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Abstract

Policy Iteration (PI) (Howard 1960) is a classical method for
computing an optimal policy for a finite Markov Decision
Problem (MDP). The method is conceptually simple: start-
ing from some initial policy, “policy improvement” is repeat-
edly performed to obtain progressively dominating policies,
until eventually, an optimal policy is reached. Being remark-
ably efficient in practice, PI is often favoured over alternative
approaches such as Value Iteration and Linear Programming.
Unfortunately, even after several decades of study, theoret-
ical bounds on the complexity of PI remain unsatisfactory.
For an MDP with n states and k actions, Mansour and Singh
(1999) bound the number of iterations taken by Howard’s
PI, the canonical variant of the method, by Opkn{nq. This
bound merely improves upon the trivial bound of kn by a lin-
ear factor. However, a randomised variant of PI introduced
by Mansour and Singh (1999) does yield an exponential im-
provement, with its expected number of iterations bounded
by O ppp1` 2{ log2pkqq k{2q

n
q.

With the objective of furnishing improved upper bounds for
PI, we introduce two randomised procedures in this paper.
Our first contribution is a routine to find a good initial policy
for PI. After evaluating a number of randomly generated poli-
cies, this procedure applies a novel criterion to pick one to ini-
tialise PI. When PI is subsequently applied, we show that the
expected number of policy evaluations—including both the
initialisation and the improvement stages—remains bounded
in expectation by Opkn{2

q. The key construction employed
in this routine is a total order on the set of policies. Our sec-
ond contribution is a randomised action-switching rule for PI,
which admits a bound of p2 ` lnpk ´ 1qqn on the expected
number of iterations. To the best of our knowledge, this is the
tightest complexity bound known for PI when k ě 3.

1 Introduction
The Markov Decision Problem (MDP) (Bellman 1957; Put-
erman 1994) has been in use for several decades as a formal
framework for decision-making under uncertainty. An MDP
models an agent whose actions result in stochastic state tran-
sitions, while yielding associated rewards. The agent’s natu-
ral aim is to consistently take actions that lead to high long-
term reward. Thus, given an MDP, the central computational
question is that of determining an optimal way for the agent
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to act. This problem, referred to as MDP planning, is the
focus of this paper.

Formally, an MDPM “ pS,A,R, T, γq has a set of states
S in which an agent can be, and a set of actions A that the
agent can execute. Upon taking action a from state s, the
agent receives a reward r, assumed to be a real-valued ran-
dom variable with mean Rps, aq. The action a also trans-
ports the agent to a state s1, selected from S at random with
probability T ps, a, s1q. In this paper, we assume that S and
A are both finite, with |S| “ n ě 2, and |A| “ k ě 2.

To fully specify M , we need to define an objective for
the agent. A policy (assumed stationary, deterministic, and
Markovian) is a mapping from S to A: when following
a policy π, the agent takes action πpsq when in state s.
A natural objective is to find a policy that maximises the
agent’s expected long-term reward. Consider an agent that
starts in some state s0 at time 0 and continually follows
π. The agent thereby encounters a trajectory over time:
xs0, πps0q, r0, s1, πps1q, r1, s2, . . . y. The value of state s
under policy π is given by

V πpsq
def
“Eπ

«

8
ÿ

t“0

γtrt|s0 “ s

ff

, (1)

where γ P r0, 1s is a discount factor. Setting γ ă 1, as done
under the discounted reward setting (Sutton and Barto 1998,
see Section 3.3), ensures that values are well-defined. In cer-
tain MDPs, such as those with a “sink state”, values continue
to be well-defined for all states and policies under the total
reward setting (Fearnley 2010), wherein γ is set to 1. In this
paper, we make no strict assumption on the reward setting
used in defining the MDP—as we will see shortly, we only
require that the Policy Iteration algorithm (Howard 1960) be
applicable. This algorithm can also be used under the av-
erage reward setting (Mahadevan 1996), which calls for a
more nuanced definition of values. To keep our exposition
simple, we stick to (1) throughout this paper, and assume
γ ă 1 when we refer to 1{p1´ γq.

