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Falls are undesirable in humanoid robots, but also inevitable, especially as robots
get deployed in physically interactive human environments. We consider the problem of
fall prediction: to predict if the balance controller of a robot can prevent a fall from the

robot’s current state. A trigger from the fall predictor is used to switch the robot from
a balance maintenance mode to a fall control mode. It is desirable for the fall predictor
to signal imminent falls with sufficient lead time before the actual fall, while minimizing
false alarms. Analytical techniques and intuitive rules fail to satisfy these competing

objectives on a large robot that is subjected to strong disturbances and exhibits com-
plex dynamics. We contribute a novel approach to engineer fall data such that existing
supervised learning methods can be exploited to achieve reliable prediction. Our method

provides parameters to control the tradeoff between the false positive rate and lead time.
Several combinations of parameters yield solutions that improve both the false positive
rate and the lead time of hand-coded solutions. Learned solutions are decision lists with
typical depths of 5–10, in a 16-dimensional feature space. Experiments are carried out

in simulation on an ASIMO-like robot.

Keywords: Humanoid robots; fall prediction; supervised learning; machine learning.

1. Introduction

Fall is a severe failure mode for humanoid robots, which can be triggered by several

factors, including unexpected external forces; power, component or communication

failures; and foot slippage. Falls are undesirable not only because they signal abrupt

breaks in a robot’s normal activities, but also because they can cause catastrophic

physical damage to the robot and its surroundings, which may also include people.

Robots can be shielded from falls through external support or by being contained

within controlled environments that involve very little physical contact. However,

as humanoid robots gain autonomy and enter more realistic, possibly unforeseen

1
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environments, fall will be an inevitable occurrence. Coping with falls requires an

integrated strategy that incorporates fall avoidance, prediction and control.

1.1. Fall Avoidance and Control

Fall avoidance deals with developing better strategies for robots to reduce the inci-

dence of fall. Numerous techniques have been proposed in the literature to safeguard

a robot’s balance. For example, Kagami et al. propose a balance compensation

scheme.1 Nishio et al. use the “reaction null space” to derive a set of feasible con-

trol laws.2 Controlling the position of the Zero Moment Point (ZMP) of a robot is

useful in averting potential falls;3 correspondingly Ogata et al. devise a stepping

motion in the predicted direction of the ZMP to extend the robot’s support base

and maintain balance.4 Researchers have also proposed other stepping motions and

reflex actions for fall avoidance.5–8 However, any avoidance scheme can only reduce,

and not eliminate, the incidence of fall. When fall does occur, fall control methods

can mitigate its adverse effects. In so doing, such methods address two primary

goals:a (i) self-damage minimization and (ii) fall direction change.

Uncontrolled fall of a robot can result in high-impact collisions with surround-

ing objects and the ground. Fujiwara et al. propose “UKEMI” motion to control

a robot’s fall such that its impact points with the ground are in the hip, knees,

and elbows, which can all be protected with shock absorbing mechanisms.10 Sub-

sequent work proposes a parameterized planning strategy for falling that can be

optimized to reduce the impact forces at collision and to increase stability after

landing.11,12 Ruiz-del-Solar et al. apply a similar optimization-based method in

simulation, wherein a human designer participates in setting joint angles at key

frames in the fall sequence.13

As robots enter environments with stationary and moving objects (including

people), preventing damage to surrounding objects during a fall could be more im-

portant that minimizing self-damage. Our earlier work in fall control shows that the

direction of a robot’s fall can be changed significantly through calculated stepping

and inertia shaping.14,15 As a result, collisions with objects on the ground can be

avoided. In general there can be mixed objectives during fall control, such as to first

avoid hitting a surrounding object during fall, and then to minimize self-damage.

1.2. Fall Prediction

The success of a fall control strategy, whether its objective is to minimize self-

damage or damage to surrounding objects, depends critically on the time available

aThroughout this paper we consider only accidental falls which result from unexpected distur-

bances or system malfunction. By contrast, a robot may perform an intentional fall, which is a
strategic action, such as in the case of a robot soccer goalie diving to stop a ball.9 In an inten-
tional fall, the robot typically has a longer time to plan, and can significantly minimize fall-related
damage when compared to an accidental fall.
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for the fall controller to act. Thus, an important prerequisite for effective fall control

is early and reliable fall prediction, which is the subject of this paper. Specifically

our objective is to develop a “fall predictor” that continuously monitors the stateb

of the robot, and raises a flag as soon as it detects an imminent fall. A trigger from

the fall predictor prompts the robot to abandon the balance maintenance mode,

which was just predicted to fail, and to execute a fall control strategy. Figure 1

pictorially depicts the function of a fall predictor.

While it is essential to predict fall early and maximize the lead time to fall, it is

also necessary to avoid false predictions of fall, which waste time by replacing the

balance controller with a fall controller, and also sometimes precipitate a fall. In

other words the fall predictor needs to minimize false positives. A key observation

from our experiments is that in practice, trying to predict fall early typically leads

to a high false positive rate, mainly because the system dynamics are quite complex.

Thus, a good fall predictor must satisfactorily trade off the conflicting objectives of

high lead time and low false positive rate.

1.3. Why Machine Learning?

One may attempt to predict fall through intuitive rules such as thresholding relevant

physical quantities (e.g. linear and angular momenta) or by tracking the robot’s

center of pressure (CoP), through which the resultant contact force between the

robot and the ground acts. Alternatively, careful analytical modeling of a robot’s

dynamics could be used to predict if the robot’s current trajectory will lead to

a fall. Effective analytical approaches indeed offer greater flexibility in dynamic

settings such as when the robot carries a known mass. Unfortunately, manually

designed rules and analytical methods do not scale well to large robots with complex

bWe use the term “state” to generically imply all the variables that describe a system, and not its
specific technical meaning as the minimal variable set.

I am balanced.
I should apply
balance control.

I am falling! I
should switch to

fall control.

