
In Proc. Adaptive and Learning Agents Workshop 2016 (http://ala2016.csc.liv.ac.uk/ALA2016_Proceedings.pdf).

Half Field Offense: An Environment for Multiagent
Learning and Ad Hoc Teamwork

Matthew Hausknecht
University of Texas at Austin

mhauskn@cs.utexas.edu

Prannoy Mupparaju
IIT Bombay

m.prannoy@iitb.ac.in

Sandeep Subramanian
IIT Bombay

110260028@iitb.ac.in
Shivaram

Kalyanakrishnan
IIT Bombay

shivaram@cse.iitb.ac.in

Peter Stone
University of Texas at Austin
pstone@cs.utexas.edu

ABSTRACT
The RoboCup 2D simulation domain has served as a plat-
form for research in AI, machine learning, and multiagent
systems for more than two decades. However, for the re-
searcher looking to quickly prototype and evaluate different
algorithms, the full RoboCup task presents a cumbersome
prospect, as it can take several weeks to set up the desired
testing environment. The complexity owes in part to the co-
ordination of several agents, each with a multi-layered con-
trol hierarchy, and which must balance offensive and defen-
sive goals. This paper introduces a new open source bench-
mark, based on the Half Field Offense (HFO) subtask of soc-
cer, as an easy-to-use platform for experimentation. While
retaining the inherent challenges of soccer, the HFO environ-
ment constrains the agent’s attention to decision-making,
providing standardized interfaces for interacting with the
environment and with other agents, and standardized tools
for evaluating performance. The resulting testbed makes it
convenient to test algorithms for single and multiagent learn-
ing, ad hoc teamwork, and imitation learning. Along with
a detailed description of the HFO environment, we present
benchmark results for reinforcement learning agents on a
diverse set of HFO tasks. We also highlight several other
challenges that the HFO environment opens up for future
research.

Categories and Subject Descriptors
H.4 [Computing methodologies]: Multi-agent systems

General Terms
Algorithms, Measurement, Design

Keywords
Half Field Offense, RoboCup, Ad-Hoc Teamwork, Reinforce-
ment Learning

1. INTRODUCTION
For agents to act with greater autonomy, it is crucial that

they learn from their experience, which is often shared with
other agents. These other agents could themselves be co-
operative partners, adversaries, or teachers. It is no sur-
prise, then, that the quest to design autonomous agents has

Figure 1: 3v3 Half Field Offense: Yellow offense
agents search for an opening in the defensive for-
mation. Red defenders and purple keeper strive to
intercept the ball or force it out of bounds. HFO
is better understood by video than picture: 1v1
https://vid.me/sNev, 2v2 https://vid.me/JQTw, 3v3
https://vid.me/1b5D

spawned several fields of study to investigate these essen-
tial aspects of agent behavior. The field of reinforcement
learning [22] examines how agents in an unknown environ-
ment, through trial and error, can learn to take actions with
long-term benefit. Imitation learning [3] specifically con-
siders how the learning process can be sped up by harnessing
instructive advice from a teacher. Whereas the predominant
body of work under these topics focuses on the single-agent
setting, multiagent reinforcement learning [15, 24] has
taken shape as an active area of research in its own right.
Other topics of interest in a multiagent environment, such
as coordination [23] and ad hoc teamwork [20] have also
been actively pursued.

In each of the areas listed above, significant progress has
been made in establishing theoretical foundations and con-
ceptual frameworks. However, the validation of the resulting
algorithms has typically been in constrained settings that do
not possess the full complexity of the real world. For exam-
ple, reinforcement learning algorithms are most often tested
on toy problems such as Mountain Car and Acrobot, if not in
small, discrete, “grid world” environments [22], which have
also been used in several multiagent studies [11, 24]. Natu-
rally there are merits to testing an algorithm in a simplified
environment that does not include orthogonal or confound-
ing factors. On the other hand, such factors are bound to
present themselves when the algorithm is taken to the real
world. In fact, real-world applications may additionally de-
mand the integration of ideas from different fields of study,

https://vid.me/sNev
https://vid.me/JQTw
https://vid.me/1b5D


thereby motivating the need for test environments that af-
ford such a possibility.

