solving the following equations for 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴.

𝑉𝜋 (𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝜋(𝑠), 𝑠′)𝑉𝜋 (𝑠′).

𝑄𝜋 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑉𝜋 (𝑠′).

𝜌𝜋 (𝑠, 𝑎) =𝑄𝜋 (𝑠, 𝑎) −𝑉𝜋 (𝑠).

The first set of equations above, used to compute 𝑉𝜋 for some fixed policy 𝜋 ∈ Π, are called the

Bellman equations for 𝜋.

We now define relations ⪯ and ≺ to compare policies in Π.

DEFINITION 3. For 𝜋1, 𝜋2 ∈ Π, 𝜋1 ⪯ 𝜋2 if 𝑉𝜋1 (𝑠) ≤ 𝑉𝜋2 (𝑠) for all 𝑠 ∈ 𝑆. Moreover, 𝜋1 ≺ 𝜋2 if

𝜋1 ⪯ 𝜋2 and additionally 𝑉𝜋1 (𝑠) <𝑉𝜋2 (𝑠) for some state 𝑠 ∈ 𝑆.

DEFINITION 4. An policy 𝜋★ ∈ Π is called an optimal policy if 𝜋 ⪯ 𝜋★ for all 𝜋 ∈ Π.

2.2. Policy improvement.

DEFINITION 5. For policy 𝜋 ∈ Π, the improvable set 𝐼𝜋 is defined as the set of state-action

pairs (𝑠, 𝑎) ∈ 𝑆 × 𝐴 such that 𝜌𝜋 (𝑠, 𝑎) > 0. A set 𝐼 ⊆ 𝐼𝜋 is said to be a valid improvement set for 𝜋

if for each 𝑠 ∈ 𝑆, there exists at most one action 𝑎 ∈ 𝐴 such that (𝑠, 𝑎) ∈ 𝐼, and moreover, |𝐼 | ≥ 1.

DEFINITION 6. Suppose that for policy 𝜋 ∈ Π, the set 𝐼𝜋 is non-empty. Fix an arbitrary, valid

improvement set 𝐼 ⊆ 𝐼𝜋. Consider policy 𝜋′ ∈ Π, given by

𝜋′(𝑠) =

𝑎, if (𝑠, 𝑎) ∈ 𝐼,

𝜋(𝑠), otherwise.
(3)

Then 𝜋′ is called a locally-improving policy of 𝜋. The operation of obtaining 𝜋′ from 𝜋, by switching

to corresponding actions in the improvement set 𝐼, is called policy improvement.

Notice that if |𝐼𝜋 | > 1, there are multiple possible choices of valid improvement sets 𝐼 ⊆ 𝐼𝜋. The

well-known policy improvement theorem, stated below, provides a guarantee that applies to every

such choice of 𝐼.

THEOREM 5. Fix 𝜋 ∈ Π. (1) If 𝐼𝜋 = ∅, then 𝜋 is an optimal policy. (2) If 𝐼𝜋 ≠ ∅, let 𝜋′ ∈ Π be

obtained from policy improvement to 𝜋 using any valid improvement set 𝐼 ⊆ 𝐼𝜋. Then 𝜋 ≺ 𝜋′, and

moreover, for 𝑠 ∈ 𝑆 such that 𝜋′(𝑠) ≠ 𝜋(𝑠), we have 𝑉𝜋′ (𝑠) >𝑉𝜋 (𝑠).
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We omit the proof of the theorem, which is verifiable from standard references (Puterman [49,

see Section 6.4.2], Szepesvári [55, see Appendix A.2]). The theorem establishes the existence of

an optimal policy for every MDP. Indeed “solving” an MDP amounts to computing an optimal

policy for it. Although there are many possible solution techniques, a natural approach is evident

from the theorem itself: to iterate through policies. Algorithms from the PI family proceed through

a sequence of policies 𝜋0 → 𝜋1 → · · · → 𝜋ℓ, wherein 𝜋0 ∈ Π is an arbitrary initial policy; 𝜋ℓ for

some ℓ ≥ 1 is an optimal policy; and for 0 ≤ 𝑖 < ℓ, 𝜋𝑖+1 is obtained from policy improvement on 𝜋𝑖.

Given any MDP 𝑀 , we can now define its Policy Improvement Directed Acyclic Graph (PI-

DAG) as follows: it is a directed graph with Π as its set of vertices, and there is an edge from 𝜋

to 𝜋′ if 𝜋′ can be obtained from 𝜋 by a single step of policy improvement. Note that the resulting

digraph is acyclic since policy improvement always yields a strictly dominating policy. Further,

note that directed paths starting at some vertex and ending at a sink vertex in the PI-DAG are in

bijective correspondence with the possible trajectories of PI algorithms on the MDP 𝑀 . Therefore,

Theorem 1 can be reinterpreted as an upper bound on the length of directed paths in the PI-DAG of

an 𝑛-state 𝑘-action DMDP. And since the corresponding LP digraph is a subgraph of the PI-DAG,

this bound also applies to directed paths in the LP digraph, as noted previously in the introduction.

See Figure 1 for an example MDP, its PI-DAG, and the corresponding LP digraph.

𝑠0

𝑠1 𝑠2

1,3
0.2

5,2

0.
5,

3 0
.25,3

0.5,20.
5,

20.5,3

0.5,1
1,31,3 000

001 010

011

100

101 110

111

Figure 1. An example of a 3-state 2-action MDP with 𝛾 = 0.9 (left) and its PI-DAG (right). In the left figure, the dashed (red)

edges and solid (black) edges correspond to actions 0 and 1, respectively. Each transition in the MDP is marked with its (transition

probability, reward) pair. In the right figure, the solid and dashed edges correspond to policy improvement steps that switch action

on a single state and multiple states, respectively. The digraph on the right induced only by the solid edges is the corresponding LP

digraph, which is clearly a subgraph of the PI-DAG.
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2.3. Switching rules. Variants from the PI family are distinguished by their “switching

rule”—in other words their choice of valid improvement set 𝐼 ⊆ 𝐼𝜋 to improve the current policy 𝜋.

In principle, this choice can depend on the entire sequence of policies visited yet, along with any

accompanying information gathered from each iteration. However, most common variants of PI are

“memoryless”: that is, they select the improvement set 𝐼 ∈ 𝐼𝜋 solely based on 𝐼𝜋, and sometimes with

additional knowledge of 𝜌𝜋 (𝑠, 𝑎) for (𝑠, 𝑎) ∈ 𝐼𝜋. For our purposes, it is convenient to view switching

rules as a sequence of two steps: the first to select which states will be given new actions, and the

second to select improving actions for each of these states. Concretely, let 𝑆+(𝜋) denote the set of all

states 𝑠 ∈ 𝑆 for which there exists some action 𝑎 ∈ 𝐴 such that (𝑠, 𝑎) ∈ 𝐼𝜋. For each state 𝑠 ∈ 𝑆+(𝜋),
let 𝐴+(𝜋, 𝑠) be the set of actions 𝑎 ∈ 𝐴 such that (𝑠, 𝑎) ∈ 𝐼𝜋. Any switching rule must select a

non-empty subset 𝑆switch ⊆ 𝑆+(𝜋), and for each 𝑠 ∈ 𝑆switch, select an action 𝑎switch(𝑠) ∈ 𝐴+(𝜋, 𝑠).
Note that in general, 𝑆switch and 𝑎switch(·) can both be random. Also, note that 𝑎switch(𝑠) is trivially

determined for each 𝑠 ∈ 𝑆switch when the MDP has only 𝑘 = 2 actions.

In our upcoming analysis of the number of iterations taken by PI on DMDPs, we place no

restriction on how 𝑆switch is selected from 𝑆+(𝜋). However, we consider two distinct settings for

action selection. (1) With arbitrary action selection, there is no restriction on how 𝑎switch(𝑠) is

selected from 𝐴+(𝜋, 𝑠) for 𝑠 ∈ 𝑆switch. (2) Under max-gain action selection, we have 𝑎switch(𝑠) ∈
arg max𝑎∈𝐴+ (𝜋,𝑠) 𝜌

𝜋 (𝑠, 𝑎) for 𝑠 ∈ 𝑆switch, with arbitrary tie-breaking. The max-gain action selection

rule is used widely in practice. To the best of our knowledge, existing upper bounds on the complexity

of PI on MDPs (presented shortly) all assume some constraint on the state selection step in the

switching rule. Since we place no such restriction, our upper bounds when action selection is

arbitrary apply to every PI algorithm, including those whose switching choices depend on memory

and additional information.

2.4. Known results on complexity. We briefly review results on the running time of PI,

restricting ourselves to bounds that depend only on the number of states 𝑛 ≥ 2 and actions 𝑘 ≥ 2

in the input MDP. Arguably the most common variant from the PI family is Howard’s PI [34],

under which 𝑆switch = 𝑆+(𝜋). Mansour and Singh [41] show an upper bound of 𝑂 (𝑘𝑛/𝑛) iterations

when Howard’s PI is coupled with arbitrary action selection; Taraviya and Kalyanakrishnan [57]

obtain a tighter bound of
(
𝑂 (

√︁
𝑘 log 𝑘)

)𝑛
iterations when action selection is random. Mansour and

Singh [41] also propose a randomised PI variant in which 𝑆switch is chosen uniformly at random

from among the non-empty subsets of 𝑆+(𝜋). They give an upper bound of 𝑂
((
(1+ 2

log 𝑘 )
𝑘
2

)𝑛)
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iterations (with high probability) when action selection is arbitrary. Their bound of 𝑂 (20.78𝑛)
expected iterations for the special case of 𝑘 = 2 was subsequently improved by Hansen et al. [30]
to 𝑂 (𝑛5)

(
3
2

)𝑛
.

PI variants that switch only a single state in each iteration (that is, which enforce |𝑆switch | = 1)
may be interpreted as variants of the Simplex algorithm, being run on an LP 𝑃𝑀 induced by
the input MDP 𝑀 . Vertices in the feasible polytope of 𝑃𝑀 are in bijective correspondence with
the set of policies Π; single switch policy improvements amount to shifting to a neighbouring
vertex that increases the objective function, which at the vertex corresponding to policy 𝜋 ∈ Π is∑

𝑠∈𝑆𝑉
𝜋 (𝑠). Suppose the set of states 𝑆 is indexed; without loss of generality take 𝑆 = {1,2, . . . , 𝑛}.

Kalyanakrishnan et al. [36] show an upper bound of (2+ ln(𝑘 −1))𝑛 expected iterations for a variant
of PI in which 𝑆switch = {max𝑠∈𝑆+ (𝜋) 𝑠}, and action selection is random. Interestingly, Melekopoglou
and Condon [44] show that the same rule results in a policy improvement sequence of length 2𝑛

for an 𝑛-state, 2-action MDP. Among deterministic variants of PI, the best known upper bound
is poly(𝑛, 𝑘) · 𝑘0.7207𝑛 iterations (Gupta and Kalyanakrishnan [27]), for a variant that is based on
“batch-switching” PI (Kalyanakrishnan et al. [35]).

The upper bounds listed above for MDPs also apply to DMDPs. However, a much stronger result
has been shown when PI is applied to DMDPs. Post and Ye [48] demonstrate that the max-gain
variant of the Simplex indeed terminates after a polynomial number of iterations on 𝑛-state, 𝑘-action
DMDP. In this variant, the improvement set is {(𝑠, 𝑎̄)}, where 𝑠, 𝑎̄ ∈ arg max(𝑠,𝑎)∈𝑆×𝐴 𝜌

𝜋 (𝑠, 𝑎), with
ties broken arbitrarily. As we shall see in Section 4, every DMDP 𝑀 induces a directed multigraph
𝐺𝑀 , with each policy inducing a subgraph that is guaranteed to contain a directed cycle. Post
and Ye establish that the max-gain Simplex algorithm registers a significant jump in the objective
function when proceeding from 𝜋 to 𝜋′ if some cycle induced by 𝜋 is not induced by 𝜋′. Moreover,
such a break of a cycle must occur within a polynomial number of iterations, resulting in an
overall upper bound of 𝑂 (𝑛5𝑘2 log2 𝑛) iterations for the max-gain Simplex algorithm. This upper
bound has subsequently been improved by a factor of 𝑛 (Hansen et al. [29]) and also generalised
(Scherrer [52]). Even if the max-gain simplex algorithm is strongly polynomial for DMDPs, there
do exist PI variants that are exponentially lower-bounded. Ashutosh et al. [9] construct an 𝑛-state,
𝑘-action whose PI-DAG has a path of length Ω(𝑘𝑛/2).

Unlike preceding analyses to obtain upper bounds for DMDPs (Post and Ye [48], Hansen et

al. [29], Scherrer [52]), ours does not principally rely on bounding the change in continuous
quantities such as the objective function of policies. Rather, our arguments are based on bounding
discrete quantities: the number of directed cycles induced by policies in certain subgraphs of 𝐺𝑀 .
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3. Number of Cycles in Digraphs. In this section, we present results on the maximum

number of cycles in directed multigraphs with certain constraints on degree and edge multiplicity.

The problem of bounding the number of cycles in graphs has a long history. Bounds have been

established in terms of several basic graph parameters, including the number of edges, vertices,

degree sequence, minimum/maximum/average degree, and cyclomatic number (Ahrens [1], Arman

and Tsaturian [8], Dvořák et al. [20], Entringer and Slater [21], Guichard [26], Volkmann [58]).

Furthermore, restrictions of this problem to specific classes of graphs are also well studied: planar

graphs (Aldred and Thomassen [4], Alt et al. [6], Buchin et al. [13], Dvořák et al. [20]), graphs

with forbidden subgraphs (Morrison et al. [45]), Hamiltonian graphs (Rautenbach and Stella [50],

Shi [53]), triangle-free graphs (Arman et al. [7], Durocher et al. [19]), random graphs (Takács [56]),

bipartite graphs (Alt et al. [6]), 𝑘-connected graphs (Knor [38]), grid graphs (Alt et al. [6]),

outerplanar and series–parallel graphs (Mier and Noy [15]), complement of a tree (Reid [51],

Zhou [60]), 3-connected cubic (Hamiltonian) graphs (AlBdaiwi [2], Aldred and Thomassen [3]),

and 3-colorable triangulated graphs (Alt et al. [6]).

Analogous literature for digraphs is relatively sparse. Yoshua Perl [47] proved bounds for directed

multigraphs with a fixed number of edges. Some restrictions to specific classes of digraphs have

also been studied: digraphs with large girth (Allender [5]) and digraphs with restricted cycle lengths

(Gerbner et al. [24]). A few other studies have considered the very closely related question of

bounding the number of paths between two given vertices in the digraph: (acyclic) simple digraphs

with a given number of edges (Delivorias and Richter [16], Perl [47]) and simple acyclic digraphs

with a given number of vertices and edges (Golumbic and Perl [25]).