Fig. 1. Screenshots of a simulated ASIMO-like robot. A fall predictor classifies the current state

of the robot as balanced or falling to determine whether balance control or fall control should be
applied.
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geometries that are subjected to strong disturbances: the resulting dynamics is

characterized by several degrees of freedom (our robot has 26), variable friction,

different contact configurations with one or both feet, slippage and underactuation.

For illustration, consider the scenario depicted in Figure 2: starting from the same

state, our robot is repeatedly subjected to external forces with different magnitudes.

The force application point and direction are kept fixed. The figure shows the time

taken for the robot to fall (if at all) for different magnitudes of applied force.

For force magnitudes less than 52N , the balance controller is successful in pre-

venting a fall. A magnitude of 54N causes the robot to fall after 3.2s. As the force

magnitude is increased, the corresponding time interval to fall is between 1.25s and

2.25s. However, this trend does not continue: force magnitudes from 74N through

82N do not cause a fall! As the figure shows, there are multiple pockets of “fall” and

“no fall” along the dimension of increasing force magnitude: there is no threshold

below which fall is always avoided and above which fall always occurs. Interestingly

some falls involve falling forwards, some backwards, and some sideways. Such non-

intuitive patterns are also prevalent across state variables corresponding to center

of mass (CoM) displacement, linear and angular momenta.

Although the irregular nature of fall eludes precise analytical modeling, we hy-

pothesize that a machine learning solution — driven by data — could cope better

with the challenge. Further, if a robot’s hardware undergoes wear and tear, or its

controller changes, a learning algorithm can be re-run with little change on data

gathered from the updated configuration of the robot. The manual effort required in

so doing would be significantly less than that of a model-based solution, which would

entail fresh calibration and revised modeling. Also note that a machine learning-
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Fig. 2. In this experiment, sideways horizontal pushes of increasing magnitude are applied to an

upright humanoid robot from a fixed state in its walk cycle. Bars mark the time taken for the robot
to fall (as defined in Section 3). Gaps in the plot imply no fall. The fall pattern is non-monotonic.
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based solution results in a reactive strategy, under which predictions can be made

almost instantaneously when deployed on a robot.

1.4. Contribution and Scope

Supervised learning provides tools to infer patterns among seemingly irregular data.

The main contribution of this paper is a principled approach to train a fall predictor

using supervised learning. Specifically we expect our contribution to be relevant in

cases like the one illustrated when large, high-DoF (degree of freedom) robots are

subjected to strong disturbances. Our solution complements existing model-based

strategies that perform well on simpler robots with relatively smaller disturbances.

We conduct simulation experiments on an ASIMO-like robot.16 First, we collect

a batch of “balanced” and “falling” trajectories, which are then processed off-line

to learn a fall predictor. Once learned, the fall predictor is used on-line, making

predictions in real time. Our learning algorithm is designed to accept parameters

to control the tradeoff between the early prediction of fall and the minimization of

false alarms. Consequently we obtain a family of fall predictors, ranging from ones

that signal fall early but raise several false alarms, to ones that provide a smaller

reaction time but make reliable predictions of fall. Cross-validation testing shows

that several parameter values yield fall predictors that can detect fall earlier, yet

raise fewer false alarms than our best manually designed predictors.

Our proposed architecture has a number of replaceable modules. We use a sim-

ple balance control mechanism and a standard supervised learning algorithm. Our

experiments show that the fall predictors learned are not very sensitive to the

supervised learning algorithm used, but currently we do not undertake detailed

sensitivity testing with respect to variations in the robot’s specifications and its

balance controller. These components could be changed appropriately for learning

a fall predictor on a different robot. It would be equally important to consider the

features used for prediction, which should ideally make the best use of the sensors

and measurements available on a given robot.

Ultimately fall is a problem faced by real robots. We do not expect a fall predic-

tor learned in simulation to register identical performance when deployed on a real

robot, as our simulation does not incorporate aspects such as action noise, variable

friction and complex foot geometry. However, our results show the promise of ap-

plying machine learning to data collected from a real robot, and are to be treated

as a starting point. A solution learned off-line in simulation could initialize on-line

learning on a real robot.

The rest of this paper is organized as follows. After surveying related literature

in Section 2, we present a framework for defining fall and evaluating a fall predictor

in Section 3. In Section 4 we inspect data obtained from a simulated version of an

ASIMO-like humanoid robot, which reveals an irregular falling pattern. In Section 5

we describe our machine learning architecture. Detailed results are presented in

Section 6. We conclude with a discussion in Section 7.
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2. Related Work

In this section we discuss related work in humanoid fall prediction (Section 2.1), and

briefly highlight connections to machine learning (Section 2.2), human fall research

in the biomechanics literature (Section 2.3), and the general problem of failure

warning (Section 2.4).

2.1. Humanoid Fall Prediction

Wieber defines the “viability kernel” for a robot and balance controller as the set

of states from which the robot can escape fall by applying the balance controller.
17,18 He concludes that for reasonably complex dynamical systems such as bipedal

humanoids, it is numerically intractable and often impossible to compute a viability

kernel of states. In subsequent work Wieber derives lower bounds for the viability

kernel in simpler systems such as a cart pole and an inverted pendulum.19 The

absence of analytical bounds for large, multi-DoF humanoid robots motivates our

choice of an empirical approach to predict their fall.

Renner and Behnke employ a model-based scheme for predicting fall on a kid-size

humanoid robot (in simulation).20 A model of the gait, represented using Fourier

coefficients and attitude sensor values, is used to predict future states, given the

current state and controls. Disturbances are detected by thresholding the deviation

of the robot’s state from the model’s prediction, and actions are taken depending

on the magnitude of the deviation. A similar strategy based on deviation from

the model’s prediction is used by Karssen and Wisse, who conduct experiments on

the 6-DoF ‘Meta’ robot.21 In our experiments we subject the robot to relatively

large disturbances: whereas Renner and Behnke apply impulses of 0.15Ns to a robot

weighing 2.3kg, we apply impulses of up to 50Ns to a robot weighing 42.1kg.