This paper accompanies the release of an environment for
benchmarking algorithms related to learning, multi-agency,
and teamwork. Our environment is built on top of the
RoboCup 2D simulation platform [1]. RoboCup [13] is an
international robot soccer competition that promotes re-
search in AI and robotics. Within RoboCup, the 2D sim-
ulation league works with an abstraction of soccer wherein
the players, the ball, and the field are all 2-dimensional ob-
jects. For nearly two decades now, 2D simulation soccer has
fostered active research and development. However, for the
researcher looking to quickly prototype and evaluate differ-
ent algorithms, the full soccer task presents a cumbersome
prospect: full games are lengthy, have high variance in their
outcome, and demand specialized handling of rules such as
free kicks and offsides.

Our objective is to expose the experimenter only to core
decision-making logic, and to focus on the most challeng-
ing part of a RoboCup 2D game: scoring and defending
goals. To this end, we introduce the Half Field Offense
(HFO) environment (Figure 1). As a machine learning task,
HFO features a diversity of challenges: in the simplest form,
HFO requires the development of a single controller for an
autonomous 2D soccer agent. This agent could be either
playing offense and seeking to score goals or playing defense
and acting to prevent goals. Beyond single-agents, HFO
supports multiple agents, some of which may be manually
controlled by the user and others that can be automatically
controlled. Thus HFO incorporates aspects of multiagent
learning and ad hoc teamwork [20]. HFO naturally lends it-
self to reinforcement learning due to the sequential nature of
the decisions made by the agents. The environment involves
a continuous state space, and provides a choice between con-
tinuous and discrete action spaces.

Indeed HFO was originally introduced by Kalyanakrish-
nan et al. [12] almost a decade ago, but the authors did
not release code for their framework. Barrett and Stone [6]
recently reported some experiments on an independently-
developed code base for HFO, which again was not released
publicly. Thus HFO has remained inaccessible to many po-
tential users.

Among publicly-released benchmarks for multiagent RL,
the closest in spirit to HFO is Keepaway [21], which models
the task of ball possession in soccer. Note that possession
is only one of the many skills an HFO team must master,
in addition to moving towards the goal and shooting. Also,
while intermediate rewards are natural to define in Keep-
away, credit is only available at the end of an episode in
HFO. These reasons make Keepaway an easier task for learn-
ing than HFO [12]. Our public release of HFO also shares
the same motivations as the recently-released Arcade Learn-
ing Environment [7], which provides easy access to a large
number of console games. However, these games are all in
the single-agent setting.

Our open-source release of the HFO environment brings
several convenient features, as listed below.1

• Standard, MDP-like interface to RoboCup server.

• Access to high and low-level state spaces.

• Access to high and low-level action spaces.

• Support for automated teammates and opponents.
1Repository hosted at https://github.com/LARG/HFO.

• Ability to play offense or defense.

• Facilities for inter-agent communication.

• Setup to perform reproducible experiments.

• Tools for performance evaluation and analysis.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the Half Field Offense environment in detail.
Section 3 provides an overview of different agents that we
have benchmarked in this environment, and Section 4 re-
ports the corresponding benchmark results. In Section 5,
we outline some of the challenges that the HFO environ-
ment opens up to future research. Section 6 discusses related
work, and Section 7 serves as the conclusion.

2. HALF FIELD OFFENSE
Competition RoboCup 2D soccer is played between two

teams of autonomous agents who communicate with a cen-
tral soccer server. The HFO Environment (Figure 2) builds
upon the competition-ready RoboCup 2D server, but sup-
ports smaller teams consisting of arbitrary mixes of auto-
mated teammates (NPCs, for “non player characters”) and
player-controlled agents - up to ten players per side.

Soccer Server
Offense 
NPCs

Agent2d
Agent2d
Agent2d
Agent2d
Agent2d

Agent2d

Agent 
Server

Trainer.py

HFO 
Interface

Visualizer
Agent2d
Agent2d
Agent2d
Agent2d

Agent2d
Agent2d

Agent 
Server

HFO 
Interface

Your 
Code

Defense 
NPCs

Offense 
Agent Your 

Code

Defense 
Agent

HFO

Figure 2: The HFO Environment is comprised of
many separate processes which communicate over
the network with the RoboCup 2D soccer server.
HFO starts these processes, ensures they communi-
cate, and oversees the games. A user needs only to
specify the number of offensive and defensive agents
and NPCs and then connect their agent(s) to the
waiting Agent Server(s) via the HFO interface.