We consider directed multigraphs with restrictions on degree and edge multiplicity. To the best

of our knowledge, this is the first work to consider such families of digraphs in the context of

bounding the number of cycles. We prove two results, Theorem 6 and Theorem 7. The former is

a straightforward adaptation of a result by Dvořák et al. [20, Theorem 5]. The latter is our main

contribution and its proof required some new ideas. In particular, many of the results mentioned

above either use an enumerative approach, an inductive approach, or a structural approach. For

our problem, it seems hard to use a purely enumerative or structural approach. And the natural

inductive approach quickly runs into the issue that the smaller graphs obtained during the proof do

not belong to the same family of graphs. We are able to circumvent this issue by separating our

analysis into two cases: use an enumerative approach if the graph has a certain structure (which

interestingly coincides with that of an asymptotically extremal example), and use an inductive
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approach otherwise. We remark that both the problems we consider are directly motivated by their

application to PI on DMDPs, although they might find alternate applications.

In Section 4 (in particular, lemmas 5 and 6), we illustrate how the bounds on the number of

cycles can be used to establish bounds on the number of paths and path-cycles (see Section 4 for

definition) in the considered digraphs. Before we prove the main results of this section, we provide

some basic definitions and set up some notation.

3.1. Definitions. We use the term digraph to refer to directed graphs possibly containing

multi-edges and self-loops. A digraph is said to be simple if it does not contain self-loops or

multi-edges. For any digraph 𝐺, we shall denote its set of vertices and edges by 𝑉 (𝐺) and 𝐸 (𝐺),

respectively. By an edge (𝑢, 𝑣) ∈ 𝐸 (𝐺), we mean the multi-edge from 𝑢 to 𝑣 in 𝐺 unless otherwise

specified, and denote its multiplicity by mult(𝑢, 𝑣). For𝑉0 ⊆ 𝑉 (𝐺), we denote the induced subgraph

of 𝐺 on 𝑉0 by 𝐺 [𝑉0]. Finally, we shall denote the digraph obtained by deleting an edge (𝑢, 𝑣) from

𝐺 by 𝐺 \ (𝑢, 𝑣) and the digraph obtained by contracting (defined below) an edge (𝑢, 𝑣) in 𝐺 by

𝐺/(𝑢, 𝑣).

DEFINITION 7. For integers 𝑛 ≥ 0, 𝑘 ≥ 2, we define G𝑛,𝑘

simple as the set of all digraphs with 𝑛

vertices, outdegree at most 𝑘 , with the additional restriction that the digraph does not contain any

multi-edge.

DEFINITION 8. For integers 𝑛 ≥ 0, 𝑘 ≥ 2, we define G𝑛,𝑘

multi as the set of all digraphs with 𝑛

vertices, outdegree exactly 𝑘 , with the restriction that the multiplicity of edges connecting distinct

vertices is at most 𝑘 − 1.

Note that digraphs in G𝑛,𝑘

simple and G𝑛,𝑘

multi might contain self-loops. Also note that G0,𝑘
simple = G0,𝑘

multi

and both of these sets contain a single element, the empty digraph (∅, ∅).

DEFINITION 9. Given a digraph 𝐺, its skeleton Skel(𝐺) is defined as the digraph obtained by

replacing each edge in 𝐺 with the corresponding edge of multiplicity 1.

We remark that a digraph can be specified by its skeleton and the multiplicities of its edges.
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DEFINITION 10. Let 𝐺 be a digraph, and (𝑢, 𝑣) be an edge with distinct end points 𝑢 and 𝑣.

The digraph 𝐺/(𝑢, 𝑣) obtained by contracting the edge (𝑢, 𝑣) in 𝐺 is defined as

𝐺/(𝑢, 𝑣) = ((𝑉 (𝐺) \ {𝑢, 𝑣}) ∪ {𝑤},

(𝐸 (𝐺) \ {(𝑥, 𝑦) ∈ 𝐸 (𝐺) : 𝑥, 𝑦 ∈ {𝑢, 𝑣}})

∪ {(𝑤, 𝑦) : (𝑢, 𝑦) ∈ 𝐸 (𝐺) or (𝑣, 𝑦) ∈ 𝐸 (𝐺) with 𝑦 ∉ {𝑢, 𝑣}}

∪ {(𝑥, 𝑤) : (𝑥, 𝑣) ∈ 𝐸 (𝐺) or (𝑥, 𝑢) ∈ 𝐸 (𝐺) with 𝑥 ∉ {𝑢, 𝑣}}

∪ {(𝑤,𝑤) : (𝑣, 𝑢) ∈ 𝐸 (𝐺) or (𝑢, 𝑢) ∈ 𝐸 (𝐺) or (𝑣, 𝑣) ∈ 𝐸 (𝐺)}).

The multi-edge contraction operation (or edge contraction as defined above) on (𝑢, 𝑣) ∈ 𝐸 (𝐺)
replaces 𝑢 and 𝑣 with a single vertex 𝑤 such that all edges incident to 𝑢 or 𝑣, other than the said

multi-edge, are now incident to 𝑤.

DEFINITION 11. Let𝐺 be a simple digraph. An edge (𝑢, 𝑣) ∈ 𝐸 (𝐺) is said to be in-contractible

if there does not exist any vertex 𝑥 ∈ 𝑉 (𝐺) distinct from 𝑢 and 𝑣 such that (𝑥, 𝑢), (𝑥, 𝑣) ∈ 𝐸 (𝐺).
Similarly, (𝑢, 𝑣) is said to be out-contractible if there does not exist any vertex 𝑥 ∈ 𝑉 (𝐺) distinct

from 𝑢 and 𝑣 such that (𝑢, 𝑥), (𝑣, 𝑥) ∈ 𝐸 (𝐺). Finally, (𝑢, 𝑣) is said to be contractible if it is both

in-contractible and out-contractible.

We refer the reader to Figure 2 for an example illustrating the above notions of contractibility

and the edge contraction operation.

It follows directly from the definition that if an edge (𝑢, 𝑣) in a simple digraph 𝐺 is contractible,

it can be contracted without forming multi-edges in the resulting digraph. Note that the digraph

obtained may contain self-loops even if the above property is satisfied.

𝑣1,2

𝑣3𝑣4

𝑣1 𝑣2

𝑣3𝑣4

𝑣1

𝑣2,3

𝑣4

Figure 2. An example of a simple digraph 𝐺 (centre). The edges (𝑣1, 𝑣2) and (𝑣4, 𝑣3) are contractible, (𝑣4, 𝑣1) is not out-

contractible, (𝑣3, 𝑣2) is not in-contractible, and (𝑣1, 𝑣3) is neither in-contractible nor out-contractible. Contraction of the edge

(𝑣1, 𝑣2) leads to the graph 𝐺/(𝑣1, 𝑣2) (left) with no multi-edges since (𝑣1, 𝑣2) is contractible, while contraction of the edge (𝑣3, 𝑣2)
leads to the graph 𝐺/(𝑣3, 𝑣2) (right) containing a multi-edge since (𝑣1, 𝑣2) is not in-contractible.
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We use the term cycle to refer to a directed cycle unless otherwise specified. For a digraph 𝐺,

we shall denote the number of cycles in 𝐺 by 𝐶 (𝐺). Further, for a vertex 𝑣 ∈ 𝑉 (𝐺), we denote

the number of cycles in 𝐺 passing through 𝑣 by 𝐶 (𝐺, 𝑣). Similarly, for a multi-edge 𝑒 ∈ 𝐸 (𝐺), we

denote the number of cycles in 𝐺 passing through 𝑒 by 𝐶 (𝐺, 𝑒). Finally, for 𝐸 ⊆ 𝐸 (𝐺), we denote

the number of cycles in 𝐺 passing through at least one edge in 𝐸 by 𝐶 (𝐺, 𝐸). We remark that our

definitions incorporate the multiplicity of edges while computing the number of cycles, i.e., cycles

passing through distinct edges that are part of the same multi-edge are considered distinct.

Now, we define 𝑀𝑘 (𝑛) = max
𝐺∈G𝑛,𝑘

simple
𝐶 (𝐺): that is, 𝑀𝑘 (𝑛) denotes the maximum number of

cycles in any digraph in G𝑛,𝑘

simple. Similarly, we define 𝐹𝑘 (𝑛) = max
𝐺∈G𝑛,𝑘

multi
𝐶 (𝐺): that is, 𝐹𝑘 (𝑛)

denotes the maximum number of cycles in any digraph in G𝑛,𝑘

multi.

DEFINITION 12. Given digraphs 𝐺 and 𝐻, we say that 𝐺 is 𝐻-free if it has no subgraph

isomorphic to 𝐻.

3.2. Bounds on the number of cycles. We now prove upper bounds on 𝑀𝑘 (𝑛) and 𝐹𝑘 (𝑛).

3.2.1. Bounds for simple digraphs. Dvořák et al. [20] proved a more general version of

the theorem below for the case of undirected graphs. Their proof idea works for digraphs, as well.

We include the full proof for the sake of completeness.

THEOREM 6. For integers 𝑛 ≥ 0, 𝑘 ≥ 2, 𝑀𝑘 (𝑛) ≤ (𝑘 + 1)!𝑛/(𝑘+1) .

Proof. The result clearly holds for 𝑛 = 0,1, and 2 since 𝑀𝑘 (0) = 0, 𝑀𝑘 (1) = 1, and 𝑀𝑘 (2) =

3 ≤ (𝑘 + 1)!2/(𝑘+1) for all 𝑘 ≥ 2. Further, it is easy to check that 𝑀2(3) = 5 ≤ 6 = (2+ 1)!3/(2+1) and

𝑀𝑘 (3) = 8 ≤ (𝑘 + 1)!3/(𝑘+1) for all 𝑘 ≥ 3. We shall henceforth assume that 𝑛 ≥ 4. Let 𝐺 ∈ G𝑛,𝑘

simple

and𝑉 (𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}. For 1 ≤ 𝑖 ≤ 𝑛, let ℓ𝑖 ∈ {0,1} denote the number of self-loops on 𝑣𝑖 in 𝐺

and 𝑑𝑖 = outdegree(𝑣𝑖). Further, let 𝐺0 be the simple digraph obtained by removing all self-loops

from 𝐺. Let 𝐴0 be the adjacency matrix of 𝐺0 and 𝐴′ = 𝐴0 + 𝐼. Note that there exists an injection

from the set of cycles in 𝐺0 to the symmetric group Sym(𝑛). This injection maps any given cycle

in 𝐺0 to the permutation 𝜎 ∈ Sym(𝑛) whose cycle decomposition contains the given cycle while

fixing all other vertices. Therefore, 𝐶 (𝐺0) is less than or equal to the permanent of 𝐴′, which is

defined by

perm(𝐴′) =
∑︁

𝜎∈Sym(𝑛)

𝑛∏
𝑖=1

𝑎′
𝑖,𝜎(𝑖) .
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Note that the sum of the entries in the 𝑖-th row of 𝐴′ is equal to 𝑑𝑖 + 1− ℓ𝑖. Hence, using Brègman’s

theorem (Brègman [12]), we obtain

perm(𝐴′) ≤
𝑛∏
𝑖=1

(𝑑𝑖 + 1− ℓ𝑖)!1/(𝑑𝑖+1−ℓ𝑖) ,

which further yields

𝐶 (𝐺0) ≤ perm(𝐴′) ≤
𝑛∏
𝑖=1

(𝑘 + 1− ℓ𝑖)!1/(𝑘+1−ℓ𝑖) (4)

since 𝑑𝑖 ≤ 𝑘 for each 1 ≤ 𝑖 ≤ 𝑛 and the function 𝑓 : N→ R defined by 𝑓 (𝑚) = 𝑚!1/𝑚 for 𝑚 ∈ N is

monotonically increasing. Now, using 𝐶 (𝐺) =𝐶 (𝐺′) +∑𝑛
𝑖=1 ℓ𝑖 in (4), we obtain

𝐶 (𝐺) ≤
𝑛∏
𝑖=1

(𝑘 + 1− ℓ𝑖)!1/(𝑘+1−ℓ𝑖) +
𝑛∑︁
𝑖=1

ℓ𝑖 . (5)

We shall now show that 𝐶 (𝐺) ≤ (𝑘 + 1)!𝑛/(𝑘+1) . If ℓ𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑛, then (5) yields 𝐶 (𝐺) ≤
(𝑘 +1)!𝑛/(𝑘+1) . Therefore, we may assume ℓ1 = 1 without loss of generality. We show that changing

the value of ℓ1 to 0 while keeping 𝑙2, 𝑙3, . . . , 𝑙𝑛 fixed increases the value of the RHS of (5). For

𝑘 ≥ 2, we have (𝑘 + 1)!1/(𝑘+1) − 𝑘!1/𝑘 ≥ 1/𝑒, and

𝑛∏
𝑖=2

(𝑘 + 1− ℓ𝑖)!1/(𝑘+1−ℓ𝑖) ≥ 2(𝑛−1)/2 ≥ 23/2.

Combining these two inequalities, we obtain

𝑘!1/𝑘
𝑛∏
𝑖=2

(𝑘 + 1− ℓ𝑖)!1/(𝑘+1−ℓ𝑖) + 23/2

𝑒
≤ (𝑘 + 1)!1/(𝑘+1)

𝑛∏
𝑖=2

(𝑘 + 1− ℓ𝑖)!1/(𝑘+1−ℓ𝑖) ,

which further yields
ATTENTION: The following displayed equation, in its current form, exceeds the column width that
will be used in the published edition of your article. Please break or rewrite this equation to
fit, including the equation number, within a column width of 470 pt / 165.81 mm / 6.53 in (the
width of this red box).

𝑘!1/𝑘
𝑛∏
𝑖=2

(𝑘 + 1− ℓ𝑖)!1/(𝑘+1−ℓ𝑖) + 1+
𝑛∑︁
𝑖=2

ℓ𝑖 ≤ (𝑘 + 1)!1/(𝑘+1)
𝑛∏
𝑖=2

(𝑘 + 1− ℓ𝑖)!1/(𝑘+1−ℓ𝑖) + 0+
𝑛∑︁
𝑖=2

ℓ𝑖 .

Repeating the same argument for each ℓ𝑖 that is equal to 1, we conclude that changing the value of

ℓ𝑖 to 0 for all 1 ≤ 𝑖 ≤ 𝑛 increases the value of the RHS of (5). Hence, 𝐶 (𝐺) ≤ (𝑘 + 1)!𝑛/(𝑘+1) .