Machine learning-based solutions result in direct mappings between states and

(probability distributions over) classes. While we use decision lists for classifying

states as “balanced” or “falling”, Höhn and Gerth conflate fall prediction and con-

trol, assigning as classes “reflex” motions such as crouching or stretching in some di-

rection.22 The predictors learned are Gaussian Mixture Models and Hidden Markov

Models, which are applied to a simulated version of the ‘BARt’ robot. Among the

features used by Höhn and Gerth to represent states are force sensors in the feet,

inertial measurements of the torso, attitude and rotational velocities of the stance

foot, and the time instant during the robot’s gait that the disturbance occurs. In

an integrated fall management strategy Ogata et al. implement a predictor that

thresholds the Euclidean distance between the robot’s sensory readings with their

time-averaged mean.23 Discriminant analysis is used to improve the quality of the

predictions. In subsequent work Ogata et al. use feedback from ZMP control to

predict fall.4
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2.2. Machine Learning

Our learning architecture admits any supervised learning algorithm and correspond-

ing representation for the fall predictor. Of the several variants we test empirically,

we obtain the best results with rule-based systems such as decision trees and lists.

Rule-based systems find application in a variety of applications, and are attractive

for their easy interpretability.24 Whereas we use decision lists to predict imminent

fall, a failure mode, Chen et al. apply decision trees to diagnose failure once it has

occurred in large computer networks.25 For two-class supervised learning problems,

metrics such as the F-measure and area under the receiver operating characteris-

tic (ROC) curve have been proposed to evaluate the tradeoff between the correct

prediction of positive and negative instances.26 For our fall prediction problem we

formalize two relevant metrics: false positive rate and lead time.

2.3. Biomechanics of Human Fall

Age, sickness and weakness make human beings susceptible to fall. A fallen individ-

ual is often unable to recover immediately. To provide a remedy, one line of research

in biomechanics addresses the design of wearable devices, such as wristwatches,

which trigger alarms when the wearer falls.27 As with humanoid fall prediction,

it becomes necessary to trade off the accuracy of detecting human falls with the

false alarm rate.28,29 The chief difference between fall prediction on a robot and fall

detection in humans is that the former anticipates an imminent fall on-line, while

the latter’s objective is to reliably detect fall once it has occurred.

2.4. Failure Warning Systems

Humanoid fall prediction may be viewed as an instance of the more general problem

of failure warning, in which an alarm must be raised when a system enters, or

becomes destined to enter, a failure state. In an early survey of methods used

for failure detection, Gertler focuses on methods in which a model of the system

is available.30 To test for a failure, a “residual” difference between analytically

predicted and observed values of quantities are subjected to statistical testing to

estimate if the deviations are due to noise or due to systematic failure. Mattone and

De Luca use residuals to detect sensor and actuator faults on a robot manipulator,

and indeed this paradigm is closely mirrored in the approach adopted by Renner

and Behnke for fall prediction.20,31 In a starkly contrasting application, Zou et

al. model and forecast the spread of an Internet worm using a Kalman filter.32

Vehicular collision warning is another area of active research.33,34 Reliable failure is

also critical in domains that operate at longer time scales, such as tsunami warning

systems (minutes/hours) and bank failure prediction (days/months).35,36
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3. Problem Description

In this section we provide precise descriptions of fall and fall prediction, from which

we derive quantitative evaluation metrics.

3.1. State Classes

Consider a multi-dimensional feature space (state space) containing all the poten-

tially useful variables that can be measured or computed from the robot’s sensors,

such as its joint angles and velocities, inertia and momentum. With time the robot

traces a trajectory in this space, which we partition into three classes: balanced,

falling and fallen. Any state reached by the robot along its trajectories belongs to

one of these classes, which are depicted schematically in Figure 3.

The fallen class (most peripheral) comprises states which satisfy some rule to

identify a fallen robot, such as whether parts of the robot’s body other than its feet

are in contact with the ground, or its CoM falls below some threshold height (set

to 0.33m in our experiments to determine fallen). The balanced class (most interior)

C
bal

C
fall

extF

fall predictor output: fallingfall predictor output: balanced

x
1

x2
falling

balanced

fallen

fallen
t predictt

3u

u1
u5

u4

u2

u2
bal

Fig. 3. Conceptual diagram showing the multi-dimensional feature space describing the configu-
ration of the robot, partitioned into balanced, falling and fallen classes. In general the classes need
not occupy contiguous regions of the feature space. External forces are necessary to take the robot
from balanced to falling. We assume that from a falling state, a trajectory that results from apply-
ing a fall controller (Cfall) is preferred over a trajectory that results from applying the balance
controller (Cbal). At every decision cycle, a fall predictor maps the robot’s current state to either

balanced (solid dot) or falling (star). The robot switches from Cbal to Cfall as soon as falling is
predicted. Descriptions of trajectories u1 through u5 are provided in Sections 3.2 and 3.3.
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comprises states from which applying a balance controller Cbal will not lead to a

fallen configuration when the only forces acting on the robot are its weight W , the

resultant ground reaction force R and friction Ffr. For a given robot the shape

and size of the balanced class is specific to a balance controller: likely, a “better”

Cbal will enjoy a larger balanced class. Intermediate states that are neither balanced

nor fallen are designated as falling: trajectories passing through falling necessarily

terminate in fallen under Cbal.

In realistic settings the robot will come under the influence of external forces

Fext, which we designate to be forces other than W , R, and Ffr. Likely sources

of external forces are contact forces between the robot and obstacles, slippage and

drag. In addition we find it convenient to include as Fext all other events that may

trigger fall, such as motor failure and random disturbances. As shown in Figure 3

external forces are necessary for reaching a falling state starting from a balanced

state, although Cbal may succeed in retaining the robot within balanced in some

cases even with Fext acting. When external forces do cause trajectories inside bal-

anced to reach falling, the robot is certain to reach a fallen state if it continues to

apply Cbal and there are no further external forces to oppose the fall.