Because the official RoboCup 2D soccer server lies at the
core of the HFO Environment, we expect agents or skills
learned in HFO will translate with relatively little effort
into competition RoboCup soccer. Additionally, cutting-
edge RoboCup competition-winning agents can be ported
into HFO as NPCs. Currently, HFO supports one type of
teammate—Helios-Agent 2D—but standard communication
interfaces allow others to be integrated easily. The next sec-
tion discusses the state and action spaces provided by the
HFO Environment.

2.1 State Representation
Agents interfacing with the HFO domain choose between

a low or high level state representation. This choice of rep-
resentation affects the difficulty of the HFO task. The low-
level representation provides more features with less pre-
processing, while the high-level representation provides fewer,
more informative features. For example, the high-level rep-
resentation provides a feature for the largest open goal angle
(Figure 3), computed by comparing the keeper’s position to

https://github.com/LARG/HFO


the positions of the goal posts. In contrast, the low-level
representation provides angles to the goal posts and angles
to each of the opponents, but determining which opponent
is the keeper and calculating open goal angles is left to the
player. We now describe these representations in more de-
tail.

θp

θg

Figure 3: High-level state representation computes
the orange agent’s largest open goal angle θg as well
as open pass angle to a teammate θp.

2.2 Low-Level State Representation
HFO defines a low-level egocentric viewpoint encoded us-

ing 58 continuously-valued features (8 additional features
are added for each teammate and opponents). These fea-
tures are derived through Helios’ [2] world model and pro-
vide angles and distances to various on-field objects of im-
portance such as the ball, the goal, and the other players.
The most relevant features include the agent’s position, ve-
locity, orientation, and stamina; indicator if the agent can
kick; angles and distances to the ball, goal, corners of the
field; teammates and opponents positions, angles, velocities
and orientations. These features are intended to be used by
a learning algorithm that can handle raw perceptions.

2.3 High-Level State Representation
The high-level feature space is a compact representation

enabling an agent to learn quickly by generalizing its knowl-
edge about similar states. There are a minimum of 9 contin-
uous features with an additional 5 for each teammate. Fea-
tures include: agent’s position and orientation; distance and
angle to the ball; indicator if the agent can kick; distance
and angle to the goal; largest open goal angle (θg in Fig-
ure 3); teammates distance, angle, uniform number, largest
open goal angle and nearest opponent distance; open pass
angle to each teammate (θp in Figure 3). This feature set
is inspired by Barrett et al.’s exploration of HFO [5]. These
high-level features allow a learning agent to quickly improve
HFO performance.

2.4 Action Representation
The action space of a domain is one component of the

complexity of the learning problem. HFO provides a choice
between two action spaces - one high-level and discrete, the
other low-level and continuous.

2.5 Low-Level Action Representation
HFO uses a parameterized low-level action space in which

an agent is first faced with a decision about which type of
action to select, and then how to execute that action. For-
mally characterized as a Parameterized Action Markov Deci-
sion Process (PAMDP) [17], HFO’s low-level, parameterized
action space features four mutually-exclusive action primi-
tives: Dash, Turn, Tackle, and Kick. Each action has up

to two continuous parameters which must also be specified.
An agent must select both the discrete action it wishes to
execute as well as the accompanying continuous parameters:

Dash(power, direction): Moves the agent in the indicated
direction with requested speed. Movement is faster forward
than sideways or backwards.
Turn(direction): Turns the agent in the indicated direction.
Tackle(direction): Slide tackles in the indicated direction.
Kick(power, direction): Kicks the ball in the indicated di-
rection with requested power.

This low-level action space presents a challenge to learning
algorithms. An agent acting randomly in the low-level state
space will wander near its starting position, and is highly
unlikely to approach the ball or score a goal.

2.6 High-Level Action Representation
HFO’s high-level action space defines a compact interface

to the Helios agent’s soccer behaviors. Each high-level be-
havior is ultimately composed of low-level actions, but also
incorporates Helios’ strategy for choosing and parameter-
izing the low-level actions. HFO supports five high-level
actions:

Move(): Moves the agent according to Helios’ strategy.
Shoot(): Takes the best available shot.
Pass(uniform num): Passes to the teammate with the re-
quested uniform number.
Dribble(): Advances the ball towards the goal using a com-
bination of short kicks and moves.
Catch(): Goalie-specific action to capture the ball.

While Shoot, Pass, and Dribble are the choices avail-
able to an offense player, Move and Catch apply to defense
players. Agents may also choose to do nothing by selecting a
NO-OP action. Using this action space, an offensive agent
that randomly select actions is capable of scoring goals as
long as no keeper is present.