Since the above bound holds for each 𝐺 ∈ G𝑛,𝑘

simple, we obtain the desired result. □
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We now provide a particular example of a digraph in G𝑛,𝑘

simple. For 𝑘 ≥ 2, ℓ ≥ 1, we define the

simple digraph 𝐺
ℓ,𝑘

example which consists of ℓ units of single vertices and 𝑘-cliques arranged in an

alternating cyclic fashion. Formally, 𝐺ℓ,𝑘

example = (𝑉, 𝐸), where 𝑉 = {𝑣𝑖, 𝑗 : 0 ≤ 𝑖 < ℓ,0 ≤ 𝑗 ≤ 𝑘} and

𝐸 = {(𝑣𝑖,0, 𝑣𝑖, 𝑗 ) : 0 ≤ 𝑖 < ℓ, 1 ≤ 𝑗 ≤ 𝑘} ∪ {(𝑣𝑖, 𝑗1 , 𝑣𝑖, 𝑗2) : 0 ≤ 𝑖 < ℓ, 1 ≤ 𝑗1, 𝑗2 ≤ 𝑘} ∪ {(𝑣𝑖1, 𝑗 , 𝑣𝑖2,0) :

𝑖2 − 𝑖1 ≡ 1 mod 𝑛,0 ≤ 𝑖1 ≤ ℓ,0 ≤ 𝑖2 ≤ ℓ,1 ≤ 𝑗 ≤ 𝑘}. See Figure 3 for an example digraph 𝐺
3,3
example. It

can be shown using direct enumeration that

𝐶 (𝐺ℓ,𝑘

example) = ℓ

(
2𝑘+1 −

(
𝑘

2

)
− 2𝑘 − 2

)
+

(
𝑘∑︁

𝑟=0

𝑘!
𝑟!

− 1

)ℓ
. (6)

We remark that the upper bound on 𝑀𝑘 (𝑛) in Theorem 6 is asymptotically sharp in the sense that

lim
𝑘→∞

©­«
𝐶 (𝐺ℓ,𝑘

example)
(𝑘 + 1)!ℓ

ª®¬
1/(ℓ(𝑘+1))

= 1, (7)

which implies that 𝑀𝑘 (𝑛)1/𝑛 is equal to (𝑘 +1)!1/(𝑘+1) upto a multiplicative factor that gets arbitrarily

close to 1 as 𝑘 goes to infinity.

3.2.2. Bounds for directed multigraphs. We begin by providing two particular examples

of digraphs in G𝑛,𝑘

multi, with the same skeleton. For 𝑛 ≥ 3, we define the simple digraph 𝐺𝑛 = (𝑉, 𝐸)
with 𝑉 = {𝑣𝑖 : 0 ≤ 𝑖 < 𝑛} and 𝐸 = {(𝑣𝑖, 𝑣 𝑗 ) : 𝑗 − 𝑖 ≡ 1 mod 𝑛 or 𝑗 − 𝑖 ≡ 2 mod 𝑛}. Let 𝐺𝑛,𝑘 be the

digraph with skeleton Skel(𝐺𝑛,𝑘 ) =𝐺𝑛 in which edges (𝑣𝑖, 𝑣 𝑗 ) with 𝑗 −𝑖 ≡ 1 mod 𝑛 have multiplicity

𝑘 −1 while the remaining edges have multiplicity 1. Similarly, let 𝐺′
𝑛,𝑘

be the digraph with skeleton

𝑣0,0

𝑣0,1
𝑣0,2

𝑣0,3

𝑣1,0

𝑣1,1

𝑣1,2𝑣1,3

𝑣2,0

𝑣2,1

𝑣2,2

𝑣2,3

Figure 3. The digraph 𝐺
3,3
example.
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𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

Figure 4. The digraphs 𝐺6, 𝐺6,3 and 𝐺′
6,3 (from left to right).

Skel(𝐺′
𝑛,𝑘

) =𝐺𝑛 in which edges (𝑣𝑖, 𝑣 𝑗 ) with 𝑗 − 𝑖 ≡ 1 mod 𝑛 having multiplicity equal to 1 while

the remaining edges have multiplicity 𝑘 − 1. See Figure 4 for example digraphs 𝐺6, 𝐺6,3, and

𝐺′
6,3. From the above definitions, it is easy to see that 𝐺𝑛,2, 𝐺′

𝑛,2, and 𝐺𝑛 are isomorphic, and

𝐺𝑛,𝑘 , 𝐺
′
𝑛,𝑘

∈ G𝑛,𝑘

multi. Further, it can be shown using direct enumeration that

𝐶 (𝐺𝑛,𝑘 ) =

𝑆𝑛−2 + 𝑆𝑛 + 1, if 𝑛 is odd,

𝑆𝑛−2 + 𝑆𝑛, otherwise,
(8)

where 𝑆𝑛 is defined by the recurrence relation 𝑆𝑛 = (𝑘 − 1)𝑆𝑛−1 + 𝑆𝑛−2 with boundary condition

𝑆0 = 1, 𝑆1 = 𝑘 − 1. For any vertex 𝑣 ∈ 𝑉 (𝐺𝑛,𝑘 ), 𝐶 (𝐺𝑛,𝑘 ) can be written as a sum of the number of

cycles passing through 𝑣 and those not passing through 𝑣. In this case, 𝐶 (𝐺𝑛,𝑘 ) −𝐶 (𝐺𝑛,𝑘 , 𝑣) = 𝑆𝑛−2

and the 1 extra cycle contributing to 𝐶 (𝐺𝑛,𝑘 , 𝑣) for odd 𝑛 corresponds to the Hamiltonian cycle

comprised of all edges of multiplicity 1 in 𝐺𝑛,𝑘 . Similarly, one can also show that

𝐶 (𝐺′
𝑛,𝑘 ) =


(𝑘 − 1)𝑇𝑛−2 +𝑇𝑛 + (𝑘 − 1)𝑛, if 𝑛 is odd,

(𝑘 − 1)𝑇𝑛−2 +𝑇𝑛, otherwise,
(9)

where 𝑇𝑛 is defined by the recurrence relation 𝑇𝑛 = 𝑇𝑛−1 + (𝑘 − 1)𝑇𝑛−2 with boundary condition

𝑇0 = 1,𝑇1 = 1.

In Lemma 1, we show that the number of cycles in 𝐺𝑛,𝑘 is greater than or equal to the number of

cycles in 𝐺′
𝑛,𝑘

.

LEMMA 1. For natural numbers 𝑛 ≥ 3, 𝑘 ≥ 2, 𝐶 (𝐺𝑛,𝑘 ) ≥ 𝐶 (𝐺′
𝑛,𝑘

).

Proof. We will show using induction that (𝑘 − 1)𝑇𝑛−2 + 𝑇𝑛 + (𝑘 − 1)𝑛 ≤ 𝑆𝑛−2 + 𝑆𝑛 + 1 for all

𝑛 ≥ 3, thereby implying 𝐶 (𝐺𝑛,𝑘 ) ≥ 𝐶 (𝐺′
𝑛,𝑘

) for each 𝑛 ≥ 3. For simplicity, let 𝐿𝑛 and 𝑅𝑛 denote

the LHS and RHS of the above inequality, respectively. It is easy to check that 𝐿3 = 𝑅3 and
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𝐿4 + 2(𝑘 − 2)2 = 𝑅4. Now, by induction hypothesis, we have 𝐿𝑛−1 ≤ 𝑅𝑛−1 and 𝐿𝑛 ≤ 𝑅𝑛, which

implies (𝑘 − 1)𝐿𝑛 + 𝐿𝑛−1 ≤ (𝑘 − 1)𝑅𝑛 + 𝑅𝑛−1, which when expanded and rearranged yields

(𝑘 − 1) ((𝑘 − 1)𝑇𝑛−2 +𝑇𝑛−3) + ((𝑘 − 1)𝑇𝑛 +𝑇𝑛−1) + (𝑘 − 1)𝑛+1 + (𝑘 − 1)𝑛−1 ≤ 𝑆𝑛−1 + 𝑆𝑛+1 + 𝑘. (10)

Since {𝑇𝑛} is a monotonically increasing sequence, (𝑘 −1)𝑇𝑚 +𝑇𝑚−1 ≥ 𝑇𝑚 + (𝑘 −1)𝑇𝑚−1 =𝑇𝑚+1 for

all 𝑚 ∈N. Using this inequality and (𝑘 − 1)𝑛−1 ≥ 𝑘 − 1 in (10), we obtain

(𝑘 − 1)𝑇𝑛−1 +𝑇𝑛+1 + (𝑘 − 1)𝑛+1 ≤ 𝑆𝑛−1 + 𝑆𝑛+1 + 1.

□

We now compute 𝐶 (𝐺𝑛,𝑘 ). Solving the recurrence relation for 𝑆𝑛 with appropriate boundary

conditions, we obtain

𝑆𝑛 =

(
𝑘−1+

√
(𝑘−1)2+4
2

)𝑛+1
−

(
𝑘−1−

√
(𝑘−1)2+4
2

)𝑛+1

√︁
(𝑘 − 1)2 + 4

,

which when used in (8) yields 𝐶 (𝐺𝑛,𝑘 ) = ⌈𝛼(𝑘)𝑛⌉, where ⌈.⌉ is the ceiling function and

𝛼(𝑘) =
𝑘 − 1+

√︁
(𝑘 − 1)2 + 4
2

. (11)

REMARK 1. The digraph 𝐺𝑛 is an example of a Cayley graph (Meier [43, see Section 1.5])

since 𝐺𝑛 = (𝐺, {(𝑣, 𝑣 + 𝑠) : 𝑣 ∈ 𝐺, 𝑠 ∈ 𝑆}), where 𝐺 = Z/𝑁Z and 𝑆 = {1,2} is a generating set for

𝐺. Cayley graphs are known to be extremal examples for various problems in graph theory.

For 𝑖 ∈ {1,2}, let 𝐻𝑖 be the digraph (𝑉, 𝐸𝑖), where 𝑉 = {𝑣1, 𝑣2, 𝑣3}, 𝐸1 =

{(𝑣2, 𝑣1), (𝑣3, 𝑣1), (𝑣2, 𝑣3),
(𝑣3, 𝑣2)}, and 𝐸2 = {(𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣2, 𝑣3), (𝑣3, 𝑣2)}. See Figure 5 for drawings of 𝐻1 and 𝐻2.

In Lemma 2, we prove a bound on the number of edges that are not in-contractible in a simple

two-regular 𝐻1-free and 𝐻2-free digraph. Furthermore, we characterise the graphs for which this

𝑣1

𝑣2 𝑣3 𝑣1

𝑣2 𝑣3

Figure 5. The digraphs 𝐻1 and 𝐻2 (from left to right).
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bound is achieved. In Lemma 3, we provide an upper bound on the number of cycles for these

characterised graphs. These results are used in the proof of Theorem 7 in the following way: if

the graph has few edges that are not in-contractible, then we contract edges to obtain a recursive

bound on the number of cycles; if the graph has many edges that are not in-contractible, then we

use Lemma 3 to bound the number of cycles.

LEMMA 2. Let 𝐺 be a simple two-regular 𝐻1-free and 𝐻2-free digraph on 𝑛 ≥ 4 vertices. Then,

𝐺 can have at most 𝑛 edges that are not in-contractible. Further, 𝐺 has exactly 𝑛 edges that are not

in-contractible if and only if each connected component of 𝐺 is isomorphic to 𝐺𝑚 for some 𝑚 ≥ 4.

Proof. For any 𝑣 ∈ 𝑉 (𝐺), we have distinct vertices 𝑥, 𝑦 ∈ 𝑉 (𝐺) such that (𝑥, 𝑣), (𝑦, 𝑣) ∈ 𝐸 (𝐺)
since 𝐺 is simple. If the edge (𝑥, 𝑣) is not in-contractible, then (𝑦, 𝑥) ∈ 𝐸 (𝐺). Similarly, if the

edge (𝑦, 𝑣) is not in-contractible, then (𝑥, 𝑦) ∈ 𝐸 (𝐺). Suppose both (𝑥, 𝑣) and (𝑦, 𝑣) are not in-

contractible. Then, the subgraph ({𝑥, 𝑦, 𝑣}, {(𝑥, 𝑣), (𝑦, 𝑣), (𝑥, 𝑦), (𝑦, 𝑥)}) of 𝐺 is isomorphic to 𝐻1,

a contradiction. The sets consisting of incoming edges to a vertex in 𝐺 constitute a uniform 𝑛-

partition of 𝐸 (𝐺). Since at most one edge in each such set is not in-contractible, the digraph 𝐺 can

have at most 𝑛 edges that are not in-contractible.

Now, suppose that 𝐺 has exactly 𝑛 edges that are not in-contractible. Then, for any vertex 𝑣 in

𝐺, exactly one of the two incoming edges to 𝑣 must be in-contractible. Let us pick a vertex 𝑣1 ∈𝐺

with (𝑣2, 𝑣1), (𝑣3, 𝑣1) ∈ 𝐸 (𝐺). Without loss of generality, we may assume that the edge (𝑣2, 𝑣1) is

not in-contractible: that is, (𝑣3, 𝑣2) ∈ 𝐸 (𝐺). The other incoming edge to 𝑣2 cannot originate from

(i) 𝑣1 since otherwise 𝐺 would contain a subgraph isomorphic to 𝐻2, (ii) 𝑣2 since otherwise 𝐺

would contain a self-loop, and (iii) 𝑣3 since otherwise 𝐺 would contain a multi-edge. Therefore, it

originates from a vertex 𝑣4 ∉ {𝑣1, 𝑣2, 𝑣3}. Now, among the incoming edges (𝑣3, 𝑣2) and (𝑣4, 𝑣2) to 𝑣2,

the edge (𝑣4, 𝑣2) must be in-contractible since otherwise (𝑣3, 𝑣4) ∈ 𝐸 (𝐺), which is a contradiction

to the fact that outdegree(𝑣3) = 2. Therefore, the edge (𝑣3, 𝑣2) is not in-contractible and hence

(𝑣4, 𝑣3) ∈ 𝐸 (𝐺). The other incoming edge to 𝑣3 cannot originate from (i) 𝑣2 since otherwise 𝐺

would contain a subgraph isomorphic to 𝐻1, (ii) 𝑣3 since otherwise 𝐺 would contain a self-loop,

and (iii) 𝑣4 since otherwise 𝐺 would contain a multi-edge. Therefore, the other incoming edge to

𝑣3 could either originate from 𝑣1 or a vertex 𝑣5 ∉ {𝑣1, 𝑣2, 𝑣3, 𝑣4}.
In the case where the other incoming edge to 𝑣3 originates from 𝑣1, the edge (𝑣1, 𝑣3) must

be in-contractible since otherwise (𝑣4, 𝑣1) ∈ 𝐸 (𝐺), which is a contradiction to the fact that

outdegree(𝑣4) = 2. Therefore, the edge (𝑣4, 𝑣3) is not in-contractible and hence (𝑣1, 𝑣4) ∈ 𝐸 (𝐺).
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Finally, (𝑣2, 𝑣4) ∈ 𝐸 (𝐺) since one incoming edge to 𝑣4 must not be in-contractible, yielding a

connected component 𝐺4 of 𝐺.