3.2. Fall Predictor

To mitigate the adverse effects of a fall, the robot invokes its fall controller Cfall as

soon as it believes to be in a falling state. Not knowing the true class of its state,

the robot uses a fall predictor to estimate the class. Figure 4 presents a schematic

view of a fall predictor. At every decision cycle the predictor can employ any of the

measured or computed variables in the feature space. The predictor maps every such

input feature vector to either balanced or falling, determining which controller is to

be applied. In Figure 3 we mark five trajectories — u1 through u5 — to illustrate

typical scenarios arising from the use of a fall predictor. At every state encountered

along a trajectory, either balanced (shown as solid dot) or falling (shown as star) is

predicted; correspondingly the robot applies Cbal or Cfall.

The trajectory u1 resides completely inside balanced, and the fall predictor cor-

rectly predicts balanced all along the trajectory. However, in general we do not

expect the predictions to all be correct. Trajectories u2 and u3 are likely scenarios

during fall prediction, in which balanced is predicted inside the balanced class, but

continues to be predicted (incorrectly) for some time even after falling is reached.

Forking from u2 at the instant falling is predicted is a hypothetical branch ubal
2 that

would occur if Cbal is continued to be applied rather than switching to Cfall: the

primary motivation for predicting falling early is that ubal
2 is an undesirable trajec-

tory. Yet another scenario to be avoided involves a false positive (trajectory u4), in

which falling is predicted incorrectly inside balanced. Needlessly the robot switches

to Cfall as a response, and this may precipitate a fall. In direct contrast, along a

false negative case (trajectory u5), falling is never predicted until fallen is reached.
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Fig. 4. High-level control flow: sensor readings and measurements are processed into features used
by the fall predictor, whose output determines whether Cbal or Cfall should be applied.

3.3. Objectives of Fall Prediction

False negatives can be weeded out effectively by adding a rule to predict falling if

the CoM drops below some vertical height threshold (0.48m for our robot). On the

other hand, false positives are difficult to avoid, especially if the fall predictor has

to make early predictions of falling. We define the False Positive Rate (FPR)

of a fall predictor to be the fraction of trajectories in which falling is predicted

for a balanced state. Since each such incorrect prediction prompts an unnecessary

invocation of Cfall, FPR needs to be minimized.

Trajectory u3 in Figure 3 is annotated with the instants of time at which falling

is predicted (tpredict) and fallen is reached (tfallen). The interval between these

instants is the time duration for which Cfall acts to minimize the damage due to

the fall. We define the Lead Time (τ lead) of a fall predictor to be the average

value of tufallen − tupredict over trajectories that terminate in fallen, assuming Cfall

is deployed from tupredict onwards. Larger values of τlead imply that Cfall gets more

time on average to respond to a fall; thus τlead is a quantity to be maximized.

We see that the fall predictor with the lowest FPR (zero) is one that predicts

balanced for every input state; unfortunately, such a predictor also has the lowest

value of τlead (zero). At the opposite extreme, a predictor that always predicts

falling has maximal τlead, but correspondingly, an FPR of 100%. Neither extreme

is practical; we desire a fall predictor that enjoys a low FPR and a high value

of τlead. In our experiments we compute FPR and τlead with respect to a set of

1000 trajectories recorded on the robot. The next section describes the process of

recording the trajectories.
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4. Generating Trajectories

We use the commercial robotics simulation software WebotsTM to simulate an

ASIMO-like robot with 26 degrees of freedom.37 The robot has a mass of 42.1kg,

with its CoM at a height of 0.59m above the ground. Each foot is 0.225m long and

0.157m wide. The robot’s balance controller Cbal implements the following strategy:

if the linear momentum of the robot along either its forward-backward or left-right

axes exceeds some threshold, the robot widens its stance, thereby increasing the

area of its support polygon and lowering its CoM. This action is effective in thwart-

ing falls caused by impulses of up to 40Ns, as observed from our simulation results

in Section 6. Under the fall controller Cfall the robot remains frozen in the target

pose reached by the balance controller.

The robot’s support polygon at any instant of time during its gait is the convex

hull of all the points of contact of the robot’s feet with the ground. The Center of

Pressure (CoP) is the point inside the support polygon through which the resultant

contact force between the robot and the ground acts. It is well known that when

the robot starts tipping, the CoP resides at some edge or corner of the support

polygon. Taking this fact into consideration, we posit that measurements such as

the displacement and velocity of the CoM taken relative to the CoP can directly

help discriminate falling states from balanced states. Correspondingly we define a

Cartesian coordinate system with its origin at the CoP, with x and y axes along

the ground in the robot’s sagittal and frontal planes respectively, and z axis vertical

(Figure 5).

We obtain data for training the fall predictor by applying varying impulses to

the robot at random instants of time in its walk cycle and recording the resulting

Z
Y

X
Support Polygon

Center of Pressure

Fig. 5. Cartesian coordinate system, with its origin at the CoP.
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trajectories. Each “push” comprises a constant force application for 0.1s; the force

magnitude is drawn uniformly at random from the range [0, 500N ]. The force is

applied horizontally to the torso of the robot, at an angle with its sagittal plane

drawn uniformly at random from [−180◦, 180◦], at a height above its CoM drawn

uniformly at random from [−0.05m, 0.25m]. The ranges mentioned are chosen such

that roughly half of the trajectories result in fall. Indeed, out of the data set of 1000

trajectories we collect, 554 result in a fall. Along each trajectory that enters fallen,

we label states following our push — an external force — but preceding the entry

into fallen, as falling. Trajectories not ending in a fallen state have all their states

labeled balanced.