Let Π be the set of kn distinct policies corresponding to
M . It is a key property (Bellman 1957) that this set contains
a policy π˚ such that for @s P S,@π P Π,

V π
‹

psq ě V πpsq. (2)
Such a policy π‹ is called an optimal policy (in general there
could be multiple optimal policies for an MDP).



The problem we consider is precisely that of finding an
optimal policy for a given MDP M “ pS,A,R, T, γq.1
Specifically, we examine the Policy Iteration (PI) (Howard
1960) family of algorithms, which follow the general tem-
plate of starting with some initial policy, and repeatedly
computing local improvements until an optimal policy is
found. In most MDPs encountered in practice, the num-
ber of such improvements (or “iterations”) needed to find
an optimal policy is relatively small compared to the size
of the MDP. However, there do exist MDPs wherein PI
may be forced to pass through lengthy improvement se-
quences (Fearnley 2010). From a theoretical standpoint, it
has proven hard to establish tight upper bounds on the num-
ber of iterations taken by PI: the best existing upper bounds
are of the formOppk{2qnq, when k is large, for a randomised
variant of PI proposed by Mansour and Singh (1999). Indeed
the aim of this paper is to provide better formal guarantees.
To this end, we propose two algorithms.

1. Our first contribution is a randomised procedure titled
“Guess-and-Max”, which picks a good initial policy for
PI. We show that regardless of the PI algorithm subse-
quently applied, the total number of policy evaluations
remains bounded by Opkn{2q in expectation..

2. Our second contribution is a randomised improvement
operator for a variant of PI called “Simple” PI (Meleko-
poglou and Condon 1994). We bound the expected num-
ber of iterations in the resulting algorithm, which we call
Randomised Simple PI (RSPI), by p2` lnpk ´ 1qqn.
This paper is organised as follows. In Section 2, we give

an overview of approaches for MDP planning, and therein
highlight the appeal of PI, which we describe in detail. In
sections 3 and 4, we present our two algorithms and the
corresponding analyses. We summarise our results and con-
clude the paper in Section 5.

2 Planning Algorithms and their Complexity
In this section, we introduce some basic results pertaining to
MDPs before considering algorithms that build upon these
results. First, observe from (1) that the value function V π of
a policy π, which yields values at each state, can be specified
recursively: @s P S,

V πpsq “ Rps, πpsqq ` γ
ÿ

s1PS

T ps, πpsq, s1qV πps1q.

This definition implies that the value function of a pol-
icy can be computed efficiently by solving a system of
n linear equations, which are called Bellman’s Equations.
Clearly this operation—called policy evaluation—requires
no more than Opn3q arithmetic operations. With an addi-
tional Opn2kq operations, the action value function func-
tionQπ corresponding to policy π can be obtained from V π:
@s P S,@a P A,

Qπps, aq “ Rps, aq ` γ
ÿ

s1PS

T ps, πpsq, s1qV πps1q.

1Thus, we need to solve a planning problem. In the related prob-
lem of learning (Sutton and Barto 1998), R and T are unknown,
but can be queried for samples of rewards and next states.

Qπps, aq denotes the expected long-term reward obtained
when the agent executes action a at state s once, and there-
after executes π. The value function corresponding to an op-
timal policy π‹ is termed the optimal value function, denoted
V ‹. Indeed V ‹ is the unique solution of another set of equa-
tions called Bellman’s Optimality Equations: @s P S,

V ‹psq “ max
aPA

˜

Rps, aq ` γ
ÿ

s1PS

T ps, a, s1qV ‹ps1q

¸

.

V ‹, Q‹ and π‹ are easy to derive from each other. If V ‹ is
known, it directly yields Q‹ “ Qπ

‹

, from which π‹ can be
readily obtained: @s P S, π‹psq “ argmaxaPAQ

‹ps, aq. If
we start with π‹, then policy evaluation yields V ‹, which, in
turn, gives Q‹.

Owing to the presence of the max operator, solving Bell-
man’s Optimality Equations is not as straightforward as pol-
icy evaluation. Consequently, numerous planning algorithms
have been proposed in the literature. These algorithms can
be placed in the following broad categories.