2.7 Automated Teammates (NPCs)
Automated teammates and opponents in HFO use a policy

derived from Helios, the 2012 RoboCup 2D champion team
[2]. This policy is designed for full 11-versus-11 matches,
but gracefully scales to any of the smaller tasks in the HFO
umbrella. As our benchmark results indicate, automated
teammates and opponents using the Helios policy exhibit
strong but not perfect policies. More importantly, Helios
teammates favor cooperation and will strategically pass the
ball to player-controlled agents. While some passes are di-
rect, lead passes require the player-agent to quickly reposi-
tion in order to receive. When the player has the ball, Helios
teammates intelligently position themselves and will sprint
to receive a pass from the player.

2.8 Evaluation Metrics
Having presented the basic state spaces, action spaces,

and NPCs featured in the HFO Environment, we now ad-
dress the important question of how to evaluate the perfor-
mance of HFO agents.

The HFO environment does not provide reward signals
and instead indicates the ending status of the game. HFO
episodes end with one of the following termination condi-
tions:

Goal: The offense scored a goal.
Captured (CAP): The defense gained control of the ball.



Out of Bounds (OOB): The ball left the playfield.
Out of Time (OOT): No agent has approached the ball
in the last 100 timesteps.

Using these termination conditions, we propose two eval-
uation metrics: Goal Percentage and Time to Goal. The
primary focus of learning in HFO is to score goals when
playing offense and prevent goals from being scored when
playing defense. The primary metric, Goal Percentage,
the percentage of all trials that end with a goal being scored,
captures exactly this notion. The hallmark of an effective
offensive agent is a high goal percentage. A second metric,
Time to Goal (TTG), is defined as the number of timesteps
required to score in each trial that culminates with a goal.
Efficient offensive agents typically seek to minimize time to
goal, while defenders strive to maximize this metric.

Finally, the HFO environment also indicates the last player
to touch the ball. This information may be used to keep
track of offensive passes and define alternative reward func-
tions.

2.9 Learning Paradigms
The HFO Environment supports several learning paradigms:

Single-Agent Learning, involves a lone offensive or defen-
sive agent playing against one or many opponents. In Ad
Hoc Teamwork, the agent must learn to cooperate with
one or more unknown teammates without pre-coordinated
strategies [5, 20]. In the case of HFO, learning agents have
the opportunity to act as the ad hoc teammate of the Helios
agents. Finally, Multiagent Learning places two or more
learning agents on the same team with the shared objective
of scoring or defending the goal. Known as Multiagent Rein-
forcement Learning (MARL), the challenge for these agents
is to learn both individual competency as well as coopera-
tion [24]. While not examined in this paper, HFO also sup-
ports configurations that blend these learning paradigms.
For example, a team could consist of several learning agents
paired with one or more Helios teammates, mixing multia-
gent learning with ad hoc teamwork. Additionally, HFO can
create multiagent scenarios in which agents have competing
objectives, for example by allocating some learning agents
to play offense and others to play defense.

Having addressed the basic features of HFO, we now present
benchmark agents designed for single-agent and multiagent
learning, ad hoc teamwork.

3. BENCHMARK AGENTS
The HFO Environment makes it convenient to develop

and deploy agents in different learning scenarios. Agent in-
terfaces are provided for C++ and Python. Most benchmark
agents are powered by reliable, well-understood learning al-
gorithms that have withstood the test of time. We consider
the following agents:

3.1 Random Agent
The low-level random agent randomly selects actions

in the low-level action space and generates random contin-
uous parameters to accompany these actions. Observed be-
havior is Brownian motion around the agent’s starting po-
sition. This agent is excluded from the results as it never
manages to score a goal or approach the ball.

In contrast the high-level random agent randomly se-
lects actions in the discrete high-level action space. Ob-

served behavior is erratic but eventually manages to score
goals. Both agents serve as a lower bound for performance.

3.2 Hand-coded Agent
We designed a hand-coded agent that uses the high-level

state action space described above. Its offensive policy, used
both for scoring on an empty goal and for scoring on a
keeper, first checks if the agent has the ball. If it does, and
the distance to goal is less than α and the goal open angle is
greater than β, the agent will Shoot; otherwise it will Drib-
ble. If the agent does not have possession of the ball, it will
take the Move action. This policy ensures the agent is close
enough to the goal and has enough of an opening to put a
shot through. Both α and β are optimized using the Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES)
[10].