It is worth mentioning that the external forces causing fall under natural op-

eration of the robot could assume values outside the ranges chosen in our training

regimen, impinge parts of the robot’s body other than its torso, and act for different

durations. Nonetheless, we hypothesize that states resulting from our wide range of

impinging impulses will be similar to the states arising when the robot is subjected

to more realistic disturbances. Indeed a fall predictor aims to categorize the states

resulting from disturbances, and not the source of a disturbance. A related point is

that falls are likely to occur significantly less frequently during the robot’s normal

routines. Reflecting the requirement that fall must be predicted accurately and re-

liably, even if it is a rare occurrence, we intentionally generate a high fraction of

trajectories going through the falling class. The FPR values reported in Section 6

are therefore significantly higher than what might be encountered in practice during

the robot’s normal operation.

Figure 6 shows examples of trajectories taken by the robot after the force is

removed, projected on different axes. Figures 6(a) and 6(b) show the evolution of

height of the robot’s CoM with time and horizontal components of its linear momen-

tum, respectively. It is apparent that there is no clear separation between balanced

and falling states in these projections. Specifically we observe that it takes some time

after the impact force has been removed for the balanced and falling trajectories to

begin separating. In Figure 6(a) we see a predictor that predicts falling if the CoM

height falls below some threshold, and balanced otherwise. Fixing the threshold to

obtain an FPR of 0 yields a very low value of τlead (0.14s); however, increasing τlead

even to 0.42s, FPR is raised to a very high value (0.92). Figure 6(b) shows similar

results obtained by thresholding X and Y components of the linear momentum.

Among the best tradeoffs obtained here is an FPR of 0.11 with corresponding τlead

of 0.60s. Thresholding approaches tried with other variables, not shown in Figure 6,

achieve no better. In Section 6 we present results indicating that a machine learning

solution can indeed reduce FPR further and increase τlead simultaneously. The next

section presents our learning framework.
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Fig. 6. 100 random trajectories resulting from pushes, projected on different axes. Points on solid
lines lie in the balanced class, and points on dashed lines lie in the falling class. In (a) the CoM height

above the ground is shown as a function of the time elapsed after the application of the impulse
(which is applied in the period [-0.1s, 0]). In (b) the variables plotted are X and Y components
of the robot’s linear momentum. FPR and τlead values of fall predictors thresholding the CoM

height or horizontal components of the linear momentum are shown.

5. Learning Framework

The essential “learning” step in our solution is routine supervised learning. How-

ever, in order to successfully meet the specific demands of fall prediction, careful

engineering is necessary in the preparation of the training data and the subsequent

use of the learned classifier. In this section we describe our learning process.
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5.1. Features

The first step in devising a learning solution is selecting features to describe the

robot’s state. Feature engineering can make a significant difference in the perfor-

mance of a learning algorithm. It is desirable for the chosen set of features to be

small, to provide all the information necessary to classify a state, while at the same

time being able to generalize well to nearby states. The sensors and measurements

available on a specific robot restrict the scope of the features that can be derived

for prediction. For our task, we arrive at a set of 16 features through successive

refinement, trial and error. These features are listed in Table 1.

Of the 16 features, 15 are real-valued numbers corresponding to physical quan-

tities such as displacement and momentum of the robot. Recall that these vector

quantities are measured in a Cartesian coordinate system centered at the robot’s

CoP. In general the CoP can dart quickly between points inside the robot’s support

base, which can itself change dynamically. As a result we do not expect to obtain

smooth trajectories in the robot’s feature space. Sudden swings in trajectories are

quite characteristic of fall: for example, what appears to be a configuration certain

to result in fall could become perfectly safe as soon as the robot gets an additional

foot on the ground. Indeed we find it beneficial to use a discrete feature called

the robot’s “foot contact mode”, which describes the position of the robot’s CoP

relative to its feet. We now take a closer look at foot contact modes.

Every state of the robot maps to a foot contact mode, which identifies whether

its left and/or right feet are touching the ground, and if so, the position of the CoP

within the support polygon. Thus, the foot contact mode “LR-INSIDE” corresponds

to states in which both left and right feet touch the ground, and the CoP is inside

the support polygon. Now, suppose the CoP moves to the front edge of the support

polygon, the resulting foot contact mode is “LR-FRONT”. Other modes are defined

similarly; Figure 7 provides a complete list.

Interestingly several foot contact modes that can be imagined in theory seldom

occur in practice. For example, “L-RIGHT”, under which only the left foot touches

the ground, with the CoP on its right edge, is hardly encountered in typical tra-

jectories traced by the robot. In total we only find it necessary to consider 16 foot

contact modes. Of these, the mode “OUTSIDE” occurs when neither foot touches

Table 1. Features

Physical Quantity Type #Features

CoM displacement Real-valued 3

Linear momentum Real-valued 3

Angular momentum about CoM Real-valued 3

Rate of change of linear momentum Real-valued 3

Rate of change of angular momentum about CoM Real-valued 3

Foot contact mode Discrete, 16 values 1
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Fig. 7. Foot contact modes. We consider three modes when both feet are touching the ground: LR-
INSIDE, LR-FRONT, LR-BACK. Four representative examples of feet configurations are shown
under each, as a top view with the left foot on the left. The contact region between a foot and
the ground may be a rectangle, a line (edge), or a point (corner). In each example several possible
positions of the CoP are marked with crosses; where relevant, the support polygon is marked
with dotted lines. In LR-INSIDE, the CoP lies inside the support polygon, while in LR-FRONT
and LR-BACK, it lies on a front or back edge respectively. When both feet lose contact with the

ground, we denote the resulting foot contact mode OUTSIDE. Six modes are defined when the left
foot alone touches the ground, which are prefixed with “L-”. Likewise, six corresponding modes
are defined when the the right foot alone touches the ground, which are prefixed with “R-”. A
total of 16 foot contact modes are defined. In principle other configurations are possible (such as

LR-LEFT and L-RIGHT), but these do not occur frequently in the robot’s state trajectories.

the ground, and there is no CoP. In this case, we move the origin of our Cartesian

coordinate system to the projection of the CoM on the ground, with the x and y

axes still aligned respectively with the robot’s sagittal and frontal planes.