2.1 Linear Programming (LP)
V ‹ and π‹ can be obtained by solving a linear program
based on Bellman’s Optimality Equations; typical formula-
tions either involve n variables and nk constraints, or nk
variables and n constraints (Littman, Dean, and Kaelbling
1995, see Section 4.1). Assuming that exact floating point
arithmetic operations can be performed in unit time, al-
gorithms such as the Interior-Point (Karmarkar 1984) and
Ellipsoid (Khachiyan 1980) methods for LP yield weakly
polynomial bounds on the running time. The corresponding
bounds are polynomial in n, k, and the number of bits B
needed to represent the MDP. The dependence on B arises
because these methods seek increasingly better approxima-
tions of the optimal solution, and this quest naturally gets
curtailed by machine precision.

A contrasting approach, which eliminates the dependence
on B, involves searching over a discrete set of solutions
that is known to contain the optimal one. Thus, by apply-
ing the Simplex method (Dantzig 1963) on the linear pro-
gram resulting from an MDP, bounds can be obtained solely
in terms of n and k. While bounds for the canonical Sim-
plex algorithm are in general exponential in n, it has been
shown that the method is strongly polynomial for determin-
istic MDPs (Post and Ye 2013). The best strong bounds
for LP are subexponential ones arising from randomised
vertex-switching methods (Kalai 1992; Matoušek, Sharir,
and Welzl 1996): the best that apply to general MDPs are
Oppolypn, kq expp2

?
nqq (Gärtner 2002).

2.2 Value Iteration (VI)
Although attractive in theory, LP-based methods seldom
perform better in practice when compared to “dynamic pro-
gramming” techniques that compute V ‹ and π‹ based on an
iterated sequence. Starting with V 0, an arbitrary initial guess
of V ‹, the Value Iteration (VI) algorithm (Szepesvári 2010,
see Section 2.4) applies the following iteration. @s P S,

V t`1psq Ð max
aPA

˜

Rps, aq ` γ
ÿ

s1PS

T ps, a, s1qV tps1q

¸

.



The “Bellman Optimality Operator” applied above is a
contraction in the max-norm, and Banach’s Fixed Point The-
orem ensures that the sequence xV 0, V 1, V 2, . . . y converges
to V ‹ (Szepesvári 2010, see Appendix A). The number of it-
erations to convergence is bounded by a polynomial in n, k,
1{p1´γq, andB (Littman, Dean, and Kaelbling 1995). Some
relatively simple changes to the update operator and the se-
quence of state-updates can speed up VI in practice (Sutton
and Barto 1998, see Section 9.4), but the inherent depen-
dence on 1{p1´ γq implies unbounded growth as γ Ñ 1.

2.3 Policy Iteration (PI)
We now consider the basis for Policy Iteration (PI), which is
the subject of this paper. For a given policy π, let ISpπq be
the set of states s on which π is not greedy with respect to
its own action value function: in other words,

ISpπq def
“

"

s P S : Qπps, πpsqq ă max
aPA

Qπps, aq

*

.

PI (Howard 1960) is an elegant approach based on the
observation that

1. If ISpπq ‰ H, then π can be “improved” by switching to
more promising actions on states in ISpπq;

2. If ISpπq “ H, then π is optimal.

Thus, ISpπq is the set of (locally) “improvable states” in π.
Specifically, for each state s in ISpπq, let IApπ, sq be the set
of actions that improve upon the action taken by π: that is,

IApπ, sq def
“ta P A : Qπps, aq ą V πpsqu .

Now, assuming π is not optimal, let π1 be a policy that in
one or more states s in ISpπq, takes an action belonging to
IApπ, sq, and in the remaining states, takes the same actions
as π: that is,

Ds P S : π1psq P IApπ, sq, and

@s P S : pπ1psq “ πpsqq _ pπ1psq P IApπ, sqq. (3)

It can be shown that π1 improves upon (or dominates) π in
the following sense.
Definition 1 (ľ, ą). For functionsX : S Ñ R, Y : S Ñ R,
we define X ľ Y if and only if

@s P S : Xpsq ě Y psq,

and we define X ą Y if and only if

X ľ Y and Ds P S : Xpsq ą Y psq.