In the case where the other incoming edge to 𝑣3 originates from a vertex 𝑣5 ∉ {𝑣1, 𝑣2, 𝑣3, 𝑣4},

we have (𝑣5, 𝑣4) ∈ 𝐸 (𝐺). Now, the other incoming edge to 𝑣4 could either originate from 𝑣1, 𝑣2

or a vertex 𝑣6 ∉ {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} since the outdegree of 𝑣3, 𝑣4, and 𝑣5 is already satisfied. It

cannot originate from 𝑣2 since both incoming edges to 𝑣4 would otherwise be in-contractible.

If it originates from 𝑣1, we get a connected component 𝐺5 of 𝐺. If it originates from a vertex

𝑣6 ∉ {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, we continue in a similar way until we get a connected component 𝐺𝑚 of 𝐺

for some 𝑚 > 5.

Conversely, suppose each connected component of 𝐺 is isomorphic to 𝐺𝑚 for some 𝑚 ≥ 4. Then,

within a connected component 𝐺𝑚, it is easy to check that the 𝑚 edges (𝑣𝑖, 𝑣 𝑗 ) with 𝑗 − 𝑖 ≡ 1 mod 𝑚

are not in-contractible while the 𝑚 edges with 𝑗 − 𝑖 ≡ 2 mod 𝑚 are in-contractible. Summing over

the connected components of 𝐺, we get exactly 𝑛 edges that are not in-contractible in 𝐺. □

REMARK 2. Under the same hypothesis as Lemma 2, one can prove the following analogous

symmetric result (although we require only one of these results): 𝐺 can have at most 𝑛 edges that

are not out-contractible. Further, 𝐺 has exactly 𝑛 edges that are not out-contractible if and only if

each connected component of 𝐺 is isomorphic to 𝐺𝑚 for some 𝑚 ≥ 4.

LEMMA 3. Let 𝐺 be a digraph with 𝑛 ≥ 4 vertices, each of whose connected components is

𝐺𝑚,𝑘 or 𝐺′
𝑚,𝑘

for some 𝑚 ≥ 4. Then, 𝐶 (𝐺) ≤ (𝑘 − 1)𝐹𝑘 (𝑛− 1) + 𝐹𝑘 (𝑛− 2).

Proof. For any natural number 𝑚 ≥ 3, we have 𝐶 (𝐺𝑚,𝑘 ) ≤ 𝐹𝑘 (𝑚) since 𝐺𝑚,𝑘 ∈ G𝑚,𝑘

multi. Using

(8) in this inequality, we obtain 𝑆𝑚−2 + 𝑆𝑚 +1 ≤ (𝑘 −1)𝐹𝑘 (𝑚−1) +𝐹𝑘 (𝑚−2). For natural numbers

𝑝, 𝑞 ≥ 3, we have

𝐶 (𝐺 𝑝,𝑘 ) +𝐶 (𝐺𝑞,𝑘 ) ≤ (𝑆𝑝−2 + 𝑆𝑝 + 1) + (𝑆𝑞−2 + 𝑆𝑞 + 1)

= (𝑆𝑝−2 + (𝑆𝑞−2 + 1)) + (𝑆𝑝 + (𝑆𝑞 + 1))

≤ (𝑆𝑝+𝑞−3 + 𝑆𝑝+𝑞−4) + (𝑆𝑝+𝑞−1 + 𝑆𝑝+𝑞−2)

≤ 𝑆𝑝+𝑞−2 + 𝑆𝑝+𝑞

≤ 𝐶 (𝐺 𝑝+𝑞,𝑘 ).
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Now, we have 𝐶 (𝐺) = ∑𝑙
𝑖=1𝐶 (𝐺𝑖), where 𝐺𝑖 is the 𝑖-th connected component of 𝐺 and 𝑙 is

the number of connected components in 𝐺. Let 𝑚𝑖 = |𝑉 (𝐺𝑖) |, so that
∑𝑙

𝑖=1 𝑚𝑖 = 𝑛. Using the

subadditivity of the function 𝐶 (𝐺 .,𝑘 ) and the fact that 𝐶 (𝐺′
𝑚,𝑘

) ≤ 𝐶 (𝐺𝑚,𝑘 ) for all 𝑚 ≥ 3, we get

𝐶 (𝐺) =
𝑙∑︁

𝑖=1
𝐶 (𝐺𝑖)

≤
𝑙∑︁

𝑖=1
𝐶 (𝐺𝑚𝑖 ,𝑘 )

≤ 𝐶 (𝐺∑𝑙
𝑖=1 𝑚𝑖 ,𝑘

)

=𝐶 (𝐺𝑛,𝑘 )

≤ 𝑆𝑛−2 + 𝑆𝑛 + 1

≤ (𝑘 − 1)𝐹𝑘 (𝑛− 1) + 𝐹𝑘 (𝑛− 2).

□

We now prove the main result of this section, an asymptotically tight formula for 𝐹𝑘 (𝑛). The

proof proceeds by reducing the digraph into smaller digraphs belonging to the same family to obtain

several non-homogeneous linear recursive bounds of order up to 3 based on a case analysis, and

finally combining all these bounds to obtain the final result.

THEOREM 7. For 𝑘 ≥ 2,

𝐹𝑘 (𝑛) =Θ(𝛼(𝑘)𝑛)

as 𝑛→∞, where 𝛼(𝑘) is as defined in (11). In particular, 𝐹2(𝑛) =Θ(Fib(𝑛)), where Fib(𝑚) denotes

the 𝑚-th Fibonacci number.

Proof. We begin by making a few elementary observations about the function 𝐹𝑘 . Clearly,

𝐹𝑘 (0) = 0, 𝐹𝑘 (1) = 𝑘 , and 𝐹𝑘 (2) = max({2𝑘, (𝑘 − 1)2 + 2}), corresponding to the empty digraph,

the digraph with a single vertex having a self-loop of multiplicity 𝑘 , and the digraph with 2 vertices,

each having a self-loop of multiplicity 𝑘 or each having a self-loop of multiplicity 1 along with an

edge of multiplicity 𝑘 − 1 to the other vertex, respectively. For 𝑛 ∈ N, let 𝐺∗ ∈ G𝑛−1,𝑘
multi be such that

𝐶 (𝐺∗) = 𝐹𝑘 (𝑛−1) (such a digraph exists since G𝑛−1,𝑘
multi is finite) and let 𝐺 be the digraph obtained by

adding a single vertex with a self-loop of multiplicity 𝑘 to 𝐺∗. Then, 𝐹𝑘 (𝑛) ≥ 𝐶 (𝐺) =𝐶 (𝐺∗) + 𝑘 =
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𝐹𝑘 (𝑛− 1) + 𝑘 . In particular, 𝐹𝑘 (𝑛) ≥ 𝑘 for all 𝑛 ∈N. Since we have already computed the values of

𝐹𝑘 (𝑛) for 𝑛 ∈ {0,1,2}, we shall henceforth assume that 𝑛 ≥ 3.

Let 𝐺 ∈ G𝑛,𝑘

multi. In the next three paragraphs of this proof, we argue that one may assume without

loss of generality certain restrictions on the structure of 𝐺 without reducing the number of cycles

or 𝐶 (𝐺) ≤ (𝑘 − 1)𝐹𝑘 (𝑛− 1) + 𝐹𝑘 (𝑛− 2).
Suppose that 𝐺 contains a vertex 𝑣 with a self-loop of multiplicity 𝑘 . Then 𝐶 (𝐺) =𝐶 (𝐺 [𝑉 (𝐺) \

{𝑣}]) + 𝑘 ≤ 𝐹𝑘 (𝑛 − 1) + 𝑘 ≤ (𝑘 − 1)𝐹𝑘 (𝑛 − 1) + 𝐹𝑘 (𝑛 − 2). Note that the digraph 𝐺 [𝑉 (𝐺) \ {𝑣}]
might not necessarily be in G𝑛−1,𝑘

multi . However, one can add a self-loop of sufficient multiplicity to

each vertex of 𝐺 [𝑉 (𝐺) \ {𝑣}] to obtain a digraph 𝐺′ ∈ G𝑛−1,𝑘
multi so that 𝐶 (𝐺) ≤ 𝐶 (𝐺′) ≤ 𝐹𝑘 (𝑛− 1).

Henceforth, we shall assume that each vertex in 𝐺 has at least one outgoing edge, which is

not a self-loop. Note that for any vertex 𝑣 ∈ 𝑉 (𝐺), 𝐶 (𝐺) is equal to the sum of the number of

cycles passing through the vertex 𝑣 and those not passing through 𝑣. Let 𝑒1, 𝑒2, . . . , 𝑒𝑘 be the

outgoing simple edges from 𝑣 (some of these edges might have the same end points since 𝐺 is a

multigraph). Then, the number of cycles passing through 𝑣 is equal to the sum of the number of

cycles passing through each of these edges. Now, there exists a permutation 𝜎 ∈ Sym(𝑘) such that

𝐶 (𝐺, 𝑒𝜎(1)) ≥ 𝐶 (𝐺, 𝑒𝜎(2)) ≥ · · · ≥ 𝐶 (𝐺, 𝑒𝜎(𝑘)) and the end points of 𝑒𝜎(1) are not the same as the

end points of 𝑒𝜎(𝑘) (it is possible to satisfy the latter condition since 𝐺 does not contain edges of

multiplicity 𝑘 connecting distinct vertices). In such a case, we can construct a digraph 𝐺∗ from 𝐺

by deleting 𝑒𝜎(2) , . . . , 𝑒𝜎(𝑘−1) and adding (𝑘 − 2) copies of 𝑒𝜎(1) . The resulting digraph 𝐺∗ has the

property 𝐶 (𝐺∗) ≥ 𝐶 (𝐺) and that the vertex 𝑣 in 𝐺∗ has two outgoing edges, one with multiplicity

1 and the other with 𝑘 − 1. Applying this operation successively to every vertex in the digraph,

we obtain a digraph 𝐺′ with 𝐶 (𝐺) ≤ 𝐶 (𝐺′), which also has the property that every vertex in 𝐺′

has two outgoing edges, one with multiplicity 1 and the other with 𝑘 − 1. Further, for any vertex

𝑣 ∈ 𝑉 (𝐺′), the number of cycles in 𝐺′ passing through the outgoing edge of multiplicity 𝑘 − 1

from 𝑣 is greater than (𝑘 − 1) times the number of cycles passing through the outgoing edge of

multiplicity 1 from 𝑣. Therefore, we may assume without loss of generality (renaming 𝐺′ to 𝐺) that

each vertex in Skel(𝐺) has outdegree 2 (one of these outgoing edges has multiplicity 𝑘 − 1 and the

other has multiplicity 1 in 𝐺).

If Skel(𝐺) contains a vertex 𝑣 with a self-loop but no other incoming edge, we have 𝐶 (𝐺) ≤
𝐶 (𝐺 [𝑉 (𝐺) \ {𝑣}]) + 𝑘 − 1 ≤ 𝐹𝑘 (𝑛− 1) + 𝑘 − 1 ≤ (𝑘 − 1)𝐹𝑘 (𝑛− 1) + 𝐹𝑘 (𝑛− 2). If Skel(𝐺) contains

an indegree 2 vertex 𝑣 with a self-loop and the other incoming edge (𝑢, 𝑣) participating in a 2-

cycle, we have 𝐶 (𝐺) ≤ 𝐶 (𝐺 [𝑉 (𝐺) \ {𝑣}]) + (𝑘 − 1)2 + 1 ≤ 𝐹𝑘 (𝑛 − 1) + (𝑘 − 1)𝑘 ≤ 𝐹𝑘 (𝑛 − 1) +
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(𝑘 − 1)𝐹𝑘 (𝑛 − 2) ≤ (𝑘 − 1)𝐹𝑘 (𝑛 − 1) + 𝐹𝑘 (𝑛 − 2). Finally, we consider the case where each vertex

with a self-loop in Skel(𝐺) has an incoming edge other than the self-loop not participating in

a 2-cycle. For any such vertex 𝑣 and an incoming edge (𝑢, 𝑣) not participating in a 2-cycle, the

digraph 𝐺′ formed by deleting the self-loop on 𝑣 from 𝐺 and adding the edge (𝑣, 𝑢) with the same

multiplicity as the self-loop, has at least as many cycles as the original digraph 𝐺. We repeatedly

apply this operation to the digraph 𝐺 until no self-loops remain to obtain a digraph 𝐺′ satisfying

𝐶 (𝐺) ≤ 𝐶 (𝐺′). Therefore, we may assume without loss of generality (renaming 𝐺′ to 𝐺) that 𝐺

contains no self-loops.

We now consider the following mutually exclusive exhaustive set of cases:

Case 1. There is a vertex 𝑣 ∈ Skel(𝐺) with indegree(𝑣) = 0. In this case, we have 𝐶 (𝐺) =

𝐶 (𝐺 [𝑉 (𝐺) \ {𝑣}]) ≤ 𝐹𝑘 (𝑛− 1) ≤ (𝑘 − 1)𝐹𝑘 (𝑛− 1) + 𝐹𝑘 (𝑛− 2) since none of the cycles in 𝐺 pass

through 𝑣.

Case 2. There is a vertex 𝑣 ∈ Skel(𝐺) with indegree(𝑣) = 1. Let (𝑢, 𝑣) be the unique incoming

edge incident to 𝑣 in 𝐺. Let (𝑢, 𝑤) be the other outgoing edge from 𝑢 in 𝐺. The number of cycles

passing through (𝑢, 𝑤) in 𝐺 is bounded above by the number of cycles in the digraph obtained by

deleting the vertex 𝑣 and the incoming edges to 𝑤 other than the edge (𝑢, 𝑤), and contracting the

edge (𝑢, 𝑤), which is less than or equal to mult(𝑢, 𝑤)𝐹𝑘 (𝑛−2). Similarly, the number of cycles not

passing through (𝑢, 𝑤) in 𝐺 is equal to the number of cycles in the digraph obtained by deleting the

edge (𝑢, 𝑤) from 𝐺 and contracting the edge (𝑢, 𝑣), which is bounded above by mult(𝑢, 𝑣)𝐹𝑘 (𝑛−1).

Therefore, we obtain 𝐹𝑘 (𝑛) ≤ max({(𝑘 −1)𝐹𝑘 (𝑛−1) +𝐹𝑘 (𝑛−2), (𝑘 −1)𝐹𝑘 (𝑛−2) +𝐹𝑘 (𝑛−1)}) =

(𝑘 − 1)𝐹𝑘 (𝑛− 1) + 𝐹𝑘 (𝑛− 2).

Case 3. All vertices in Skel(𝐺) have indegree equal to 2: that is, Skel(𝐺) is 2-regular.