5.2. Learned Representation

We pose the problem of constructing the fall predictor as a supervised learning

problem and experiment with several applicable methods from the WEKA machine

learning library.38 Informal experimentation with a suite of algorithms shows that

the best results for our task are achieved with rule-based systems such as decision

trees and lists, which perform marginally better than regression-based approaches

such as neural networks and radial basis functions. We adopt decision list learning

(or “rule learning”) for our experiments. Like decision trees, decision lists are grown

recursively by splitting nodes, guided by some heuristic such as information gain.

The resulting classifier partitions the input space into regions with axis-aligned

edges, with one class matched to each region.

We observe that more accurate prediction results when a separate decision list is
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learned for each foot contact mode, rather than when a single decision list is learned

using the foot contact mode as a feature. A possible explanation for this observation

is that the foot contact modes divide the robot’s states into homogeneous regions

with more regular decision boundaries. Figure 8 shows an example of a learned

decision list for the foot contact mode “L-LEFT”. A learned fall predictor comprises

16 such lists. From the list shown in Figure 8 it is apparent that learned solutions

can be far more complex than the thresholding rules devised in Section 4, which

correspond to decision lists with just two or four comparisons. To get a rough idea

of the complexity of learned rules, we define the “rule size” of a decision list to be

the number of comparison operators it contains: the rule size is 15 in the example

in Figure 8. In Section 6 we compare rule sizes of lists learned from differently

prepared sets of training data.

5.3. Parameters to Control Tradeoff between τ lead and FPR

We are left to explain the process of preparing training data for the supervised learn-

ing algorithm, which is a key aspect in our exercise. Typically supervised learning

methods for classification seek to minimize a loss function such as the misclassifica-

tion rate or squared error of the associated regression problem over the input data

distribution. However, such loss functions do not completely align with the specific

requirements of our application, in which the objectives to optimize are FPR and

τlead. With a prediction accuracy of 99% over all balanced states, a fall predictor

could still result in very high FPR if its few incorrect predictions — of predicting

falling instead of balanced — are distributed over a large number of balanced tra-

if footContactMode = L-LEFT then

if d-lin-mom-y ≥ -64.50 and d-ang-mom-x ≤ 15.95 and lin-mom-z ≤ -1.16 and d-lin-

mom-x ≥ -106.14 then

class ← falling.

else if ang-mom-y ≤ -14.18 and lin-mom-x ≤ -24.54 then

class ← falling.

else if d-lin-mom-y ≥ -19.36 and com-y ≥ -0.04 and lin-mom-y ≥ 5.87 then

class ← falling.

else if ang-mom-y ≥ 11.77 and ang-mom-y ≥ 18.32 then

class ← falling.

else if com-z ≤ 0.35 then

class ← falling.

else if ang-mom-y ≤ -14.18 and lin-mom-y ≤ -11.45 then

class ← falling.

else if com-z ≥ 0.62 then

class ← falling.

else

class ← balanced.

Fig. 8. Example of a learned decision list, which is invoked when the foot contact mode is “L-
LEFT”. The number of comparison clauses, or the “rule size”, is 15. Units are usual metric.
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jectories, rather than contained to a few. On the other hand, a fall predictor with

a low accuracy in identifying falling states correctly might still give rise to a high

τlead if its correct predictions occur early in the falling trajectories: once falling is

predicted along a trajectory, subsequent predictions are immaterial. In short, pre-

diction accuracy over all the recorded states does not necessarily yield lower FPR

and higher τlead. We describe two techniques that we employ to explicitly promote

the learning of fall predictors that minimize FPR and maximize τlead.

Consider a trajectory that is within the falling class. States occurring early in this

trajectory are likely to be less distinguishable from balanced states when compared

to states occurring later in the trajectory, as we observe from Figure 6 (Section 4).

Indeed we verify that if states that occur early along the falling trajectory are

presented as training data to the learning algorithm, then the learned fall predictor

is likely to incur higher FPR. On the other hand, since a falling trajectory will end

in a fallen state, states close to this extreme can be easily separated by a simple

rule, such as one that thresholds the CoM height.

Figure 9(a) schematically depicts for one balanced and one falling trajectory the

CoM height as a function of the time elapsed after the application of the impulse

(i.e., after tforce-end). In principle all the states in the falling trajectory are valid

training examples for the falling class, just as all the states in the balanced trajectory

are valid training examples of balanced. However, to reduce the incidence of false

positives, we withhold from the set of positive (falling) training data states that

occur early along falling trajectories. Only those positive examples that occur after

a “cutoff” time are used for training. Since different falling trajectories have different

time durations, we standardize this cutoff time by measuring it with respect to the

instant theight−drop, which is the time at which the CoM height begins to drop

monotonically until a fallen state is reached.
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Fig. 9. (a) While preparing the training data, trajectories in the falling class are sampled based on
the parameter τ+. The instant theight-drop is when the height of the CoM begins to monotonically
decrease until reaching the fallen class (at time tfallen). Points from falling (marked “+”) are
sampled in the interval [theight-drop + τ+, tfallen]. (b) While using a fall predictor, a history of

the predictions made in the past duration of τhis is maintained. At time t, falling is predicted only
if all atomic predictions made in the interval [t − τhis, t] are fallen.
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We define a parameter τ+, such that only falling states that occur beyond the

instant theight−drop + τ+ and before tfallen, the time at which the trajectory enters

the fallen class, are used as positive training instances for supervised learning. We

expect that as τ+ is increased, the learned predictor will have lower FPR, but also a

lower value of τlead. Decreasing τ+ (note that τ+ can be negative) will likely increase

both τlead and FPR. We still use all the available negative (balanced) examples for

training.

Apart from filtering falling trajectories based on τ+ as described above, we find

that the learned performance can be improved by re-weighting the positive and

negative training data to provide the learning algorithm. In principle the ratio

of weights for positive and negative training instances can also be treated as a

parameter to the learning algorithm, but through empirical verification, we observe

that weighting balanced instances 4 times the weight of falling instances achieves

close to the best values for FPR and τlead across a broad range of τ+ values. Thus

we do not vary the weight ratio as a parameter.