For policies π1, π2 P Π, we define π1 ľ π2 if and only if

V π1 ľ V π2 ,

and we define π1 ą π2 if and only if

V π1 ą V π2 .

Theorem 2 (Policy improvement (Szepesvári 2010; Bert-
sekas 2012)). Let π, π1 P Π be such that ISpπq ‰ H, and
π1 satisfies (3). Then

π1 ą π.

Proof. For convenience, we provide a proof of this “policy
improvement theorem”, which is standard material in text-
books on MDPs (Szepesvári 2010; Bertsekas 2012). The
main tool employed in the proof is the “Bellman Operator”
Bπ : pS Ñ Rq Ñ pS Ñ Rq, given by: @s P S,

pBπpXqqpsq
def
“

ÿ

s1PS

`

Rps, πpsqq ` γT ps, πpsq, s1qXps1q
˘

.

A moment’s reflection assures us that π1 satisfying (3) is
equivalent to the following statement.

Bπ
1

pV πq ą V π. (4)

Now, it is easy to verify that forX : S Ñ R and Y : S Ñ R,
if X ľ Y , then Bπ

1

pXq ľ Bπ
1

pY q. Thus, applying Bπ
1

to
both sides of (4), we get pBπ

1

q2pV πq ľ Bπ
1

pV πq. Applying
Bπ

1

to both sides again and applying the transitivity of ľ ad
infinitum, we obtain:

lim
lÑ8

pBπ
1

qlpV πq ľ Bπ
1

pV πq.

It is well known that by Banach’s Fixed Point theorem , the
limit on the left evaluates to V π

1

. Combining the above rela-
tion with (4) completes the proof.

Corollary 3 (Policy optimality). For π P Π, if ISpπq “ H,
then π is optimal.

Proof. Again we argue using the Bellman Operator:

ISpπq “ H ùñ @π1 P Π : V π ľ Bπ
1

pV πq

ùñ @π1 P Π : V π ľ lim
lÑ8

pBπ
1

qlpV πq

ðñ @π1 P Π : V π ľ V π
1

.

Indeed the PI algorithm essentially puts these results to
practice: starting with some initial policy, it repeatedly ap-
plies policy improvement until an optimal policy is reached.
Note that given a policy π, ISpπq and IApπ, ¨q can be ob-
tained in Opn3 ` n2kq time. Thus, the complexity of PI is
essentially determined by the number of iterations needed
to reach an optimal policy. Since the algorithm can visit no
policy twice (owing to strict improvement), the number of
iterations is trivially bounded by kn.

The elegant structure of PI facilitates complexity bounds
that are independent of B and γ, thereby contributing to the
method’s theoretical appeal.2 The key design choice within
PI is in the implementation of the improvement operator.
Theorem 2 holds for every choice of π1 where some non-
empty subset of ISpπq is “switched”, and for each state s
that is thereby chosen for switching, π1 can adopt any from
action IApπ, sq. Which non-empty subset of ISpπq must we
choose, and to which actions must we switch? Does our
choice facilitate a tighter bound on the number of iterations?

In the canonical variant of PI (called Howard’s
PI) (Howard 1960), all switchable actions are switched in
every iteration: that is, the subset chosen for switching is

2Polynomial bounds involving 1{p1´ γq have also been shown
for PI (Ye 2011; Scherrer 2013).



ISpπq itself. Thus, Howard’s PI implements a greedy vari-
ant of policy improvement, and is sometimes referred to
as Greedy PI. Mansour and Singh (1999) show that re-
gardless of the strategy used for picking improving actions,
Howard’s PI requires at most 13kn{n iterations. Hollanders
et al. (2014) tighten this bound to pk{pk´1q`op1qqpkn{nq.

Mansour and Singh (1999) also propose a randomised
version of PI in which the subset of states to be im-
proved is chosen uniformly at random from among the
non-empty subsets of ISpπq. For this algorithm, they show
that the expected number of iterations is bounded by
O ppp1` 2{ log2pkqq k{2q

n
q; again, the bound holds for ev-

ery choice of action-switching rule. A tighter bound of
20.78n holds for k “ 2. In this case, there is at most one
improving action per state, and so no choice in switching.

