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Abstract
Policy Iteration (PI) is a widely-used family of al-
gorithms for computing an optimal policy for a
given Markov Decision Problem (MDP). Starting
with an arbitrary initial policy, PI repeatedly up-
dates to a dominating policy until an optimal pol-
icy is found. The update step involves switch-
ing the actions corresponding to a set of “improv-
able” states, which are easily identified. Whereas
progress is guaranteed even if just one improvable
state is switched at every step, the canonical vari-
ant of PI, attributed to Howard [1960], switches ev-
ery improvable state in order to obtain the next it-
erate. For MDPs with n states and 2 actions per
state, the tightest known bound on the complexity
of Howard’s PI is O(2n/n) iterations. To date, the
tightest bound known across all variants of PI is
O(1.7172n) expected iterations for a randomised
variant introduced by Mansour and Singh [1999].
We introduce Batch-Switching Policy Iteration
(BSPI), a family of deterministic PI algorithms that
switches states in “batches”, taking the batch size b
as a parameter. By varying b, BSPI interpolates be-
tween Howard’s PI and another previously-studied
variant called Simple PI [Melekopoglou and Con-
don, 1994]. Our main contribution is a bound of
O(1.6479n) on the number of iterations taken by
an instance of BSPI. We believe this is the tight-
est bound shown yet for any variant of PI. We also
present experimental results that suggest Howard’s
PI might itself enjoy an even tighter bound.

1 Introduction
The Markov Decision Problem (MDP) [Bellman, 1957; Put-
erman, 1994] has been in use for several decades as a for-
mal framework for decision-making under uncertainty.1 An
MDP can be used to model an agent whose actions result in
stochastic state transitions, while yielding associated rewards.
The agent’s natural aim is to consistently take actions so as to

1Sections 1 and 2, which provide background material, repro-
duce some portions of the text from an earlier publication of the
authors [Kalyanakrishnan et al., 2016].

maximise its long-term reward. Thus, given an MDP, the cen-
tral computational question is that of determining an optimal
way for the agent to act. This problem, referred to as MDP
planning, is the focus of this paper.

Formally, an MDP M = (S,A,R, T, γ) has a set of states
S in which an agent can be, and a set of actions A that the
agent can execute. Upon taking action a from state s, the
agent receives a reward r, assumed to be a real-valued ran-
dom variable with mean R(s, a). The action a also transports
the agent to a state s′, selected from S at random with prob-
ability T (s, a, s′). In this paper, we assume that S is finite,
with |S| = n ≥ 2. We also restrict our attention to 2-action
MDPs: that is, we assume |A| = 2. As we shall see, this
simplified setting itself poses significant challenges for theo-
retical research to overcome.

To fully specify M , we need to define an objective for
the agent. A policy (assumed stationary, deterministic, and
Markovian) is a mapping from S to A: when following a pol-
icy π, the agent takes action π(s) when in state s. A nat-
ural objective is to find a policy that maximises the agent’s
expected sum of discounted rewards, for some given dis-
count factor γ ∈ [0, 1). Concretely, consider an agent that
starts in some state s0 at time 0 and continuously follows
π. The agent thereby encounters a trajectory over time:
〈s0, π(s0), r0, s1, π(s1), r1, s2, . . . 〉. The value of state s un-
der policy π is defined to be

V π(s)
def
=Eπ

[ ∞∑
t=0

γtrt|s0 = s

]
. (1)

Let Π be the set of distinct policies corresponding to M . It is
a key property, as established by Bellman [1957], that this set
contains a policy π? such that for ∀s ∈ S, ∀π ∈ Π,

V π
?

(s) ≥ V π(s). (2)

Such a policy π? is called an optimal policy; in general there
can be multiple optimal policies for an MDP.

The problem we consider is precisely that of finding an op-
timal policy for a given MDP M = (S,A,R, T, γ). Specif-
ically, we examine the Policy Iteration (PI) family of algo-
rithms [Howard, 1960], which follow the general template
of starting with some initial policy, and repeatedly perform-
ing locally improving “switches” until an optimal policy is
found. Each non-optimal policy is guaranteed to have a non-
empty set of “improvable” states, which are easy to identify.