A major difference between single agent learning and ad
hoc teamwork is the availability of a teammate to pass and
coordinate with. We modify the hand-coded policy to ac-
commodate the Ad Hoc scenario by utilizing teammate-
aware features: Now, when the agent has the ball, if it does
not have an open shot on the goal (e.g. open goal angle < β),
it will evaluate the positions of teammates, taking into con-
sideration the size of their open-goal-angles, their proximity
to opponents, and their ability to receive a pass. If mul-
tiple teammates satisfy these criteria, the ball is passed to
the teammate with the largest open-goal-angle. As before,
α and β are optimized using CMA-ES.

3.3 SARSA Agent
State-Action-Reward-State-Action (SARSA) is an algo-

rithm for model-free on-policy Reinforcement Learning [22].
To train this agent, we model Half Field Offense as an episodic
MDP in which a reward of +1 is given to the SARSA offen-
sive agent for scoring a goal, −1 for the defense capturing
the ball (or OOB/OOT), and 0 for all other timesteps. We
use four high-level state features to train the agent: distance
to goal, angle to goal, open goal angle, and distance to near-
est opponent (if present). Because these state features are
continuous, tile coding [22] is used to discretize the state
space. Experiences collected by playing the game are then
used to bootstrap a value function.

Similar to single agent learning, ad hoc teamwork can also
be modeled as a reinforcement learning problem. The only
change is in the features used. The rewards, actions, and
states remain the same. Along with the four features used
in single-agent SARSA, we now accommodate passing by
using additional features, viz. each teammate’s open goal
angle, distance to nearest opponent, pass opening angle, and
distance from our agent. Tile-coding is used to discretize this
larger, augmented state space. SARSA updates are applied
only when an episode terminates or the SARSA-agent is in
possession of the ball.

4. HFO BENCHMARK RESULTS
One of the main contributions of this paper, in addition

to the benchmark domain itself, is a set of initial results
against which future users of the domain can benchmark
their agents. Table 1 presents benchmark results for single-
agent learning, multiagent learning, and ad hoc teamwork
scenarios. Each of the presented results is averaged over
1000 evaluation episodes. Additionally, learning agent re-



Random Hand-coded SARSA
Scenario Difficulty Helios High-Lv High-Lv High-Lv

S
in

g
le

Offense (1v0) Easy 96.2 (72) 41.0 (186.6) 95.6 (48.9) 91.1 (61.3)
Offense (1v1) Medium 73.8 (79.1) 1.8 (242.7) 64.7 (68.7) 88.9 (85.3)
Offense (1v2) Hard 34.1 (103.9) .1 (206) 39.7 (71.6) 40.4 (93.5)
Defense (1v1) Medium 73.8 (79.1) 96.7 (73) 84.1 (54.9) 94.7 (73.5)
Defense (2v1) Hard 81.4 (73.1) 96.9 (68.1) 84.8 (53.0) 94.1 (68.3)

A
d

H
o
c

Offense (1+1v1) Easy – 66.3 (93.7) 68.5 (59.9) 91.5 (77.3)
Offense (1+1 v 2) Medium – 24.3 (105.6) 46.4 (72) 63.6 (92.4)
Offense (1+2 v 3) Medium – 22.3 (103.2) 27.6 (76.4) 34.5 (105)
Defense (1 v 1+1) Easy – 49.6 (87.5) 46.9 (65.4) 46.3 (86.2)
Defense (2 v 1+1) Medium – 72.7 (76.3) 60.1 (58.6) 64.7 (75.5)
Defense (3 v 2+1) Medium – 58.4 (75.4) 43.0 (58) 49.6 (74.5)

M
u
lt

ia
g
en

t

Offense (2v1) Easy 81.4 (73.1) .7 (361.7) 65.7 (66.1) 92.3 (84.2)
Offense (2v2) Medium 60.0 (87.9) 0 (–) 46.7 (73.7) 62.8 (93.8)
Offense (3v3) Medium 38.8 (93.2) 0 (–) 25.7 (84.1) 33.1 (107.6)
Defense (1v2) Easy 34.1 (103.9) 89.2 (83.1) 52.1 (62.9) 65.9 (80.7)
Defense (2v2) Medium 60.0 (87.9) 91.0 (70.3) 60.5 (55.8) 77.2 (71.4)
Defense (3v3) Medium 38.8 (93.2) 86.7 (66.5) 50.2 (56.4) 69.2 (70.3)