In attempting to identify a “working range” for τ+ based on evaluating its rela-

tionship with FPR and τlead, we discover the need to formulate a second parameter,

τhis, to also play a role in determining this relationship. In principle the robot could

switch from Cbal to Cfall as soon as the predictor classifies the current state as

falling. However, this would make the control policy brittle, over-reactive and often

incorrect, with even a single false positive causing the unnecessary deployment of

Cfall. This is avoided by maintaining a finite history of the predictions made by

the decision list, and only predicting falling when the list has consistently predicted

falling over all states in the history window. Thus, the atomic predictions made by

the learned decision list within the history window are combined to make a sin-

gle prediction, which is falling only if all atomic predictions are falling. Figure 9(b)

depicts this adaptation, which has the effect of decreasing FPR.

The parameter τhis corresponds to the temporal length of the history window

maintained. While τ+ is used while generating data for training, τhis only comes

into play after the predictor has been learned. Note that under the use of τhis, the

fall predictor is no longer a mapping from a feature vector to {balanced, falling},

but a mapping from a feature vector and a history of predictions to {balanced,

falling}. A positive quantity, τhis effectively smooths out predictions, weeding out

stray, short-lived predictions of falling. In so doing, it also has the effect of delaying

correct predictions of falling, thereby decreasing τlead. Together, τ+ and τhis provide

handles to control the tradeoff between FPR and τlead: they can be set by the user

as inputs to the learning algorithm.

6. Results

In this section we report experimental results. Since we have two parameters, τ+

and τlead, as inputs to the learning process, we obtain a family of solutions. Every

combination of τ+ and τhis yields a separate fall predictor, which registers different
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values of FPR and τlead. Figure 10 plots τlead values of learned fall predictors against

their FPR values. Reported values are obtained through 10-fold cross-validation on

a set of 1000 trajectories, as described in Section 4.

The plot in Figure 10 is similar to an ROC curve for classification problems, in

which true positive rate is plotted against FPR. In fall prediction it is required that

falling states be detected early along trajectories reaching fallen: τlead quantifies the

fulfilment of this requirement. Similar to the pattern in a typical ROC curve, we find

that decreasing FPR comes at the cost of decreasing τlead. We pick three learned

solutions, FPL1, FPL2, and FPL3, to summarize the observed tradeoff between

FPR and τlead. FPL1 is conservative, with high τlead (0.90s) but high FPR (0.46).

At the other extreme, FPL3 has near-zero FPR, but less than half the τlead value

of FPL1. In between them, FPL2 enjoys a relatively low value FPR (0.06), but also

a reasonably high value of τlead (0.76s). Indeed FPL2 and several other learned

predictors compare favorably with the manually designed predictors considered in

Section 4 both in terms of FPR and τlead. Further, having a range of solutions

enables predictors to be chosen for specific needs: on a real robot, whose falls could

be disastrous, a high reaction time might be favored over a low false positive rate.

The dependence of FPR and τlead on the parameters of the learning algorithm,

τ+ and τhis, is shown in Figure 11 (plots on left). In keeping with intuition, we find

that lower (higher) values of τ+ and τhis increase (decrease) FPR and τlead. Note

that if we did not withhold any positive instances (τ+ ≈ −1.5s) or use a history
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Fig. 10. Tradeoff between FPR and τlead. Each point corresponds to a trained fall predictor,

and marks its τlead and FPR values. Three predictors — FP L1, FP L2, and FP L3 — showcase
contrasting configurations, proceeding from high τlead and high FPR to low τlead and low FPR.
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window (τhis = 0), FPR would be nearly 100%; τ+ and τhis are necessary to deliver

the benefits of supervised learning. While the graphs on the left in Figure 11 are

based on training with 900 trajectories (cross-validated), we find that roughly 250

trajectories suffice for obtaining FPR < 10% and τlead > 0.70s (plots on right).

Recall that separate decision lists are learned for each of 16 foot contact modes:

the mean rule size (bottom row in Figure 11) is the average of the rule sizes (number
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Fig. 11. FPR, τlead, and the mean rule size of learned fall predictors. The left plot in each row shows
the value of the corresponding statistic at different settings of τ+ and τhis. Three representative

predictors, FP L1, FP L2 and FP L3, are marked. Note that mean rule size does not depend on
τhis. The right plot in each row records the effect of the number of training trajectories in learning
the predictor. FPR, τlead, and mean rule size are plotted against the number of trajectories used in
training, under settings corresponding to FP L2 (τ+ = −0.25s, τhis = 0.06s). All reported values

are averages of 10 folds of cross-validation.
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of comparison operators) of these decision lists. Note that the mean rule size does not

depend on τhis, since τhis is only used in making predictions after the decision list

has been learned, and the rule size already determined. The mean rule size increases

sharply as τ+ is decreased, i.e., as points earlier in falling trajectories are included

in the training data. This trend is explained by the fact that the boundary between

the balanced and falling classes is irregular: rules for predicting falling early have

to distinguish fine distinctions as we train on states early along falling trajectories.

The “depths” of the learned lists are typically between 5 and 10. In comparison,

we expect typical hand-coded rules for fall prediction to contain no more than 4–6

comparisons, over depths of 2–3.

Table 2 shows a comparison of the three learned predictors, FPL1, FPL2 and

FPL3, summarizing their input parameters and performance statistics. In Figure 12

we revisit the illustrative example introduced in Section 4. In this example, from the

same point in the robot’s configuration space, it is subjected to forces with increasing

magnitudes. From the plots it is apparent that as we progress from FPL1 to FPL3

nearly every fall is predicted later; within the pockets of “no fall” FPL1 makes

several incorrect predictions of fall. Many of its predictions (at force magnitudes

beyond 220N) are made even while the 100ms impulse is being applied.