Case 3.1. Suppose that 𝑘 ≥ 3. We consider the case when 𝐺 contains a vertex 𝑣, both of whose

incoming edges (𝑎, 𝑣) and (𝑏, 𝑣) have multiplicity 1. We shall assume without loss of general-

ity that 𝐶 (𝐺, (𝑏, 𝑣)) ≥ 𝐶 (𝐺, (𝑎, 𝑣)). Let (𝑏, 𝑤) be the other outgoing edge from 𝑏 in 𝐺. Then,

𝐶 (𝐺, (𝑏, 𝑤)) ≥ (𝑘 − 1)𝐶 (𝐺, (𝑏, 𝑣)). Further, we have

𝐶 (𝐺, 𝑣) =𝐶 (𝐺, (𝑎, 𝑣)) +𝐶 (𝐺, (𝑏, 𝑣)) ≤ 2𝐶 (𝐺, (𝑏, 𝑣)),
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and

𝐶 (𝐺) ≥ 𝐶 (𝐺, 𝑏) =𝐶 (𝐺, (𝑏, 𝑣)) +𝐶 (𝐺, (𝑏, 𝑤)) ≥ 𝑘𝐶 (𝐺, (𝑏, 𝑣)).

Combining the above inequalities, we obtain 𝐶 (𝐺, 𝑣) ≤ 2𝐶 (𝐺)/𝑘 , which further implies 𝐶 (𝐺) ≤

𝑘𝐶 (𝐺 [𝑉 (𝐺) \ {𝑣}])/(𝑘 − 2) ≤ 𝑘𝐹𝑘 (𝑛 − 1)/(𝑘 − 2). For 𝑘 ≥ 4, we have 𝑘/(𝑘 − 2) ≤ 𝑘 − 1, which

implies 𝐶 (𝐺) ≤ (𝑘 −1)𝐹𝑘 (𝑛−1). Now, we shall focus on the case 𝑘 = 3. Let (𝑣, 𝑦) and (𝑣, 𝑧) be the

outgoing edges from 𝑣 in 𝐺 with multiplicities 1 and 2, respectively. For 𝑣1 ∈ {𝑎, 𝑏} and 𝑣2 ∈ {𝑦, 𝑧},

we define 𝑥𝑣1,𝑣2 to be the fraction of cycles in 𝐺 passing through the path 𝑣1 → 𝑣→ 𝑣2; that is,

𝑥𝑣1,𝑣2 =𝐶 (𝐺, {(𝑣1, 𝑣), (𝑣, 𝑣2)})/𝐶 (𝐺).

Let 𝒙 = [𝑥𝑎,𝑦 𝑥𝑎,𝑧 𝑥𝑏,𝑦 𝑥𝑏,𝑧]𝑇 . We consider the following mutually exclusive exhaustive set of cases.

Case 3.1.1. We first consider the case when (𝑎, 𝑧), (𝑏, 𝑧) ∉ 𝐸 (𝐺). Let 𝐺′ be the digraph obtained by

adding the edges (𝑎, 𝑧) and (𝑏, 𝑧) with multiplicity 1 to the digraph 𝐺 [𝑉 (𝐺) \ {𝑣}]. Then, we have

𝐶 (𝐺′) =𝐶 (𝐺 [𝑉 (𝐺) \ {𝑣}) +𝐶 (𝐺′, (𝑎, 𝑧)) +𝐶 (𝐺′, (𝑏, 𝑧))

=𝐶 (𝐺) −𝐶 (𝐺, 𝑣) +𝐶 (𝐺, {(𝑎, 𝑣), (𝑣, 𝑧)})/2+𝐶 (𝐺, {(𝑏, 𝑣), (𝑣, 𝑧)})/2

≥ 𝐶 (𝐺) −𝐶 (𝐺, 𝑣) +𝐶 (𝐺, 𝑣)/3

≥ 𝐶 (𝐺) − 4𝐶 (𝐺)/9

= 5𝐶 (𝐺)/9.

Now, since 𝐶 (𝐺′) ≤ 𝐹3(𝑛− 1), we obtain 𝐶 (𝐺) ≤ 9𝐹3(𝑛− 1)/5.

Case 3.1.2. We now consider the case when (𝑎, 𝑧) ∈ 𝐸 (𝐺) with multiplicity 2. Let 𝐺′ be the digraph

obtained by adding the edges (𝑏, 𝑧) and (𝑎, 𝑦) with multiplicity 1 to the digraph 𝐺 [𝑉 (𝐺) \ {𝑣}].

Then, we have
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ATTENTION: The following displayed equation, in its current form, exceeds the column width that
will be used in the published edition of your article. Please break or rewrite this equation to
fit, including the equation number, within a column width of 470 pt / 165.81 mm / 6.53 in (the
width of this red box).

𝐶 (𝐺′) =𝐶 (𝐺 [𝑉 (𝐺) \ {𝑣}) +𝐶 (𝐺′, {(𝑏, 𝑧), (𝑎, 𝑦)}) +𝐶 (𝐺′ \ (𝑎, 𝑦), (𝑏, 𝑧)) +𝐶 (𝐺′ \ (𝑏, 𝑧), (𝑎, 𝑦))

≥ 𝐶 (𝐺) −𝐶 (𝐺, 𝑣) + 𝑥𝑏,𝑧𝐶 (𝐺)/2+ 𝑥𝑎,𝑦𝐶 (𝐺)

=𝐶 (𝐺) (1− 𝑥𝑎,𝑧 − 𝑥𝑏,𝑦 − 𝑥𝑏,𝑧/2). (12)

Further, we have

(𝑥𝑎,𝑦 + 𝑥𝑎,𝑧)𝐶 (𝐺) =𝐶 (𝐺, (𝑎, 𝑣)) ≤ 𝐶 (𝐺, (𝑏, 𝑣)) = (𝑥𝑏,𝑦 + 𝑥𝑏,𝑧)𝐶 (𝐺),

2(𝑥𝑎,𝑦 + 𝑥𝑏,𝑦)𝐶 (𝐺) = 2𝐶 (𝐺, (𝑣, 𝑦)) ≤ 𝐶 (𝐺, (𝑣, 𝑧)) = (𝑥𝑎,𝑧 + 𝑥𝑏,𝑧)𝐶 (𝐺),

3(𝑥𝑏,𝑦 + 𝑥𝑏,𝑧) = 3𝐶 (𝐺, (𝑏, 𝑣)) ≤ 𝐶 (𝐺),

(𝑥𝑎,𝑧 + 𝑥𝑏,𝑧)𝐶 (𝐺) + 2(𝑥𝑎,𝑦 + 𝑥𝑎,𝑧)𝐶 (𝐺) ≤ 𝐶 (𝐺, (𝑣, 𝑧)) +𝐶 (𝐺, (𝑎, 𝑧)) =𝐶 (𝐺, 𝑧) ≤ 𝐶 (𝐺).

Minimizing the function 𝜑(𝒙) = −𝑥𝑎,𝑧 − 𝑥𝑏,𝑦 − 𝑥𝑏,𝑧/2 subject to the above constraints along with the

constraint 𝒙 ∈ [0,1]4, we obtain 𝜑(𝒙) ≥ −9/16, which when used in (12) yields𝐶 (𝐺′) ≥ 7𝐶 (𝐺)/16.

Therefore, 𝐶 (𝐺) ≤ 16𝐹3(𝑛− 1)/7.

Case 3.1.3. We now consider the case when (𝑏, 𝑧) ∈ 𝐸 (𝐺) with multiplicity 2. Let 𝐺′ be the digraph

obtained by adding the edges (𝑎, 𝑧) and (𝑏, 𝑦) with multiplicity 1 to the digraph 𝐺 [𝑉 (𝐺) \ {𝑣}].
Then, we have
ATTENTION: The following displayed equation, in its current form, exceeds the column width that
will be used in the published edition of your article. Please break or rewrite this equation to
fit, including the equation number, within a column width of 470 pt / 165.81 mm / 6.53 in (the
width of this red box).

𝐶 (𝐺′) =𝐶 (𝐺 [𝑉 (𝐺) \ {𝑣}) +𝐶 (𝐺′, {(𝑎, 𝑧), (𝑏, 𝑦)}) +𝐶 (𝐺′ \ (𝑏, 𝑦), (𝑎, 𝑧)) +𝐶 (𝐺′ \ (𝑎, 𝑧), (𝑏, 𝑦))

≥ 𝐶 (𝐺) −𝐶 (𝐺, 𝑣) + 𝑥𝑎,𝑧𝐶 (𝐺)/2+ 𝑥𝑏,𝑦𝐶 (𝐺)

=𝐶 (𝐺) (1− 𝑥𝑎,𝑦 − 𝑥𝑎,𝑧/2− 𝑥𝑏,𝑧). (13)
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Similar to the previous case, we have

(𝑥𝑎,𝑦 + 𝑥𝑎,𝑧)𝐶 (𝐺) =𝐶 (𝐺, (𝑎, 𝑣)) ≤ 𝐶 (𝐺, (𝑏, 𝑣)) = (𝑥𝑏,𝑦 + 𝑥𝑏,𝑧)𝐶 (𝐺),

2(𝑥𝑎,𝑦 + 𝑥𝑏,𝑦)𝐶 (𝐺) = 2𝐶 (𝐺, (𝑣, 𝑦)) ≤ 𝐶 (𝐺, (𝑣, 𝑧)) = (𝑥𝑎,𝑧 + 𝑥𝑏,𝑧)𝐶 (𝐺),

3(𝑥𝑏,𝑦 + 𝑥𝑏,𝑧) = 3𝐶 (𝐺, (𝑏, 𝑣)) ≤ 𝐶 (𝐺),

(𝑥𝑎,𝑧 + 𝑥𝑏,𝑧)𝐶 (𝐺) + 2(𝑥𝑏,𝑦 + 𝑥𝑏,𝑧)𝐶 (𝐺) ≤ 𝐶 (𝐺, (𝑣, 𝑧)) +𝐶 (𝐺, (𝑏, 𝑧)) =𝐶 (𝐺, 𝑧) ≤ 𝐶 (𝐺).

Minimizing the function 𝜑(𝒙) = −𝑥𝑎,𝑦 − 𝑥𝑎,𝑧/2 − 𝑥𝑏,𝑧 subject to the above constraints along with

the constraint 𝒙 ∈ [0,1]4, we obtain 𝜑(𝒙) ≥ −11/20, which when used in (13) yields 𝐶 (𝐺′) ≥
9𝐶 (𝐺)/20. Therefore, 𝐶 (𝐺) ≤ 20𝐹3(𝑛− 1)/9.

We shall henceforth assume that each vertex of 𝐺 has one incoming edge with multiplicity 𝑘 − 1

and the other with multiplicity 1.

Case 3.2. We consider the case in which Skel(𝐺) contains a subgraph isomorphic to 𝐻1 and/or

𝐻2. As shown in Figure 6, we consider the following mutually disjoint exhaustive set of cases:

Case 3.2.1. 𝐺 contains distinct vertices 𝑣, 𝑎, and 𝑏 such that

(𝑣, 𝑎), (𝑣, 𝑏), (𝑎, 𝑏), (𝑏, 𝑎), (𝑎, 𝑣), (𝑏, 𝑣) ∈ 𝐸 (𝐺). In this case, we have 𝐶 (𝐺) = 𝐶 (𝐺 [𝑉 (𝐺) −
{𝑎, 𝑏, 𝑣}]) + (𝑘 − 1)3 + 3(𝑘 − 1) + 1 ≤ 𝐹𝑘 (𝑛− 3) + (𝑘 − 1)3 + 3(𝑘 − 1) + 1.

Case 3.2.2. 𝐺 contains distinct vertices 𝑢, 𝑣, 𝑎, and 𝑏 such that

(𝑢, 𝑎), (𝑢, 𝑏), (𝑎, 𝑏), (𝑏, 𝑎), (𝑎, 𝑣), (𝑏, 𝑣) ∈ 𝐸 (𝐺). In this case, we have 𝐶 (𝐺) ≤ ((𝑘 − 1)3 + 2(𝑘 −
1) + 1)𝐶 (𝐺′) + (𝑘 − 1) ≤ ((𝑘 − 1)3 + 2(𝑘 − 1) + 1)𝐹𝑘 (𝑛 − 3) + (𝑘 − 1), where 𝐺′ is the digraph

obtained by merging the vertices 𝑢, 𝑣, 𝑎 and 𝑏 in 𝐺.

Case 3.2.3. 𝐺 contains distinct vertices 𝑢, 𝑎, and 𝑏 such that (𝑢, 𝑎), (𝑢, 𝑏), (𝑎, 𝑏), (𝑏, 𝑎) ∈ 𝐸 (𝐺)
but there does not exist any vertex 𝑣 such that (𝑎, 𝑣), (𝑏, 𝑣) ∈ 𝐸 (𝐺). In this case, we get

𝐶 (𝐺) ≤ ((𝑘 − 1)2 + 1)𝐶 (𝐺′) + (𝑘 − 1) ≤ ((𝑘 − 1)2 + 1)𝐹𝑘 (𝑛− 2) + (𝑘 − 1), where 𝐺′ is the digraph
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𝑢

𝑎
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Figure 6. The cases 3.2.1, 3.2.2, 3.2.3, and 3.2.4 (from left to right).
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obtained by merging the vertices 𝑎, 𝑏 and 𝑢 in 𝐺.

Case 3.2.4. 𝐺 contains distinct vertices 𝑣, 𝑎, and 𝑏 such that (𝑎, 𝑣), (𝑏, 𝑣), (𝑎, 𝑏), (𝑏, 𝑎) ∈ 𝐸 (𝐺)

but there does not exist any vertex 𝑢 such that (𝑢, 𝑎), (𝑢, 𝑏) ∈ 𝐸 (𝐺). In this case, we get

𝐶 (𝐺) ≤ ((𝑘 − 1)2 + 1)𝐶 (𝐺′) + (𝑘 − 1) ≤ ((𝑘 − 1)2 + 1)𝐹𝑘 (𝑛− 2) + (𝑘 − 1), where 𝐺′ is the digraph

obtained by merging the vertices 𝑎, 𝑏 and 𝑣 in 𝐺.

Case 3.3. We now consider the case when Skel(𝐺) is 𝐻1-free and 𝐻2-free. For any vertex

𝑣 ∈𝑉 (Skel(𝐺)), let us define 𝐸𝑣 = {(𝑥, 𝑦) : (𝑥, 𝑣) ∈ 𝐸 (Skel(𝐺)), (𝑥, 𝑦) ∈ 𝐸 (Skel(𝐺)), 𝑣 ≠ 𝑦}. Note

that |𝐸𝑣 | = 2 and 𝐸𝑣 ∩ 𝐸𝑢 = ∅ for any two distinct vertices 𝑢, 𝑣 ∈ 𝑉 (Skel(𝐺)). Therefore, the sets

𝐸𝑣 form a uniform 𝑛-partition of 𝐸 (Skel(𝐺)).