Fearnley (2010) provides an MDP construction and an ini-
tial policy that takes Howard’s PI through Ωp2n{7q iterations.
While Fearnley’s construction is for the total and average re-
ward models, it has subsequently also been extended to the
discounted reward model (Hollanders, Gerencsér, and Del-
venne 2012). These recent lower bounds for Howard’s PI
follow several years after Melekopoglou and Condon (1994)
showed a lower bound of Ωp2n{2q for Simple PI, a variant in
which the improvable state with the highest index (assuming
a fixed indexing over S) is chosen for improvement. This
lower bound is shown on a two-action MDP.

Interestingly, we show a positive result based on Sim-
ple PI: faced with choice in action-switching (that is, when
k ě 3), we argue that it is efficient to choose an action uni-
formly at random from the improving set. To the best of our
knowledge, the corresponding bound of p2` lnpk´1qqn ex-
pected iterations is the tightest complexity bound known for
the PI family of algorithms when k ě 3. Before describing
this result in Section 4, we present an approach that can be
coupled with any variant of PI to obtain an expected com-
plexity bound of Oppolypn, kqkn{2q for MDP planning.

3 Guess-and-Max
In this section, we describe Guess-and-Max, a simple guess-
ing strategy that can be used to “quickly” find a policy that
is already “close” to optimal. The idea underlying Guess-
and-Max is that if PI is to get “stuck” in a long chain of im-
provement, then random guessing can help “jump” to poli-
cies higher up the chain. Unfortunately, the ą relation is a
partial order, and does not offer a ready basis for comparing
an arbitrary pair of policies. The central idea in Guess-and-
Max is to construct a total order (denoted Ï) on the set of
policies, and measure progress along the chain it induces.

Definition 4 (Total order Ï). For π P Π, we define

V pπq
def
“
ÿ

sPS

V πpsq.

Let L be an arbitrary total order on Π, which we shall use
for tie-breaking. (For example, L could be taken as the lex-
icographic ordering of the set of all words of length n over
the alphabet A, each word representing a policy.)

For π1, π2 P Π, we define π1 Ï π2 if and only if

V pπ1q ą V pπ2q, or
V pπ1q “ V pπ2q and π1Lπ2.

Observe that since L is a total order, so is Ï: that is,

1. @π1, π2 P Π : π1 Ï π2 and π2 Ï π1 ùñ π1 “ π2;

2. @π1, π2, π3 P Π : π1 Ï π2 and π2 Ï π3 ùñ π1 Ï π3;

3. @π1, π2 P Π : π1 Ï π2 or π2 Ï π1.

Since Ï is a total order, we find it convenient to associate
a unique index with each policy π to denote the number of
policies it dominates under Ï:

IπÏ
def
“
ˇ

ˇtπ1 P Π : π Ï π1u
ˇ

ˇ .

Clearly this index ranges from 1 to |Π|, with the highest in-
dex belonging to an optimal policy. Note that @π, π1 P Π :

IπÏ ě Iπ
1

Ï ðñ π Ï π1. Hereafter, we refer to IπÏ as the
“Ï-index” of π.

Given any two policies, observe that they can be com-
pared under Ï with just two policy evaluations (in Opn3q
time). More crucially, observe that Ï is designed to be “re-
spected” by ą, and consequently by policy improvement.

Lemma 5 (Policy improvement respects Ï). For π, π1 P Π,
if policy improvement to π yields π1, then π1 Ï π.

Proof. Since policy improvement to π yields π1, it follows
from Theorem 2 that π1 ą π. In turn, this implies that
V pπ1q ą V pπq, and hence π1 Ï π.

Having defined the total order Ï, we are now ready to
apply it in Guess-and-Max, shown below. The procedure se-
lects t policies uniformly at random from Π, and returns the
one that dominates all t´1 others under Ï.3 Running Guess-
and-Max with t “ rkn{2s, we show that with high probabil-
ity, the policy returned has a high Ï-index.

Procedure Guess-and-Max(t)
Select policy π uniformly at random from Π.
Repeat t´ 1 times:

Select policy π1 uniformly at random from Π.
If π1 Ï π then

π Ð π1.
Return π.