A switch corresponds to changing the actions taken by the
current policy on one or more of these improvable states. Al-
gorithms within the PI family are indeed differentiated solely
by the rule they apply to pick states for switching. Most
popular is Howard’s PI [Howard, 1960], which implements a
greedy switching rule, wherein every state in the improvable
set is switched. Whereas this rule is deterministic, variants
of PI with randomised switching rules have also been consid-
ered in the literature [Mansour and Singh, 1999].

While PI tends to be extremely efficient on MDPs typically
encountered in practice, it has been surprisingly difficult to
establish tight theoretical upper bounds on its running time.
The tightest known bound on the number of iterations taken
by Howard’s PI is O(2n/n) [Mansour and Singh, 1999],
which improves upon the trivial bound of 2n by only a linear
factor! A bound of O(1.7172n) expected iterations applies to
a randomised variant of PI that was proposed by Mansour and
Singh [1999]: this is the tightest bound known to date for the
PI family. Against this backdrop, we propose a new family
of deterministic PI algorithms called Batch-Switching Pol-
icy Iteration (BSPI). Algorithms in this family are parame-
terised by a batch size b that determines the switching rule.
Interestingly the family includes both Howard’s PI (BSPI
with b = n) and a previously-studied algorithm called Simple
PI [Melekopoglou and Condon, 1994] (BSPI with b = 1). By
varying b, BSPI effects an interpolation between these seem-
ingly disparate variants of PI.

Our first contribution is a bound of O(1.6479n) itera-
tions for an instance of BSPI. This bound therefore be-
comes the tightest theoretically-proven bound for the PI fam-
ily. Our analysis makes use of recent results from Gerencsér
et al. [2015] on the complexity of Howard’s PI on small,
constant-size MDPs. The bound of O(1.6479n) iterations,
which is achieved when b is set to 7, depends on the analysis
of Howard’s PI on 7-state MDPs. It appears that our bound
will get even tighter if the complexity-analysis of MDPs with
8 or more states becomes available; as yet, the corresponding
computation has not been feasible. Nevertheless, we present
experimental results to suggest that larger values of b do per-
form better in practice, and so Howard’s PI must remain the
method of choice. We consider our experiments themselves
a useful contribution, as they reinforces the case for a tighter
analysis of Howard’s PI. However, our more important con-
tribution is the formulation of Howard’s PI as a limiting case
of BSPI, which opens up a new approach for analysis.

The remainder of the paper is organised as follows. In Sec-
tion 2, we describe the PI family of algorithms. Next, in Sec-
tion 3, we introduce “trajectory-bounding trees”, a useful de-
vice to track the progress of Howard’s PI. In fact the idea of
trajectory-bounding trees motivates the BSPI family of algo-
rithms, which we present in Section 4. This section includes
theoretical, as well as experimental, analysis related to BSPI.
We present concluding remarks in Section 5.

2 Policy Iteration
In this section, we first lay the groundwork for understand-
ing Policy Iteration (PI)[Howard, 1960]. We then present the
method and related complexity results.

Policy Evaluation. To begin, we observe from (1) that the
value function V π of a policy π, which yields values at each
state, can be specified recursively: ∀s ∈ S,

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′).

Thus, the value function of a policy can be computed by solv-
ing a system of n linear equations in n unknowns (called
Bellman’s Equations). This operation, which needs no more
than O(n3) arithmetic operations, is called policy evaluation.
With an additional O(n2) operations, the action value func-
tion function Qπ corresponding to policy π can be obtained
from V π: ∀s ∈ S,∀a ∈ A,

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V π(s′).

Qπ(s, a) denotes the expected long-term reward obtained
when the agent executes action a at state s once, and there-
after executes π. We shall shortly see that the computation
and comparison of action values lies at the heart of PI.

Policy Improvement. For a given policy π, let IS(π) be the
set of states s on which π is not greedy with respect to its own
action value function: formally,

IS(π)
def
=

{
s ∈ S : Qπ(s, π(s)) < max

a∈A
Qπ(s, a)

}
.