Table 1: HFO Benchmark Results: Each cell displays the percentage of episodes that ended with a goal (Goal
Percentage) and, in parenthesis, the average number of simulated timesteps required to score a goal (Time
to Goal). Examined offensive and defensive scenarios span Single-agent learning, Ad Hoc Teamwork, and
Multiagent learning. Baseline results for the automated Helios teammate are omitted for Ad Hoc Teamwork,
as they are identical to the Multiagent scenario. In the Scenario column, bold font indicates learning agents.
Everywhere else, it identifies the agent with the best performance in that scenario.

sults (Hand-coded and SARSA) are averages over ten in-
dependent training runs. The benchmark agents are open-
source and publicly available as a part of the HFO reposi-
tory, enabling the results in Table 1 to be easily reproduced.
Results from each of the different learning paradigms are
discussed in greater detail below.

4.1 Single-Agent Learning
We examine three single agent HFO tasks: Scoring on an

empty goal, Scoring on a keeper, and Protecting the goal.
Even against an empty goal none of the agents scores every
time. This is because the RoboCup 2D simulator adds noise
to the perceptions and actions taken by the agents, resulting
in occasionally missed shots. Once a keeper is added, the
scoring percentage of all offensive agents drops drastically for
all agents except SARSA. Likewise, the average number of
steps required to score a goal increases by 22, indicating the
sharp difficulty increase between these two tasks. However,
it is no easier to play Keeper. As the results indicate, an
offensive Helios-agent is just as effective scoring on an empty
goal as it is against the random agent.

4.2 Ad Hoc Teamwork
Ad Hoc teamwork scenarios require the learning agent to

cooperate with a Helios-controlled teammate without the
benefit of pre-coordination. Playing with the Helios team-
mate, the random agent receives a substantial boost of 24.7
goal percentage points (GPPs) on offense and deters 28.7
more GPPs when on defense. On the other hand, learning
agents have more trouble adapting their play styles to the
unknown teammate. As a result, Hand-coded and SARSA
agents experience less improvement, as discussed in the next
section.

4.3 Multiagent Learning
Multiagent learning involves multiple agents learning in

each others’ presence. A learning teammate presents an op-
portunity for improved performance since the two agents’
strategies can co-adapt. However, a non-stationary team-
mate policy can also be a liability if a new behavior violates
existing cooperative strategies.

In order to analyze the quality of Helios versus learning
teammates, we examine differences between the Ad Hoc and
multiagent scenarios: The Hand-coded agent shows a slight
performance increase when paired with a Helios teammate
instead of a Hand-coded teammate: an average improvement
of 1.5 GPPs on offense and 4.3 GPPs on defense. When
paired with Helios, SARSA’s goal percentage increases by
only .5 GPPs on offense and a substantial 17.2 GPP reduc-
tion on defense. These trends suggests that for SARSA and
Hand-coded agents, having a highly competent teammate is
more valuable than a learning teammate.

4.4 Analysis
Due to the many different scenarios supported by the HFO

environment, it is desirable to quantify and compare the
aggregate performance of different agents. To accomplish
this task we recommend a one-way Analysis of Variance
(ANOVA) test. Shown in Figure 4, this test shows the ag-
gregate offensive and defensive capabilities of the learning
agents as well as the Helios expert. On offense, a clear hier-
archy emerges with SARSA learning agents outperforming
Hand-coded agents, who in turn perform better than the
random agent. On defense, the order is different, with He-
lios and Hand-coded agents preventing goals more effectively
than SARSA and random agents.

Overall, the high performance of the Helios policy indi-
cates that expert hand-coded approaches are very strong.



We expect that future learning agents will be able to out-
perform Helios agents, perhaps by learning better skills in
the low-level action space.

Random Handcoded Sarsa Helios
0

20

40

60

80

100

G
oa

l P
er

ce
nt

ag
e

Offense
Defense

Figure 4: One-way Analysis of Variance (ANOVA)
shows aggregate offensive (hollow) and defensive
(filled) capabilities of each agent across all scenar-
ios examined in Table 1: Offensively, Hand-coded,
Sarsa, and Helios agents statistically significantly
outperform the random agent (p < .01). On defense,
Helios is signficiantly better than random and Sarsa
agents (p < .01), but not significantly better than
hand-coded.