Lemma 6. Let πg be the policy returned by
Guess-and-Max

`P

kn{2
T˘

. For c ě 1, we have:

P
!

IÏ
πg
ă kn ´ ckn{2

)

ă
1

ec
.

Proof. Let ΠTop Ď Π be the set of policies with indices at
least kn ´ ckn{2: that is,

ΠTop
def
“

!

π P Π : IÏ
π ě kn ´ ckn{2

)

.

3To select a policy uniformly at random from Π, one may sim-
ply visit each state and pick an action uniformly at random from A
for that state. The complexity of this operation is clearly Opnkq.



By construction, the policy πg returned by Guess-and-Max
must be in ΠTop if any one of the

P

kn{2
T

policies it has gen-
erated at random is in ΠTop. Therefore,

P
!

IÏ
πg
ă kn ´ ckn{2

)

ď

ˆ

1´
|ΠTop|

|Π|

˙rkn{2s

ď

´

1´
c

kn{2

¯kn{2

ă
1

ec
.

From Lemma 5, we see that if policy improvement to π
yields π1, then IÏ

π1 ą IÏ
π . Thus, if Guess-and-Max returns a

policy with Ï-index at least kn ´ i, then any PI algorithm
that is subsequently applied will at most make i policy im-
provements (i ` 1 policy evaluations) to reach an optimal
policy. We use this observation to bound the total number
of policy evaluations performed by sequencing Guess-and-
Max(rkn{2s) and PI. Here is our first main result.

Theorem 7 (Guess-and-Max bound). Consider an algo-
rithm that runs Guess-and-Max

`P

kn{2
T˘

, takes the returned
policy πg as an initial policy for PI, and then runs PI until
an optimal policy is found. The expected number of policy
evaluations performed by the algorithm is O

`

kn{2
˘

.

Proof. Since the number of policy evaluations under Guess-
and-Max is O

`

kn{2
˘

, it suffices to show that the expected
number of policy improvements in the PI phase is also
O
`

kn{2
˘

. We bound this quantity below, after (1) observ-
ing that for c ě 0, if IÏ

πg ě kn ´ ckn{2, then the number of
policy improvements is at most ckn{2; and (2) by applying
Lemma 6,

rkn{2s
ÿ

c“1

Ptkn ´ pc´ 1qkn{2 ą IÏ
πg
ě kn ´ ckn{2u ¨ ckn{2

ď kn{2 `

rkn{2s
ÿ

c“2

PtIÏ
πg
ă kn ´ pc´ 1qkn{2u ¨ ckn{2

ď kn{2 `
8
ÿ

c“2

ckn{2

ec
ă 2kn{2.

In deriving the Opkn{2q bound, we have accounted for
the worst case of policy improvement—that PI will only im-
prove the Ï-index by one every iteration. On the contrary, PI
algorithms invariably take much larger leaps up the total or-
der, and so can be initialised with fewer than

P

kn{2
T

guesses.
In fact the randomised variant of Mansour and Singh (1999)
provably takes a large number of large leaps, and so can
possibly be combined with Guess-and-Max to get a tighter
bound than Opkn{2q.

A second remark pertains to our choice of V p¨q in the def-
inition of Ï. As the reader may observe, any convex combi-
nation of the individual state values (rather equal weighting)
will preserve the properties of V p¨q we require here. At the
moment, we do not know if the total order is strictly neces-
sary for constructing a routine akin to Guess-and-Max. Yet,
it does give useful intuition and it simplifies our analysis.

4 Randomised Simple PI
As briefly described in Section 2, Simple PI (Melekopoglou
and Condon 1994) is a variant of PI in which exactly one
state s` is improved in each iteration: assuming that the
states are uniquely indexed, s` is the improvable state with
the highest index. Let us assume that S “ ts1, s2, . . . , snu.
If ISpπq ‰ H, then s` “ si` , where

i` “ max
iPt1,2,...,nu,siPISpπq

i.