Case 3.3.1. If Skel(𝐺) contains exactly 𝑛 edges that are not in-contractible, then by Lemma 2, each

connected component of Skel(𝐺) must be isomorphic to 𝐺𝑚 for some 𝑚 ≥ 4. Now, it is easy to

check that 𝐺𝑚,𝑘 and 𝐺′
𝑚,𝑘

are the only digraphs whose skeleton is isomorphic to 𝐺𝑚 with each ver-

tex in the digraph incident to two incoming (outgoing) edges, one with multiplicity 1 and the other

with multiplicity 𝑘 − 1. Therefore, each connected component of 𝐺 is isomorphic to one of 𝐺𝑚,𝑘

and 𝐺′
𝑚,𝑘

for some 𝑚 ≥ 4. Finally, from Lemma 3, we have 𝐶 (𝐺) ≤ (𝑘 − 1)𝐹𝑘 (𝑛− 1) + 𝐹𝑘 (𝑛− 2).

Case 3.3.2. If Skel(𝐺) contains strictly less than 𝑛 edges that are not in-contractible, then we can

find a vertex 𝑥 ∈𝑉 (Skel(𝐺)) such that both edges in 𝐸𝑥 are in-contractible. Let (𝑣, 𝑥) and (𝑤, 𝑥) be

the incoming edges to 𝑥 in 𝐺. Let us assume that (𝑣, 𝑦) and (𝑤, 𝑧) are the other outgoing edges from

𝑣 and 𝑤, respectively. Without loss of generality, we may assume that (𝑣, 𝑥) has multiplicity 1 in 𝐺.

The number of cycles not passing through (𝑣, 𝑥) in 𝐺 is less than or equal to (𝑘 − 1)𝐶 (𝐺′), where

𝐺′ is the digraph obtained from 𝐺 by deleting the edge (𝑣, 𝑥) followed by contracting the edge

(𝑣, 𝑦). The number of cycles passing through (𝑣, 𝑥) in 𝐺 is equal to the number of cycles passing

through 𝑣 in the digraph 𝐺′′ formed by deleting the edges (𝑣, 𝑦) and (𝑤, 𝑥) from 𝐺, which is further

less than or equal to 𝐶 (𝐺′′′), where 𝐺′′′ is the digraph obtained by contracting the edges (𝑤, 𝑧)

and (𝑣, 𝑥) in 𝐺′. Thus, we obtain 𝐶 (𝐺) ≤ (𝑘 − 1)𝐶 (𝐺′) +𝐶 (𝐺′′′) ≤ (𝑘 − 1)𝐹𝑘 (𝑛− 1) + 𝐹𝑘 (𝑛− 2).

Combining all the recurrent upper bounds obtained through the proof, we obtain
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ATTENTION: The following displayed equation, in its current form, exceeds the column width that
will be used in the published edition of your article. Please break or rewrite this equation to
fit, including the equation number, within a column width of 470 pt / 165.81 mm / 6.53 in (the
width of this red box).

𝐹𝑘 (𝑛) ≤ max({(𝑘 − 1)𝐹𝑘 (𝑛− 1) + 𝐹𝑘 (𝑛− 2), ((𝑘 − 1)2 + 1)𝐹𝑘 (𝑛− 2) + (𝑘 − 1),

((𝑘 − 1)3 + 2(𝑘 − 1) + 1)𝐹𝑘 (𝑛− 3) + (𝑘 − 1), 𝐹𝑘 (𝑛− 3) + (𝑘 − 1)3 + 3(𝑘 − 1) + 1})

for 𝑘 ≥ 2, 𝑘 ≠ 3. Now, we will show that 𝐹𝑘 (𝑛) ≤ 5𝛼(𝑘)𝑛, where 𝛼(𝑘) is as defined in (11). Using

the expressions for 𝐹𝑘 (0), 𝐹𝑘 (1) and 𝐹𝑘 (2) from the beginning of this proof, it is easy to check that

𝐹𝑘 (𝑛) ≤ 5𝛼(𝑘)𝑛 for 𝑛 = 0,1,2. Now, assuming that the result holds for all natural numbers up to

𝑛− 1, we have

(𝑘 − 1)𝐹𝑘 (𝑛− 1) + 𝐹𝑘 (𝑛− 2) ≤ 5(𝑘 − 1)𝛼(𝑘)𝑛−1 + 5𝛼(𝑘)𝑛−2 = 5𝛼(𝑘)𝑛.

Further, it is easy to check that if the inequality

((𝑘 − 1)2 + 1)5𝛼(𝑘)𝑛−2 + (𝑘 − 1) ≤ 5𝛼(𝑘)𝑛

holds for 𝑛 = 3, then it holds for all 𝑛 ≥ 3 since 𝛼(𝑘) ≥ 1. And it is also easy to verify that the result

indeed holds for 𝑛 = 3. Therefore, we have

((𝑘 − 1)2 + 1)𝐹𝑘 (𝑛− 2) + (𝑘 − 1) ≤ ((𝑘 − 1)2 + 1)5𝛼(𝑘)𝑛−2 + (𝑘 − 1) ≤ 5𝛼(𝑘)𝑛

for all 𝑛 ≥ 3. Similar results can be shown for 𝐹𝑘 (𝑛) ≤ ((𝑘 − 1)3 + 2(𝑘 − 1) + 1)𝐹𝑘 (𝑛− 3) + (𝑘 − 1)
and 𝐹𝑘 (𝑛) ≤ 𝐹𝑘 (𝑛− 3) + (𝑘 − 1)3 + 3(𝑘 − 1) + 1. Hence, we obtain the result 𝐹𝑘 (𝑛) ≤ 5𝛼(𝑘)𝑛 for all

non-negative integers 𝑛 and 𝑘 with 𝑘 ≥ 2, 𝑘 ≠ 3. Recall that for 𝑘 = 3, we have the extra inequality

𝐹3(𝑛) ≤ 16𝐹3(𝑛−1)/7. But since 16𝛼(3)𝑛−1/7 ≤ 𝛼(3)𝑛, the result holds for 𝑘 = 3 as well. Note that

the constant 5 in this result can be improved; however, we do not concern ourselves with finding

the best possible constant. Finally, since 𝐹𝑘 (𝑛) ≥ 𝐶 (𝐺𝑛,𝑘 ) ≥ 𝛼(𝑘)𝑛, we obtain 𝐹𝑘 (𝑛) = Θ(𝛼(𝑘)𝑛).
The constant 𝛼(2) = (1 +

√
5)/2 is the golden ratio and hence 𝐹2(𝑛) = Θ(Fib(𝑛)), where Fib(𝑛) is

the 𝑛-th Fibonacci number. □

REMARK 3. It is possible to show that 𝐹𝑘 (𝑛) ≤ (𝑘 − 2 + 61/3)𝑛 using the star bound

(Soules [54]), a generalization of Brègman’s theorem. However, this bound is exponentially weaker

than the one we have proved in Theorem 7, which is tight up to a known constant.
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4. Bounds for Policy Iteration on Deterministic MDPs. We begin with the formal

definition of a DMDP and then discuss the structure of the policy space for DMDPs.

DEFINITION 13. A DMDP is an MDP (𝑆, 𝐴,𝑇, 𝑅, 𝛾) with a deterministic transition function:

that is, the codomain of 𝑇 is {0,1}.
A DMDP 𝑀 can be viewed as a directed multigraph 𝐺𝑀 with 𝑆 as the set of vertices, which

contains an edge corresponding to each state-action pair. Further, a policy 𝜋 ∈ Π𝑀 can be viewed

as a digraph 𝐺𝜋 in which each vertex has outdegree one. Such digraphs are known as functional

graphs since they correspond to functions defined on the set of vertices. A functional graph is a

union of its connected components, each containing a single cycle and paths leading into the cycle.

See Figure 7 for an example. Post and Ye’s [48] analysis suggests that the value function of any

policy is primarily dictated by the cycles present in the corresponding digraph. We now describe

an alternative, slightly different way to view policies for DMDPs.

DEFINITION 14. A digraph isomorphic to 𝐺 = ({𝑣1, . . . , 𝑣𝑛}, {(𝑣𝑖, 𝑣𝑖+1) : 1 ≤ 𝑖 < 𝑛} ∪
{(𝑣𝑛, 𝑣𝑚)}) for some 𝑚, 𝑛 ∈N with 𝑚 ≤ 𝑛 is called a path-cycle.

Let 𝑀 be a DMDP with its set of states 𝑆 = {𝑠1, . . . , 𝑠𝑛}. A policy 𝜋 ∈ Π𝑀 can be viewed as an

𝑛-tuple (𝑃𝜋
𝑠1 , . . . , 𝑃

𝜋
𝑠𝑛
) of path-cycles, where 𝑃𝜋

𝑠 is the path-cycle obtained by following 𝜋 starting

from state 𝑠. We shall call (𝑃𝜋
𝑠1 , . . . , 𝑃

𝜋
𝑠𝑛
) the (path-cycle) representation of policy 𝜋. Note that

𝑉𝜋 (𝑠) is completely determined by the corresponding path-cycle 𝑃𝜋
𝑠 for any 𝑠 ∈ 𝑆.

LEMMA 4. Let 𝑀 be a DMDP and 𝜋1 ≺ · · · ≺ 𝜋ℓ be an increasing sequence of policies in

Π𝑀 . Then, for each 1 < 𝑖 ≤ ℓ, the representation of 𝜋𝑖 contains a path-cycle which is not part of

representations of 𝜋 𝑗 for any 1 ≤ 𝑗 < 𝑖. Therefore, we can associate a possibly non-unique sequence

of distinct path-cycles to any increasing sequence of policies.

𝑠1𝑠2

𝑠3

𝑠4

𝑠5

𝑠6 𝑠7

𝑠8

𝑠9

𝑠10

𝑠1𝑠2

𝑠3

𝑠4

𝑠5

𝑠6 𝑠7

𝑠8

𝑠9

𝑠10

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑠8

𝑠9

𝑠10

Figure 7. An example of a directed multigraph corresponding to a 10-state 2-action DMDP, the policy digraph 𝐺 𝜋 for 𝜋 =

0010101010, and the path-cycles 𝑃𝜋
𝑠2 and 𝑃𝜋

𝑠8 (from left to right), where the dashed (red) edges and solid (black) edges correspond

to actions 0 and 1, respectively.
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Proof. Let 1 < 𝑖 ≤ ℓ. Since 𝜋𝑖−1 ≺ 𝜋𝑖, we have𝑉𝜋𝑖−1 (𝑠) <𝑉𝜋𝑖 (𝑠) for some state 𝑠 ∈ 𝑆. Now since

𝜋 𝑗 ⪯ 𝜋𝑖−1 for 1 ≤ 𝑗 < 𝑖, 𝑉𝜋 𝑗 (𝑠) < 𝑉𝜋𝑖 (𝑠) for each 1 ≤ 𝑗 < 𝑖. If 𝑃
𝜋𝑖
𝑠 were a part of the path-cycle

representation of 𝜋 𝑗 for some 1 ≤ 𝑗 < 𝑖, then 𝑉𝜋 𝑗 (𝑠) =𝑉𝜋𝑖 (𝑠), a contradiction. □

Before we prove results about the number of steps PI takes to converge, we establish some graph

theoretic notation and results, which shall be useful later.

For any digraph 𝐺, we denote the number of path-cycles and paths in 𝐺 by 𝐶′(𝐺) and 𝐶′′(𝐺),
respectively. Clearly, 𝐶 (𝐺) ≤ 𝐶′(𝐺) since every cycle is a path-cycle.

For integers 𝑛 ≥ 0, 𝑘 ≥ 2, we define G𝑛,𝑘 as the set of all digraphs with 𝑛 vertices and outdegree

𝑘 (we allow digraphs to contain loops and multi-edges, as mentioned in Section 3). Note that if 𝑀

is an 𝑛-state 𝑘-action DMDP, then 𝐺𝑀 ∈ G𝑛,𝑘 .

DEFINITION 15. For𝐺 ∈ G𝑛,𝑘 , we define 𝑁1(𝐺) to be the number of path-cycles in the digraph

𝐺′ obtained from 𝐺 by replacing each multi-edge of multiplicity 𝑘 with a corresponding edge of

multiplicity 1: that is, 𝑁1(𝐺) =𝐶′(𝐺′). Similarly, we define 𝑁2(𝐺) to be the number of path-cycles

in the skeleton of 𝐺: that is, 𝑁2(𝐺) =𝐶′(Skel(𝐺)).
We prove below some bounds on 𝑁1(𝐺) and 𝑁2(𝐺) using the bounds on the number of cycles

established in Section 3.

LEMMA 5. Let 𝐺 ∈ G𝑛,𝑘

simple. Then 𝐶′(𝐺) ≤ 𝑛2𝑘 (𝑘 + 1)!(𝑛−1)/(𝑘+1) .

Proof. A path-cycle in 𝐺 can be viewed as a pair consisting of a path and an edge from the

terminal vertex of the path to a vertex in the path. Therefore, 𝐶′(𝐺) ≤ 𝑘𝐶′′(𝐺). Let 𝑠, 𝑡 ∈ 𝑉 (𝐺)
and the number of paths from 𝑠 to 𝑡 in 𝐺 be denoted by 𝐶′′

𝑠,𝑡 (𝐺). Then 𝐶′′
𝑠,𝑡 (𝐺) ≤ 𝐶 (𝐺′), where

𝐺′ is the digraph obtained by deleting all incoming edges to 𝑠 and outgoing edges from 𝑡 in 𝐺

followed by merging vertices 𝑠 and 𝑡. It is easy to check that 𝐺′ ∈ G𝑛−1,𝑘
simple. Therefore, we have

𝐶 (𝐺′) ≤ (𝑘 + 1)!(𝑛−1)/(𝑘+1) from Theorem 6. Hence, 𝐶′′
𝑠,𝑡 (𝐺) ≤ (𝑘 + 1)!(𝑛−1)/(𝑘+1) . Summing over

all pairs of vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), we obtain 𝐶′′(𝐺) ≤ 𝑛2(𝑘 + 1)!(𝑛−1)/(𝑘+1) , which combined with

𝐶′(𝐺) ≤ 𝑘𝐶′′(𝐺) yields the desired result. □

LEMMA 6. Let 𝐺 ∈ G𝑛,𝑘

multi. Then 𝐶′(𝐺) ≤ 5𝑛2𝑘𝛼(𝑘)𝑛−1.