5. OPEN CHALLENGES
The HFO Environment includes tasks that range in diffi-

culty from easy to hard. Easy tasks feature favorable condi-
tions for the learning agents - conditions such as teammates
outnumbering opponents. Additionally, we outline several
hard learning problems in which the opponents outnumber
teammates. Two single-agent examples are 1) playing of-
fense against two defenders and 2) playing keeper against
two attackers. Both of these scenarios are yet unsolved by
the current algorithms and offer much room for improve-
ment. Using the HFO Environment it is trivial to create
even harder scenarios where the odds are further stacked
against the learning agent. Addressing such scenarios may
be a key to discovering new strategies for competitive RoboCup
agents.

A second open challenge is learning in the low-level state
action space. Learning in this space is complicated by the
necessity of dealing with continuous actions, and the low-
level random agent demonstrates that acting randomly is
insufficient to score even a single goal. However, acting in
this space offers the most fine-grained control over agent’s
behavior and may be the key to discovering novel skills and
strategies.

A final challenge is to use the inter-agent communica-
tion facilities provided by HFO to aid in coordinated tasks.
The existing benchmark agents learn to cooperate without
communication, but could plausibly benefit from learning to
communicate as they learn to perform the cooperative task
of scoring or defending goals.

We hope these challenges will spark interest in the com-
munity as much as they do in the authors. We now examine
related work and conclude.

6. RELATED WORK
Progress in machine learning is driven both by the de-

velopment of new algorithms and the availability of high-
quality, publicly-accessible training data. Examples of highly
influential supervised and unsupervised datasets include Fisher’s
seminal Iris dataset [9], the UCI Machine Learning reposi-
tory [4], the Penn Treebank [16], MNIST handwritten digit
recognition [14], ImageNet large scale visual recognition chal-
lenge [18], and Pascal Visual Object Classes [8].

Instead of datasets, reinforcement learning is driven by
challenging domains. Examples of influential domains in-
clude classics like grid-world, mountain-car, and cart-pole
[22], as well as more recent additions such as octopus-arm,
Tetris and Pac-Man. Reinforcement learning competitions
[27] featuring these domains drive development of new algo-
rithms and agents.

One of the main inspirations for this paper is the Arcade
Learning Environment [7], which has helped advance the
field of AI by providing a testbed and evaluation method-
ology for general game playing algorithms. The HFO envi-
ronment provides a similar platform, with less emphasis on
generality and more emphasis on cooperation and multia-
gent learning.

7. CONCLUSION
It has been ten years since Stone et al. presented the

RoboCup 2D Keepaway domain [21]. Keepaway created in-
terest, sparked research, and has served for many years as a
testbed for new AI algorithms [19, 25, 26]. The HFO envi-
ronment is similar in spirit, but features an expanded range
of tasks spanning a spectrum of difficulty levels. A high-level
discrete action space allows agents to learn quickly by har-
nessing the same behaviors as the expert Helios agent, while
a low-level continuous state action space enables researchers
to investigate cutting-edge techniques for reinforcement learn-
ing in parameterized-continuous spaces featuring partial ob-
servability and opportunities for multiagent coordination.

More than just state and actions spaces, the HFO En-
vironment features the capability to explore single agent
learning, Ad Hoc teamwork, Multiagent learning, and imita-
tion learning. In this paper, we presented benchmark results
demonstrating the capabilities of reinforcement learning and
hand-coded agents in each of these tasks. Furthermore, we
presented an evaluation methodology and strategy for quan-
tifying aggregate agent performance and identified several
open research challenges. Using these techniques, we expect
the community will be able to quickly develop, interface,
and evaluate novel agents that will advance the state of the
art in multiagent learning and ad hoc teamwork.

Acknowledgments
This work has taken place in the Learning Agents Research
Group (LARG) at the Artificial Intelligence Laboratory, The
University of Texas at Austin. LARG research is supported
in part by grants from the National Science Foundation
(CNS-1330072, CNS-1305287), ONR (21C184-01), AFRL
(FA8750-14-1-0070), AFOSR (FA9550-14-1-0087), and Yu-
jin Robot.



REFERENCES
[1] The robocup soccer simulator.

http://sourceforge.net/projects/sserver/.
Accessed: 2016-02-01.

[2] Hidehisa Akiyama. Agent2d base code.
https://osdn.jp/projects/rctools/, 2010.