Figures 13 and 14 relate to Figure 6, which shows 100 trajectories projected

along axes corresponding to CoM displacement (Figure 13) and linear momentum

(Figure 14). The projections are annotated with the points at which FPL1, FPL2

and FPL3 make their predictions of falling, and indeed indicate whether the predic-

tions are correct. In the plots in Figure 13, the x axis marks the time elapsed after

the termination of the 100ms impulse. This projection offers visible evidence that

falling predictions are made later as we proceed from FPL1 to FPL3. Correspond-

ingly, fewer predictions are false positives. We observe in Figure 14 that FPL3, a

careful predictor, predicts falling less often at low magnitudes of linear momentum.

Table 2. A tabular comparison of learned fall predictors FP L1, FP L2, and FP L3. Rows 1 and 2

show input parameters; rows 3, 4, and 5 report performance statistics. Each reported statistic is
the average of 10 folds of cross-validation, carried out over a data set with 1000 trajectories.

Predictor FPL1 FPL2 FPL3

τ+ (/s) -0.3 -0.25 0.3

τhis (/s) 0.016 0.060 0.044

FPR 0.46 0.06 0.005

τlead (/s) 0.90 0.76 0.43

Mean rule size 61.6 51.4 5.3
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Fig. 12. Plots corresponding to the example discussed in Section 1 (Figure 2). Each plot corresponds

to a different predictor: one set of bars (light) mark the time after force application to reach a
fallen state (if at all), while the other set of bars (dark) show the time elapsed for predicting falling

(if at all). Dark bars that do not overlap with light bars represent false positives.
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balanced falling falling predicted false positiveKey:

Fig. 13. Plots corresponding to the the 100 trajectories shown earlier in Figure 6(a). Each plot
corresponds to a different predictor: light solid lines mark trajectories within the balanced class, and
dashed lines mark trajectories in the falling class. Stars on light lines mark the points that falling

is predicted; the lines are shown dark solid if these predictions were incorrect (false positives).
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Fig. 14. Plots corresponding to the the 100 trajectories shown earlier in Figure 6(b). Each plot
corresponds to a different predictor: light solid lines mark trajectories within the balanced class, and
dashed lines mark trajectories in the falling class. Stars on light lines mark the points that falling

is predicted; the lines are shown dark solid if these predictions were incorrect (false positives).
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7. Summary and Discussion

A humanoid robot cannot completely avoid falling, and so it requires a concerted

strategy to control a fall when it occurs. The precursor to fall control is fall pre-

diction, which is the subject of our paper. In particular we are concerned with pre-

dicting fall when a human-size robot is subjected to relatively strong disturbances,

resulting in quite complex dynamics. We adopt a machine learning approach.

The fall pattern of a robot depends on its mass, inertia, geometry, dimensions,

material composition, motor torque limits, and controls. By not explicitly modeling

any of these aspects, but rather depending on the information implicit in recorded

trajectories, our method can be applied with little change on different robots. A

different robot model and/or controller could benefit from specifically designed fea-

tures; however, whereas a model-based method would require recalibration or a

complete revision of the model, our approach primarily requires data generation

and training.

We find it beneficial to learn a separate fall predictor under every foot contact

mode. Rather than our choice of supervised learning method — decision lists — the

more general contribution of our work is a method to control the tradeoff between

FPR and τlead, which are fundamental desiderata while performing fall prediction.

By discarding positive training instances on the basis of the parameter τ+, we

commit to reduce the incidence of false positives, even if it reduces the lead time

to fall. Likewise τhis is used to weed out stray false positives by averaging over

a time window, which again has the compensatory effect of reducing τlead. An

important direction for future work is to consider learning methods such as Hidden

Markov Models, which are naturally equipped to make predictions over temporal

sequences, and have been used successfully for fall prediction.22 Such models have

the additional advantage of providing probabilistic (or “soft”) classifications of state,

rather than the categorical mapping learned by decision lists.

Our current approach ignores aspects such as variable ground friction, sensor

and actuation noise, and complex foot geometries. We do not expect fall predictors

learned in simulation to register the same FPR and τlead values when deployed

on a real ASIMO robot. At best, we expect running our learning algorithm on

data recorded on the real robot to yield results with similar trends. Note that

reasonable results are obtained by training on roughly 250 trajectories. The pushing

regimen described in our work would be tedious if a human agent is involved in the

generation of trajectories on the robot, but it is conceivable to design an automated

apparatus to push the robot and arrest its falls. The robot could then generate

data autonomously through a repetitive process. Kohl and Stone adopt a similar

strategy to optimize the forward walking speed of four-legged Aibo robots.39

In this early work in the area of adaptive fall prediction, we generate and process

data as a batch, leveraging the strength of established supervised learning methods

to surmount the highly irregular robot dynamics. As humanoid robots gain auton-

omy and begin exploring unknown environments, it might not be feasible to gather
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data from all possible situations beforehand and learn off-line. Although off-line

learning could initialize the robot’s fall predictor, it would have to be refined in an

on-line, incremental manner as the robot encounters novel situations. In real-world

systems, failures tend to occur less frequently, and so it becomes necessary if learn-

ing on-line to extract the most information from the few — in this case falls — that

occur.40 A more worrying concern for an autonomous robot is a lack of reliable

supervisory signals. If the robot falls, how should it decide at which points in its

trajectory a force was acting, and at which precise instant it crossed from balanced

to falling? In our simulation we have the benefit of hindsight after a fall to identify

such details for training.

We have focused on learning the high-level decision of choosing between a single

balance controller and a fall controller. A natural extension is to further divide

falling states based on direction, speed, etc., and design specific fall controllers for

each category. More generally, a significant body of work addresses the challenge of

adapting the low-level controllers themselves, on humanoid and other robots.41–43

To learn a fall management strategy, large negative rewards could be provided to

learn to avert falls, with graded rewards to prompt the minimization of fall-related

damage. In such an integrated framework, fall prediction would become an implicit

step, determined by the utilities of applying different controls from a state. Our

promising results from treating fall prediction as an isolated supervised learning

problem encourage the pursuit of a general learning architecture for humanoid fall

management.
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