Proof. As in the proof of Lemma 5 above, we have 𝐶′(𝐺) ≤ 𝑘𝐶′′(𝐺) and 𝐶′′
𝑠,𝑡 (𝐺) ≤ 𝐶 (𝐺′)

for all 𝑠, 𝑡 ∈ 𝑉 (𝐺). Note that some vertices in 𝐺′ could have outdegree less than 𝑘 . We add a

sufficient number of self-loops to each such vertex so that the outdegree of each vertex is equal

to 𝑘 in the resulting digraph 𝐺′′, which satisfies 𝐶 (𝐺′) ≤ 𝐶 (𝐺′′). Since 𝐺′′ ∈ G𝑛,𝑘

multi, we have

𝐶 (𝐺′′) ≤ 5𝛼(𝑘)𝑛−1 from Theorem 7. Therefore, 𝐶′′
𝑠,𝑡 (𝐺) ≤ 5𝛼(𝑘)𝑛−1. Summing over all pairs of
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vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), we obtain 𝐶′′(𝐺) ≤ 5𝑛2𝛼(𝑘)𝑛−1, which combined with 𝐶′(𝐺) ≤ 𝑘𝐶′′(𝐺)
yields the desired result. □

PROPOSITION 1. Let 𝐺 ∈ G𝑛,𝑘 . Then we have

(1) 𝑁1(𝐺) ≤ 5𝑛2𝑘𝛼(𝑘)𝑛−1, and

(2) 𝑁2(𝐺) ≤ 𝑛2𝑘 (𝑘 + 1)!(𝑛−1)/(𝑘+1) .

Proof. Suppose that 𝐺 ∈ G𝑛,𝑘 . Let 𝐺′ be the digraph obtained from 𝐺 by replacing each

multi-edge of multiplicity 𝑘 with a corresponding edge of multiplicity 1. Note that some vertices

in the digraph 𝐺′ could have outdegree less than 𝑘 . We add a sufficient number of self-loops to

each such vertex so that the outdegree of each vertex is equal to 𝑘 in the resulting digraph 𝐺′′,

which satisfies 𝐶′(𝐺′) ≤ 𝐶′(𝐺′′). Now, from Lemma 6, we obtain 𝐶′(𝐺′′) ≤ 5𝑛2𝑘𝛼(𝑘)𝑛−1 since

𝐺′′ ∈ G𝑛,𝑘

𝑚𝑢𝑙𝑡𝑖
. Therefore, 𝑁1(𝐺) =𝐶′(𝐺′) ≤ 𝐶′(𝐺′′) ≤ 5𝑛2𝑘𝛼(𝑘)𝑛−1. This finishes the proof of (1).

Now suppose that 𝐺 ∈ G𝑛,𝑘 . Note that Skel(𝐺) ∈ G𝑛,𝑘

𝑠𝑖𝑚𝑝𝑙𝑒
. Therefore, by Lemma 5, we obtain

𝑁2(𝐺) =𝐶′(Skel(𝐺)) ≤ 𝑛2𝑘 (𝑘 + 1)!(𝑛−1)/(𝑘+1) . This finishes the proof of (2). □

4.1. Policy iteration with arbitrary action selection. We begin by defining an equiv-

alence relation on the edges of a DMDP digraph and an induced equivalence relation on the

path-cycles therein.

DEFINITION 16. Let 𝑀 = (𝑆, 𝐴,𝑇, 𝑅, 𝛾) be a DMDP. We say that a state 𝑠 ∈ 𝑆 is non-branching

if there exists 𝑠′ ∈ 𝑆 such that 𝑇 (𝑠, 𝑎, 𝑠′) = 1 for all 𝑎 ∈ 𝐴. For any 𝑎1, 𝑎2 ∈ 𝐴, we say that the edges

corresponding to (𝑠, 𝑎1) and (𝑠, 𝑎2) in 𝐺𝑀 are equivalent if 𝑠 is a non-branching state. Given two

path-cycles 𝑃1 and 𝑃2 in 𝐺𝑀 , we say that 𝑃1 ∼ 𝑃2 if 𝑃1 and 𝑃2 differ only in equivalent edges.

Given a DMDP 𝑀 , ∼ is an equivalence relation on the set of path-cycles in 𝐺𝑀 .

Our approach for proving a bound on the number of policies visited by a PI algorithm with

arbitrary action selection is as follows:

1. associate a sequence of distinct path-cycles to the sequence of policies visited (by Lemma 4),

2. show that this sequence does not contain many equivalent path-cycles (see Lemma 7), and

3. use Proposition 1 to bound the number of path-cycles in the digraph obtained by identifying

edges under the equivalence relation defined in Definition 16.

In the following lemma, we show that a sequence of distinct path-cycles associated with an

increasing sequence of policies obtained via policy improvement with arbitrary action selection

does not contain many equivalent path-cycles.
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LEMMA 7. Let 𝑀 = (𝑆, 𝐴,𝑇, 𝑅, 𝛾) be an 𝑛-state, 𝑘-action DMDP and 𝜋1 ≺ · · · ≺ 𝜋ℓ be an

increasing sequence of policies obtained via policy improvement with arbitrary action selection.

Further, let 𝑃 = 𝑃
𝜋1
𝑠1 , . . . , 𝑃

𝜋ℓ
𝑠ℓ be an associated sequence of path-cycles. Then, the size of each

equivalence class of 𝑃 under the equivalence relation ∼ is at most 𝑘𝑛.

Proof. Let 𝑆′ ⊆ 𝑆 be the set of non-branching states. Let 𝑄 = 𝑃
𝜋𝑖1
𝑠 , . . . , 𝑃

𝜋𝑖𝑚
𝑠 be a subsequence

of 𝑃 consisting of equivalent path-cycles. And let 1 ≤ 𝑗 < 𝑚. Then 𝑃
𝜋𝑖 𝑗
𝑠 and 𝑃

𝜋𝑖 𝑗+1
𝑠 differ in edges

coming out of a non-branching state, say 𝜋𝑖 𝑗 (𝑠′) = 𝑎 and 𝜋𝑖 𝑗+1 (𝑠′) = 𝑎′ for some 𝑠′ ∈ 𝑆′ and distinct

actions 𝑎, 𝑎′ ∈ 𝐴. We remark that 𝑃
𝜋𝑖 𝑗
𝑠 and 𝑃

𝜋𝑖 𝑗+1
𝑠 may additionally differ in other equivalent edges.

Let 𝑃𝜋
𝑠 be a path-cycle that appears after 𝑃

𝜋𝑖 𝑗
𝑠 in 𝑄. We claim that 𝜋(𝑠′) ≠ 𝑎.

To see this, note that there exists some 𝑖′ ∈ [𝑖 𝑗 , 𝑖 𝑗+1) such that the action at state 𝑠′ is switched

from 𝑎 to 𝑎′′ (≠ 𝑎) while going from 𝜋𝑖′ to 𝜋𝑖′+1. Therefore,𝑉𝜋𝑖′ (𝑠′) < 𝑄𝜋𝑖′ (𝑠′, 𝑎′′). But since 𝑠′ ∈ 𝑆′,

this implies 𝑅(𝑠′, 𝑎′′) > 𝑅(𝑠′, 𝑎). Since 𝑠′ is a non-branching state, it follows from a straightforward

inductive argument that the sequence {𝑅(𝑠′, 𝜋 𝑗 (𝑠′))}ℓ𝑗=𝑖′+1 is non-decreasing. Therefore, action 𝑎 is

not taken at the state 𝑠′ in any policy that appears after 𝜋𝑖′ in the sequence 𝜋1, . . . , 𝜋ℓ. In particular,

this implies 𝜋(𝑠′) ≠ 𝑎.

Thus, each time we transition along 𝑄 from one path-cycle to the next, one edge is eliminated

from 𝐺𝑀 in the sense that it cannot be a part of subsequent path-cycles in 𝑄. Hence, the number of

path-cycles in 𝑄 is bounded above by the number of edges in 𝐺𝑀 , which equals 𝑘𝑛. □

In Theorem 8, we show that the length of any increasing sequence of policies obtained via policy

improvement with arbitrary action selection (as in Lemma 7) for DMDP 𝑀 is bounded above by

𝑁1(𝐺𝑀) up to a multiplicative factor which is polynomial in 𝑛 and 𝑘 . Equivalently, one may view

the following theorem as providing an upper bound on the length of the longest directed path in the

PI-DAG of the DMDP 𝑀 .

THEOREM 8. Let 𝑀 be an 𝑛-state, 𝑘-action DMDP and let 𝜋1 ≺ 𝜋2 ≺ · · · ≺ 𝜋ℓ be an increasing

sequence of policies obtained via policy improvement with arbitrary action selection on 𝑀 . Then

ℓ ≤ 𝑘𝑛𝑁1(𝐺𝑀).

Proof. Let 𝜋1 ≺ 𝜋2 ≺ · · · ≺ 𝜋ℓ be an increasing sequence of policies obtained via policy improve-

ment with arbitrary action selection on 𝑀 . And let 𝑃 = 𝑃
𝜋1
𝑠1 , . . . , 𝑃

𝜋ℓ
𝑠ℓ be an associated sequence of
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path-cycles. Then, the number of path-cycles in 𝑃 equals the sum of the sizes of the equivalence

classes of 𝑃 under ∼. Using Lemma 7, we obtain

ℓ ≤ 𝑘𝑛× the number of equivalence classes of 𝑃 under ∼

≤ 𝑘𝑛𝐶′(𝐺′
𝑀),

where 𝐺′
𝑀

is the digraph obtained from 𝐺𝑀 by replacing each multi-edge of multiplicity 𝑘 with a

corresponding edge of multiplicity 1. Using 𝑁1(𝐺𝑀) =𝐶′(𝐺′
𝑀
) in the above inequality yields the

desired result. □

Proof of Theorem 1. Let 𝑀 be an 𝑛-state, 𝑘-action DMDP and 𝜋1 ≺ 𝜋2 ≺ · · · ≺ 𝜋ℓ be the

sequence of policies inΠ𝑀 encountered during a run of a PI algorithm with arbitrary action selection

on 𝑀 . Then, using Theorem 8, we obtain ℓ ≤ 𝑘𝑛𝑁1(𝐺𝑀). Further, we have 𝑁1(𝐺𝑀) ≤ 5𝑛2𝑘𝛼(𝑘)𝑛−1

from Proposition 1 (1), which implies ℓ ≤ 5𝑛3𝑘2𝛼(𝑘)𝑛−1. Finally, since 𝛼(𝑘) ≥ 𝑘/2, we obtain

ℓ =𝑂 (𝑛3𝑘𝛼(𝑘)𝑛). □

4.2. Policy iteration with max-gain action selection. We begin by defining an equiv-

alence relation on the edges of a DMDP digraph and an induced equivalence relation on the

path-cycles therein.

DEFINITION 17. Let 𝑀 = (𝑆, 𝐴,𝑇, 𝑅, 𝛾) be a DMDP. For 𝑠 ∈ 𝑆 and 𝑎1, 𝑎2 ∈ 𝐴, we say that

the edges corresponding to (𝑠, 𝑎1) and (𝑠, 𝑎2) in 𝐺𝑀 are equivalent if there exists 𝑠′ ∈ 𝑆 such that

𝑇 (𝑠, 𝑎1, 𝑠
′) = 𝑇 (𝑠, 𝑎2, 𝑠

′) = 1. Given two path-cycles 𝑃1 and 𝑃2 in 𝐺𝑀 , we say that 𝑃1 ≈ 𝑃2 if 𝑃1

and 𝑃2 differ only in equivalent edges.

Given a DMDP 𝑀 , ≈ is an equivalence relation on the set of path-cycles in 𝐺𝑀 . We define a

stronger notion of equivalence between edges below, which shall be useful in the proof of Lemma 8.

DEFINITION 18. For 𝑠 ∈ 𝑆 and 𝑎1, 𝑎2 ∈ 𝐴, we say that the edges corresponding to (𝑠, 𝑎1) and

(𝑠, 𝑎2) are quasi-equal, denoted (𝑠, 𝑎1) ≡ (𝑠, 𝑎2), if (𝑠, 𝑎1) and (𝑠, 𝑎2) are equivalent in the sense of

Definition 17 and 𝑅(𝑠, 𝑎1) = 𝑅(𝑠, 𝑎2).
Let 𝐸max be the set of state-action pairs with the highest reward among the state-action pairs in

their respective equivalence classes. Note that if (𝑠, 𝑎) ∈ 𝐸max, then the intersection of 𝐸max with

the equivalence class of (𝑠, 𝑎) is equal to the quasi-equality class of (𝑠, 𝑎).
We use the same proof strategy as for PI with arbitrary action selection. In the following lemma,

we show that a sequence of distinct path-cycles associated with an increasing sequence of policies
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obtained via policy improvement with max-gain action selection does not contain many equivalent

path-cycles.

LEMMA 8. Let 𝑀 = (𝑆, 𝐴,𝑇, 𝑅, 𝛾) be an 𝑛-state, 𝑘-action DMDP and 𝜋1 ≺ 𝜋2 ≺ · · · ≺ 𝜋ℓ be an

increasing sequence of policies obtained via policy improvement with max-gain action selection on

𝑀 . Further, let 𝑃 = 𝑃
𝜋1
𝑠1 , . . . , 𝑃

𝜋ℓ
𝑠ℓ be an associated sequence of path-cycles. Then, the size of each

equivalence class of 𝑃 under the equivalence relation ≈ is at most 𝑛 + 1.

Proof. Let 𝑄 = 𝑃
𝜋𝑖1
𝑠 , . . . , 𝑃

𝜋𝑖𝑚
𝑠 be a subsequence of 𝑃 consisting of equivalent path-cycles.

Let 1 ≤ 𝑗 < 𝑚. Then 𝑃
𝜋𝑖 𝑗
𝑠 and 𝑃

𝜋𝑖 𝑗+1
𝑠 differ in equivalent but not quasi-equal edges (due to strict

improvement in the value function) coming out of a state, say (𝑠′, 𝑎1) and (𝑠′, 𝑎2), respectively,

for some 𝑠′ ∈ 𝑆 and distinct actions 𝑎1, 𝑎2 ∈ 𝐴. We remark that 𝑃
𝜋𝑖 𝑗
𝑠 and 𝑃

𝜋𝑖 𝑗+1
𝑠 may additionally

differ in other equivalent edges. Let 𝑃𝜋
𝑠 be a path-cycle that appears after 𝑃

𝜋𝑖 𝑗
𝑠 in 𝑄. We claim that

(𝑠′, 𝜋(𝑠′)) ≡ (𝑠′, 𝑎2).
To see this, note that there exists some 𝑖′ ∈ [𝑖 𝑗 , 𝑖 𝑗+1) such that the action at state 𝑠′ is switched

to 𝑎2 while going from 𝜋𝑖′ to 𝜋𝑖′+1. Since we are considering policy improvement with max-gain

action selection, any edge that is switched to must be contained in 𝐸max. Therefore, (𝑠′, 𝑎2) ∈ 𝐸max.