Since we are only dealing with 2-action MDPs, we may
equivalently define a state s ∈ S to belong to IS(π) if and
only if Qπ(s, π(s)) < Qπ(s, π(s)C), where for a ∈ A, aC
denotes the element ofA other than a (thus, {a}∪{aC} = A).
IS(π) is the set of (locally) “improvable” states in π, in the
sense that taking a different action in any of these states for
just one time step yields a strict increase in value. It turns out
that persisting with switched actions for ever must continue
to yield dominating values. Concretely, let π′ be a policy that
in one or more states in IS(π), switches the action taken by
π, and in the remaining states, takes the same actions as π. In
other words, let π′ be such that

∃s ∈ S : (s ∈ IS(π)) ∧ (π′(s) 6= π(s)), and

∀s ∈ S : (s /∈ IS(π)) =⇒ (π′(s) = π(s)). (3)

Observe that π′ is well-defined if only if IS(π) is non-empty.
In turn, it can be shown that (1) IS(π) is empty if and only if
π is optimal, and (2) if π is non-optimal, then π′ dominates π
in the following sense.
Definition 1 (�, �). For functions X : S → R, Y : S → R,
(1) we define X � Y if and only if ∀s ∈ S : X(s) ≥ Y (s),
and (2) we define X � Y if and only if X � Y and ∃s ∈
S : X(s) > Y (s). For policies π1, π2 ∈ Π, (1) we define
π1 � π2 if and only if V π1 � V π2 , and (2) we define π1 � π2
if and only if V π1 � V π2 .
Theorem 2 (Policy improvement [Bertsekas, 2012]). Let
π, π′ ∈ Π be such that IS(π) 6= ∅, and π′ satisfies (3). Then
π′ � π.
Corollary 3 (Policy optimality). For π ∈ Π, if IS(π) = ∅,
then π is optimal.



The theorem and corollary are standard material in text-
books on MDPs [Bertsekas, 2012], and so we omit proofs.
The interested reader might find the proofs provided in our
recent paper [Kalyanakrishnan et al., 2016, see Theorem 2
and Corollary 3] especially convenient, as they use the same
notation as this paper. The main tool employed in the proofs
is the “Bellman Operator” Bπ : (S → R) → (S → R). For
X : S → R, ∀s ∈ S,

(Bπ(X))(s)
def
=R(s, π(s)) + γ

∑
s′∈S

T (s, π(s), s′)X(s′).

In particular, the proofs use the fact that if Bπ(X) � X , then
liml→∞(Bπ)l(X) = V π � X .

The idea behind PI is to put Theorem 2 to practice.
Starting with some initial policy, PI repeatedly applies policy
improvement until an optimal policy is reached. For a given
policy π, it takes at most O(n3) time to compute IS(π).
Thus, the complexity of PI is dictated by the number of itera-
tions needed to reach an optimal policy. Since the algorithm
can visit no policy twice (owing to strict improvement), the
number of iterations is trivially upper-bounded by |Π| = 2n.

Complexity of Policy Iteration. The key design choice
within PI is in the implementation of the switching rule. The-
orem 2 holds for every choice of π′ where some non-empty
subset of IS(π) is “switched”. In the canonical variant of
PI (called Howard’s PI [Howard, 1960] or Greedy PI), ev-
ery improvable state is switched in every iteration; that is,
the subset chosen for switching is IS(π) itself. Mansour and
Singh [1999] show that Howard’s PI requires at most 6(2n/n)
iterations (for every MDP and every initial policy). This
bound was subsequently tightened by Hollanders et al. [2014]
to (2+o(1))(2n/n). Mansour and Singh [1999] also propose
a randomised version of PI in which the subset of states to
be improved is chosen uniformly at random from among the
non-empty subsets of IS(π). They show that the expected
number of iterations of this algorithm (for every MDP and
every initial policy) is O(1.7172n). The analysis of both al-
gorithms is based on the argument that (1) there exist only a
“small” number of policies with “small” improvement sets;
and (2) improving any policy with a “large” improvement set
must exclude several other policies from ever being visited.

Hollanders et al. [2012], adapting a construction by Fearn-
ley [2010], furnish an MDP and an initial policy that take
Howard’s PI through Ω(2n/7) iterations. However, it must be
noted that this MDP has as many as Ω(n) actions in some
states. The tightest lower bound for Howard’s PI on 2-action
MDPs is only Ω(n) [Hansen and Zwick, 2010]; it remains
an open question whether the algorithm can indeed take an
exponential number of iterations on such MDPs. Note that
a lower bound of Ω(2n/2) iterations has been shown on 2-
action MDPs for Simple PI, a variant of PI in which the im-
provable state with the highest index (assuming a fixed index-
ing over S) is switched [Melekopoglou and Condon, 1994].