Melekopoglou and Condon (1994) show a two-action
MDP and a starting policy from which Simple PI must take
at least Ωp2n{2q iterations. We show that the structure of
Simple PI can, in fact, be used to an advantage when there
are more than two actions: indeed switching to an action a`
that is picked uniformly at random from IApπ, s`q results in
a favourable bound. This choice contrasts with the common
practice of switching to actions that maximise Qπps`, ¨q.
We are unaware of any theoretical analysis of this greedy
improvement strategy. Below is a full description of Ran-
domised Simple PI (RSPI), which is our randomised variant
of Simple PI.

Algorithm RSPI
π Ð Arbitrary policy in Π.
Repeat

Evaluate π; derive ISpπq, IApπ, ¨q.
If ISpπq ‰ H

i` Ð maxiPt1,2,...,nu,siPISpπq i.
a` Ð Element of IApπ, si`q chosen

uniformly at random.
For i P t1, 2, . . . , nu:

If i “ i` then
π1psiq Ð a`

Else
π1psiq Ð πpsiq.

π Ð π1.
Until ISpπq “ H.
Return π.

The structure of Simple PI facilitates an interpretation
wherein an n-state MDP is solved by recursively solving
several pn´1q-state MDPs. Imagine that we start with a pol-
icy π, in which action a is taken from state s1. By construc-
tion, the algorithm ensures that a will get switched (if at all)
only when a policy π1 is reached such that ISpπ1q “ ts1u. At
this point, the “remaining MDP” (over states s2, s3, . . . , sn)
has effectively been “solved” such that π1 dominates (in
terms of ľ) every other policy π2 for which π2ps1q “ a.
Having thereby solved for the setting “a at s1”, the algo-
rithm picks a provably-improving action b at s1, solves for
this new setting, and proceeds in this manner until an opti-
mal action is picked at s1. By picking uniformly at random
among the improving actions at s1, RSPI ensures that the ex-
pected number of switches to reach an optimal action at s1
is Oplogpkqq. Recursion leads to a bound of Opplogpkqqnq
on the expected number of policy evaluations performed by
RSPI. Below we formalise this argument.



Definition 8 (a-optimal policy). For a P A, we define a
policy π P Π to be a-optimal if and only if

πps1q “ a and @π P Π : π1ps1q “ a ùñ π ľ π1.

Must there be an a-optimal policy for every action a P A?
Clearly, if an optimal policy π‹ is such that π‹ps1q “ a, then
π‹ must be an a-optimal policy. On the other hand, consider
non-optimal policies that pick action a at s1. The following
lemma provides a necessary and sufficient condition for such
policies to be a-optimal. Indeed it is evident from the lemma
that for every a P A, there must exist an a-optimal policy.
Lemma 9. @a P A, let π P Π be a policy such that πps1q “
a and π is not optimal. Then π is an a-optimal policy if and
only if ISpπq “ ts1u.

Proof. Assume that π is an a-optimal policy, and yet there
is some state si P ISpπq for 2 ď i ď n. Clearly, switching
to an improving action in si must result in a policy that still
takes action a in s1, and by Theorem 2, improves upon π in
terms of ą. Thus, by Definition 8, π cannot be an a-optimal
policy, and so our premise is contradicted.

Next we show that if ISpπq “ ts1u, then π is a-optimal.
Note that if ISpπq “ ts1u, then for every policy π1 P Π
such that π1ps1q “ a, we have that for 2 ď i ď n,
Qπpsi, π

1psiqq ď V πpsiq. Therefore, V π ľ Bπ
1

pV πq. As
in the proof of Theorem 2, we now apply Bπ

1

repeatedly to
both sides, to get that V π ľ V π

1

. Thus, π is a-optimal.

From Lemma 9 and the construction of Simple PI, it is
immediate that the trajectory taken by the algorithm has the
following structure.
Lemma 10. Let the sequence of policies visited by Simple PI
on a run be π1, π2, . . . , πT , where πT is an optimal policy.
For every a P A, if there is a policy πi in this sequence
such that πips1q “ a, then there exists j P ti, i` 1, . . . , T u
such that πj is an a-optimal policy, and for all i ď t ď j,
πtps1q “ a.