[3] Brenna Argall, Sonia Chernova, Manuela M. Veloso,
and Brett Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[4] Arthur Asuncion and David J Newman. Uci machine
learning repository.
http://archive.ics.uci.edu/ml/, 2007.

[5] Samuel Barrett. Making Friends on the Fly: Advances
in Ad Hoc Teamwork. PhD thesis, The University of
Texas at Austin, Austin, Texas, USA, December 2014.

[6] Samuel Barrett and Peter Stone. Cooperating with
unknown teammates in complex domains: A robot
soccer case study of ad hoc teamwork. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, pages 2010–2016, January 2015.

[7] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and
Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

[8] Mark Everingham, Luc Gool, Christopher K.
Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. Int. J.
Comput. Vision, 88(2):303–338, June 2010.

[9] R. A. Fisher. The use of multiple measurements in
taxonomic problems. Annals of Eugenics,
7(7):179–188, 1936.

[10] Nikolaus Hansen. The cma evolution strategy: A
comparing review. In Towards a New Evolutionary
Computation, volume 192 of Studies in Fuzziness and
Soft Computing, pages 75–102. Springer Berlin
Heidelberg, 2006.

[11] Junling Hu and Michael P. Wellman. Nash q-learning
for general-sum stochastic games. Journal of Machine
Learning Research, 4:1039–1069, 2003.

[12] Shivaram Kalyanakrishnan, Yaxin Liu, and Peter
Stone. Half field offense in robocup soccer: A
multiagent reinforcement learning case study. In
Gerhard Lakemeyer, Elizabeth Sklar, Domenico G.
Sorrenti, and Tomoichi Takahashi, editors, RoboCup,
volume 4434 of Lecture Notes in Computer Science,
pages 72–85. Springer, 2006.

[13] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi,
Itsuki Noda, and Eiichi Osawa. Robocup: The robot
world cup initiative. In Agents, pages 340–347, 1997.

[14] Yann LeCun and Corinna Cortes. MNIST
handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010.

[15] Michael L. Littman. Markov games as a framework for
multi-agent reinforcement learning. In Machine
Learning, Proceedings of the Eleventh International
Conference, Rutgers University, New Brunswick, NJ,
USA, July 10-13, 1994, pages 157–163. Morgan
Kaufmann, 1994.

[16] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. Building a large annotated corpus

of english: The penn treebank. Comput. Linguist.,
19(2):313–330, June 1993.

[17] Warwick Masson and George Konidaris.
Reinforcement learning with parameterized actions.
CoRR, abs/1509.01644, 2015.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan
Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV), 115(3):211–252,
2015.

[19] Vishal Soni and Satinder Singh. Using
homomorphisms to transfer options across continuous
reinforcement learning domains. In AAAI, volume 6,
pages 494–499, 2006.

[20] Peter Stone, Gal A. Kaminka, Sarit Kraus, and
Jeffrey S. Rosenschein. Ad hoc autonomous agent
teams: Collaboration without pre-coordination. In
Proceedings of the Twenty-Fourth Conference on
Artificial Intelligence, July 2010.

[21] Peter Stone, Richard S. Sutton, and Gregory
Kuhlmann. Reinforcement learning for robocup soccer
keepaway. Adaptive Behaviour, 13(3):165–188, 2005.

[22] Richard S. Sutton and Andrew G. Barto.
Reinforcement Learning: An Introduction. MIT Press,
1998.

[23] Milind Tambe. Towards flexible teamwork. Journal of
Artificial Intelligence Research, 7:83–124, 1997.

[24] Ming Tan. Multi-agent reinforcement learning:
Independent vs. cooperative agents. In Michael N.
Huhns and Munindar P. Singh, editors, Readings in
Agents, pages 487–494. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1998.

[25] Matthew E Taylor, Peter Stone, and Yaxin Liu.
Transfer learning via inter-task mappings for temporal
difference learning. Journal of Machine Learning
Research, 8(1):2125–2167, 2007.

[26] Phillip Verbancsics and Kenneth O Stanley. Evolving
static representations for task transfer. The Journal of
Machine Learning Research, 11:1737–1769, 2010.

[27] Shimon Whiteson, Brian Tanner, and Adam White.
The reinforcement learning competitions. AI
Magazine, 31(2):81–94, 2010.

http://sourceforge.net/projects/sserver/
https://osdn.jp/projects/rctools/
http://archive.ics.uci.edu/ml/
http://yann.lecun.com/exdb/mnist/