Similarly, for any subsequent path-cycle 𝑃𝜋
𝑠 in 𝑄, we have (𝑠′, 𝜋(𝑠′)) ∈ 𝐸max. Further, the edges

(𝑠′, 𝑎2) and (𝑠′, 𝜋(𝑠′)) must be equivalent since all path-cycles in 𝑄 are equivalent. Therefore, we

conclude that (𝑠′, 𝜋(𝑠′)) ≡ (𝑠′, 𝑎2).
Thus, each time we transition along 𝑄 from one path-cycle to the next, the action at one state

becomes fixed in the sense that the edge coming out of that state cannot change its quasi-equality

class in any subsequent transitions along the subsequence 𝑄. Hence, there can be at most 𝑛

transitions, implying 𝑚 ≤ 𝑛 + 1. □

In Theorem 9, we show that the length of any increasing sequence of policies obtained via policy

improvement with max-gain action selection (as in Lemma 8) for DMDP 𝑀 is bounded above by

𝑁2(𝐺𝑀) up to a multiplicative factor which is polynomial in 𝑛 and 𝑘 .

THEOREM 9. Let 𝑀 be an 𝑛-state, 𝑘-action DMDP and let 𝜋1 ≺ 𝜋2 ≺ · · · ≺ 𝜋ℓ be an increasing

sequence of policies obtained via policy improvement with max-gain action selection on 𝑀 . Then

ℓ ≤ (𝑛 + 1)𝑁2(𝐺𝑀).

Proof. Let 𝜋1 ≺ 𝜋2 ≺ · · · ≺ 𝜋ℓ be an increasing sequence of policies obtained via policy improve-

ment with max-gain action selection. And let 𝑃 = 𝑃
𝜋1
𝑠1 , . . . , 𝑃

𝜋ℓ
𝑠ℓ be an associated sequence of
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path-cycles. Then, the number of path-cycles in 𝑃 equals the sum of the sizes of the equivalence

classes of 𝑃 under ≈. Using Lemma 8, we obtain

ℓ ≤ (𝑛 + 1) × the number of equivalence classes of 𝑃 under ≈

≤ (𝑛 + 1)𝐶′(Skel(𝐺𝑀)).

Now using 𝑁2(𝐺𝑀) =𝐶′(Skel(𝐺𝑀)) in the above inequality yields the desired result. □

Proof of Theorem 2. Let 𝑀 be an 𝑛-state, 𝑘-action DMDP and let 𝜋1 ≺ 𝜋2 ≺ · · · ≺ 𝜋ℓ be the

sequence of policies in Π𝑀 encountered during a run of a PI algorithm with max-gain action

selection on 𝑀 . Then, using Theorem 9, we obtain ℓ ≤ (𝑛+1)𝑁2(𝐺𝑀). Further, we have 𝑁2(𝐺𝑀) ≤
𝑛2𝑘 (𝑘 +1)!(𝑛−1)/(𝑘+1) from Proposition 1 (2), which implies ℓ ≤ (𝑛+1)𝑛2𝑘 (𝑘 +1)!(𝑛−1)/(𝑘+1) . Now,

since 𝑛 + 1 ≤ 2𝑛 and (𝑘 + 1)!1/(𝑘+1) ≥ (𝑘 + 1)/𝑒 ≥ 𝑘/𝑒, we obtain ℓ =𝑂 (𝑛3(𝑘 + 1)!𝑛/(𝑘+1)).
We will now show that (𝑘 + 1)!1/(𝑘+1) =

(
1+𝑂

(
log 𝑘
𝑘

))
𝑘
𝑒

to finish the proof. From Stirling’s

approximation, we have 𝑘! ≤ 𝑒𝑘 𝑘+1/2𝑒−𝑘 , which further yields (𝑘 +1)! ≤ 𝑒(𝑘 +1)𝑘 𝑘+1/2𝑒−𝑘 . Taking

the (𝑘 + 1)-th root on both sides, we obtain (𝑘 + 1)!1/(𝑘+1) ≤ 𝑘
𝑒
(𝑒2(𝑘 + 1)𝑘−1/2)1/(𝑘+1) . Further,

we have (𝑒2(𝑘 + 1)𝑘−1/2)1/(𝑘+1) ≤ (𝑘 + 1)1/(𝑘+1) for 𝑘 ≥ 𝑒4. Since (𝑘 + 1)1/(𝑘+1) = 1 +𝑂 ( log 𝑘
𝑘

), we

conclude that (𝑘 + 1)!1/(𝑘+1) =
(
1+𝑂

(
log 𝑘
𝑘

))
𝑘
𝑒
. □

Theorem 1 and Theorem 2 provide upper bounds on the number of steps required by all and

max-gain policy iteration algorithms to converge for DMDPs. As mentioned previously, Howard’s

PI (with max-gain action selection) is one of the most commonly used variants of PI. We make a

few observations about this PI variant below.

REMARK 4. Combining the bounds in Theorem 1 and Theorem 2, the tightest upper bound

that we have proved for Howard’s PI on 𝑛-state 𝑘-action DMDPs is of the form𝑂 (poly(𝑛, 𝑘)𝛽(𝑘)𝑛),
where 𝛽(𝑘) is given by

𝛽(𝑘) =

(1+

√
5)/2, if 𝑘 = 2,

(𝑘 + 1)!1/(𝑘+1) , for 𝑘 ≥ 3.

REMARK 5. Post and Ye [48] derived several properties for the run of max-gain Simplex PI

on DMDPs and used them to prove polynomial bounds on the complexity of max-gain Simplex PI.

We observe that lemmas 5, 6, and 7 in their work also hold for the run of Howard’s PI on DMDPs.

Therefore, at most polynomial many steps elapse between the creation of new cycles during a run
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of Howard’s PI on a DMDP. This result, coupled with the fact that a cycle can be formed at most

once during the entire run, allows one to bound above the number of steps taken by Howard’s PI

by the number of cycles in the skeleton of the DMDP digraph 𝐺𝑀 up to a polynomial factor. This

method yields similar upper bounds for Howard’s PI on DMDPs as Theorem 2, albeit with a larger

polynomial factor. However, this method cannot be used to establish bounds on the complexity of

a general PI algorithm.

4.3. Policy iteration for average reward DMDPs. We refer the reader to Puterman [49,

Chapter 8] for the general theory of average reward MDPs, and Hansen and Zwick [31, Section 2]

for Howard’s PI on average reward DMDPs. Below, we provide a brief overview of PI on average

reward DMDPs before explaining why our main results also hold in this setting.

Let 𝑀 = (𝑆, 𝐴,𝑇, 𝑅) be a DMDP (note that there is no discount factor in the definition since we

are in the average rewards setting). Let 𝜋 ∈ Π. We begin by defining the expected infinite horizon

average reward under the policy 𝜋, which is also called the gain of the policy 𝜋 (denoted by 𝑔𝜋; not

to be confused with the gain function 𝜌𝜋 defined below). For 𝑠 ∈ 𝑆, we define

𝑔𝜋 (𝑠) := lim
𝑇→∞

1
𝑇
E

[
𝑇−1∑︁
𝑡=0

𝑅(𝑠𝑡 , 𝑎𝑡)
]
,

where 𝑠0 = 𝑠, and for 𝑡 ≥ 0, 𝑎𝑡 = 𝜋(𝑠𝑡), 𝑠𝑡+1 ∼ 𝑇 (𝑠𝑡 , 𝑎𝑡). We now define the bias of the policy

𝜋 (denoted by 𝑏𝜋). Recall that the digraph 𝐺𝜋 induced by the policy 𝜋 is a union of connected

components, each containing a unique cycle and possibly non-disjoint paths leading into the cycle.

Let 𝐻 be a connected component of 𝐺𝜋 and let 𝐶 be the unique cycle in 𝐻. We assume that the

states in 𝑆 are indexed by the set {1,2, . . . , 𝑛}. Let 𝑠∗ be the state with the smallest index in 𝐶. As a

convention, we define

𝑏𝜋 (𝑠∗) := 0.

For any state 𝑠 in 𝐻, suppose that we begin at 𝑠 and follow the policy 𝜋 to reach 𝑠∗ for the first time

after ℓ steps. Then we obtain a corresponding path 𝑠 = 𝑠0, 𝑠1, . . . , 𝑠ℓ = 𝑠∗, and define

𝑏𝜋 (𝑠) :=
ℓ−1∑︁
𝑖=0

(𝑅(𝑠𝑖, 𝜋(𝑠𝑖)) − 𝑔𝜋 (𝑠)).

We define the value function of the policy 𝜋 by 𝑉𝜋 : 𝑆→R×R, where

𝑉𝜋 (𝑠) = (𝑔𝜋 (𝑠), 𝑏𝜋 (𝑠)),
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for 𝑠 ∈ 𝑆. Further, we define the action value function of the policy 𝜋 by 𝑄𝜋 : 𝑆× 𝐴→R×R, where

𝑄𝜋 (𝑠, 𝑎) = (𝑔𝜋 (𝑠′), 𝑅(𝑠, 𝑎) − 𝑔𝜋 (𝑠′) + 𝑏𝜋 (𝑠′)),

for 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴. Here, 𝑠′ is the unique state in 𝑆 such that 𝑇 (𝑠, 𝑎, 𝑠′) = 1. Finally, we define the

gain function of the policy 𝜋 by 𝜌𝜋 : 𝑆 × 𝐴→R×R, where

𝜌𝜋 (𝑠, 𝑎) =𝑄𝜋 (𝑠, 𝑎) −𝑉𝜋 (𝑠).

Here, the minus symbol denotes coordinate-wise subtraction. Gains are primary, and biases are

secondary to the value of a state under a given policy. Therefore, we overload notation to use < for

the lexicographic ordering on R×R. For (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ R×R, we define (𝑥1, 𝑦1) < (𝑥2, 𝑦2) if

𝑥1 < 𝑥2 or (𝑥1 = 𝑥2 and 𝑦1 < 𝑦2), and (𝑥1, 𝑦1) = (𝑥2, 𝑦2) if 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2. This overloading is

useful since many of the definitions and proofs for discounted DMDPs hold as they are for average

reward DMDPs, as we shall note below.

First, we define policy comparison and optimal policies using definitions 3 and 4, respectively.

Next, we define the improvable set 𝐼𝜋 as the set of state-action pairs (𝑠, 𝑎) ∈ 𝑆× 𝐴 such that (0,0) <
𝜌𝜋 (𝑠, 𝑎). Finally, we define valid improvement sets and policy improvement using definitions 5 and

6, respectively. Then it is easy to show that the policy improvement theorem (Theorem 5) holds as it

is, and PI algorithms proceed exactly in the same way as for discounted DMDPs (see Derman [17,

Chapter 6]; see also Howard [34] and Puterman [49]). We reuse the definitions for arbitrary action

selection and max-gain action selection from Section 2.3, with the understanding that < is used to

compare 𝜌𝜋 (𝑠, 𝑎) values when computing arg max𝑎∈𝐴+ (𝜋,𝑠) 𝜌
𝜋 (𝑠, 𝑎).

To show that theorems 1 and 2 hold for PI on average reward DMDPs, we need to verify that

lemmas 4, 7, and 8 hold in this setting. A quick inspection of the proofs yields that exactly the same

proofs work for these three lemmas. The key is that a path-cycle 𝑃𝜋
𝑠 determines both the gain and

the bias, and hence the value of state 𝑠 under policy 𝜋. This implies that a new path-cycle is formed

during each step of PI since there is a strict increment in the value of some state.

5. Summary and Outlook. We have presented a new perspective on the policy space of

DMDPs, which yields running-time upper bounds that apply to the entire family of PI algorithms.

We obtain an even tighter upper bound for the family of PI algorithms that switch only to max-gain

actions. Central to our analysis is the set of cycles in directed multigraphs induced by DMDPs

(Madani [40], Post and Ye [48]). Our core results are upper bounds on the number of cycles in
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certain families of directed multigraphs, which are defined based on the properties of corresponding

PI algorithms. For 2-action MDPs, our results imply that PI can complete in strictly fewer iterations

when transitions are constrained to be deterministic.

Our results give rise to several questions for further investigation.

• For the case of 𝑘 = 2 actions, Melekopoglou and Condon [44] furnish an MDP and a PI variant

that can visit all the 2𝑛 policies for the MDP. It remains unknown if such a Hamiltonian path through

the set of policies exists for any MDP with 𝑘 ≥ 3 actions. Interestingly, the tightest lower bound

known for MDPs with 𝑘 ≥ 3 actions—of Ω(𝑘𝑛/2) iterations (Ashutosh et al. [9])—arises from a

DMDP. There appears to be room to obtain a tighter lower bound for MDPs with 𝑘 ≥ 3 actions.

Proving a “Hamiltonian” lower bound for 𝑘 ≥ 3 would imply that stochasticity makes MDPs harder

to solve for PI, irrespective of the number of states and actions. A concrete first step in this pursuit

could be to attempt constructing a 3-state, 3-action MDP in which all 27 policies can be visited by

PI (it is not too hard to construct a 2-state, 3-action MDP with this property).

• Our upper bounds for PI on DMDPs depend directly on our upper bounds on the number of

path-cycles in induced multigraphs. Our current analysis only utilises the fact that a path-cycle, once

replaced, cannot appear again. Tighter upper bounds might be provable by exploiting additional

constraints. For example, it might be possible to argue that path-cycles 𝑃1 and 𝑃2 mutually exclude

each other in the trajectory taken by PI since they necessarily induce incomparable value functions.

Similarly, if it can be shown that there is no legal sequence of switches to go from any policy

containing path-cycle 𝑃1 to any policy containing path-cycle 𝑃2, it would imply that only one of

𝑃1 and 𝑃2 can be visited by PI.

A particularly interesting case is Howard’s PI on DMDPs, for which Hansen and Zwick [31]

conjectured an upper bound of 𝑛𝑘 steps. Notably, an 𝑂 (𝑛𝑛) bound holds for Howard’s PI, since

any edge (action) that is switched to must have the highest reward among all edges with the same

initial and next states. A natural question is whether one can establish an improved exponential

upper bound independent of 𝑘 , analogous to the 𝑂 (poly(𝑛) · 2𝑛/2) bound for energy games and

mean payoff games on graphs with 𝑛 vertices (Dorfman et al. [18]).

• It is easy to check that the dual of the LP 𝑃𝑀 induced by a DMDP 𝑀 contains at most

two variables per constraint (Littman et al. [39]; see Section 4.1). LPs with this property have

been well-studied; for instance, it is known that they can be solved in strongly polynomial time

(Megiddo [42]). Hence, our results for DMDPs can possibly be generalised to a larger class of LPs.

In particular, one could attempt to furnish non-trivial upper bounds on path lengths in the primal
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LP digraph when the dual is restricted to having at most two variables per constraint. Kitahara and

Mizuno [37] prove a similar generalization of Ye’s [59] results on the strong polynomiality of the

simplex method, for MDPs with a fixed discount factor, to a broader class of LPs (including, for

example, LPs with a totally unimodular constraint matrix and integer constraint vector).
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