The crucial result underpinning our analysis is that poli-
cies that are optimal with respect to different actions at s1
are themselves comparable (under ľ), and further, their rel-
ative order is encoded in their sets of improving actions. As a
consequence, by merely evaluating an a-optimal policy π‹a,
a P A, Simple PI “knows” the complete set of actions b P A
such that a b-optimal policy will strictly dominate π‹a.
Lemma 11. For a, b P A, let π‹a be an a-optimal policy,
and π‹b be a b-optimal policy. (1) If b P IApπ‹a, s1q, then
π‹b ą π‹a. (2) If b R IApπ‹a, s1q, then π‹a ľ π‹b .

Proof. (1) If b P IApπ‹a, s1q, let policy πb P Π take the
same actions as π‹a in states s2, s3, . . . , sn, but πbps1q “ b.
We see that BπbpV π

‹
aq ą V π

‹
a ; the repeated application of

Bπ
b

to both sides yields V πb ą V π
‹
a . Since V π

‹
b ľ V πb ,

π‹b ą π‹a. (2) If b R IApπ‹a, s1q, then Qπ
‹
aps1, bq ď V π

‹
aps1q.

Since from Lemma 9, we have that ISpπ‹aq “ ts1u, we also
have that for i P t2, 3, . . . , nu, Qπ

‹
apsi, π

‹
b psiqq ď V π

‹
apsiq.

Consequently, V π
‹
a ľ Bπ

‹
b pV π

‹
aq. Through the repeated ap-

plication of Bπ
‹
b to both sides, we get V π

‹
a ľ V π

‹
b .

We are now ready to prove our final result.

Theorem 12 (RSPI bound). The expected number of policy
evaluations performed by RSPI is at most p2` lnpk ´ 1qqn.

Proof. If we track the action taken at s1 along the trajectory
of policies visited by Simple PI, lemmas 10 and 11 imply
that the sequence must be of the form at11 a

t2
2 . . . atkk , where

for i P t1, 2, . . . , ku, ai is some action in A and ti ě 0.
Moreover, for i, j P t1, 2, . . . , ku, i ă j, if π is an ai-
optimal policy and π1 is an aj-optimal policy, then π1 ľ π.
Lemma 9 also informs us that the last occurrence of action
a in this sequence must belong to an a-optimal policy.

Up to now, we have not made use of the fact that RSPI
uses randomised action selection. Observe that the con-
sequence of so doing is that from ai, the trajectory can
“jump ahead” to aj , skipping all intermediate actions: that
is, ti`1 “ ti`2 “ ¨ ¨ ¨ “ tj´1 “ 0. In fact, observe that
under RSPI, aj is picked uniformly at random from the set
tal, al`1, . . . , aku where l is the least number greater than
j such that if π‹al is an al-optimal policy and π‹aj is an
aj-optimal policy, then π‹al ą π‹aj . For i P t1, 2, . . . , ku,
let τi be the expected number of actions visited at s1 sub-
sequent to visiting action ai. We get τk “ 0, and for
i P t1, 2, . . . , k ´ 1u:

τi ď 1`
1

k ´ i

k
ÿ

i1“i`1

τi1 .

From this relation, it can be verified for 1 ď i ď pk ´ 1q
that τi is upper-bounded by the pk ´ iqth harmonic number
Hk´i “

řk´i
j“1p1{jq. In the worst case, we start at a1, and

take at mostHk´1 steps in expectation to reach ak. Thus the
expected number of actions visited at s1 by RSPI is bounded
by 1`Hk´1 ď 2` lnpk ´ 1q.

The bound in the claim is trivial for every 1-state MDP. If
for every (n ´ 1)-state MDP, n ě 2, the expected number
of policy evaluations is upper-bounded by B, then the argu-
ment above implies an upper bound of p2` lnpk´ 1qqB for
every n-state MDP. Our proof is done.

5 Conclusion
In this paper, we consider PI, an elegant algorithm for MDP
planning. For an n-state, k-action MDP, we propose a novel
scheme for initialising PI, which leads to an overall bound
of Opkn{2q policy evaluations in expectation. We also anal-
yse a randomised version of Simple PI (RSPI), which yields
a bound of p2 ` lnpk ´ 1qqn policy evaluations in expecta-
tion. After decades of research that have improved bounds
for the PI family, often by polynomial factors and constants,
the gains made by RSPI for k ě 3 mark a key theoretical
milestone.
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