PI is especially appealing from a theoretical standpoint be-
cause it facilitates “strong” running-time bounds for MDP
planning: that is, bounds solely in terms of n. Value Itera-
tion, another popular approach, enjoys a polynomial depen-
dence on n, but at the cost of a dependence on the discount

factor γ and the quality of the desired approximation [Littman
et al., 1995].2 Linear Programming offers yet another alterna-
tive for deriving strong bounds. While bounds for the canon-
ical Simplex algorithm are exponential in n, the method is
strongly polynomial for deterministic MDPs [Post and Ye,
2013]. The best strong bounds for MDP planning are from
a randomised vertex-switching method [Gärtner, 2002], and
of the form O(poly(n) exp(2

√
n)) (expected). The tightest

worst-case bound is obtained by formulating a “unique sink
orientation of a cube” based on the set of policies, and apply-
ing a deterministic algorithm that runs in O(poly(n)1.61n)
time [Szabó and Welzl, 2001].

3 Trajectory-Bounding Trees
In this section and the next, we present the core theoretical
contributions of the paper. We shall assume that the states
are named such that S = {s1, s2, . . . , sn}, and the two ac-
tions are the bits 0 and 1 (thus, A = {0, 1}). We also find
it convenient to denote policies by n-length bit-strings, each
bit representing the action taken at the state with the bit’s po-
sition as its index. For example, 011 will be a policy for a
3-state MDP that takes action 0 at state s1, action 1 at state
s2, and action 1 at state s3.

We begin by considering a run of Howard’s PI on any given
2-state MDP. Since there are only 4 possible policies, any
run can take at most 4 iterations (one iteration is one policy
evaluation). However, a careful look informs us that in fact
no more than 3 iterations will ever be performed.

Proposition 4 (Motivating example). On every 2-state MDP,
Howard’s PI terminates in at most 3 iterations.

Proof. Without loss of generality, assume that the initial pol-
icy is π1 = 00. If π1 is already optimal, we are done. If it is
not optimal, then by Corollary 3, IS(π1) must be non-empty.

If IS(π1) = {s1}, then V π1(s2) ≥ Qπ1(s2, 1), or equiv-
alently, V π1 � B01(V π1). By repeatedly applying the Bell-
man operator (as done in the proof of Theorem 2), we con-
clude that π1 � 01. Thus, PI cannot encounter policy 01
during this run, and must therefore terminate after at most
3 iterations. A similar argument applies if IS(π1) = {s2},
which would imply that π1 � 10.

If IS(π1) = {s1, s2}, then Howard’s PI will update to a
new policy π2 = 11. Again, if π2 is optimal, our run has
completed in 2 iterations; if not, then either IS(π2) = {s1}
or IS(π2) = {s2} (it is not possible that IS(π2) = {s1, s2},
as Theorem 2 would then imply π1 � π2). If IS(π2) = {s1},
then Howard’s PI will update to π3 = 10. s1 cannot be in
the improvement set of π3, as that would imply 00 � π3; s2
cannot be in the improvement set of π3, as that would imply
11 � π3. Thus π3 must be optimal. A similar argument
applies if IS(π2) = {s2}.

The argument we have illustrated with n = 2 can be gen-
eralised as follows. Given a policy π ∈ Π and a subset of
states IS ⊆ S, we consider the event that IS is indeed the

2Polynomial bounds involving 1/(1 − γ) have also been shown
for Howard’s PI [Ye, 2011; Hansen et al., 2013; Scherrer, 2013].



improvement set of π. If so, Theorem 2 enables us to infer a
set of policies, L+

π,IS , that must provably dominate π:

L+
π,IS

def
={π′ ∈ Π :∃s ∈ IS(π′(s) 6= π(s))∧

∀s ∈ S \ IS(π′(s) = π(s))}.
A symmetric argument (as illustrated in Proposition 4) identi-
fies another set of policies, L−π,IS , that π must provably dom-
inate or equal in value (note that L−π,IS contains π, too):

L−π,IS
def
={π′ ∈ Π :∀s ∈ IS(π′(s) = π(s))}.

The pair of π and IS can possibly be encountered by PI only
if L+

π,IS does not contain any policies that can already be
guaranteed to be dominated or equaled in value by π. Since
PI makes strict progress with each iteration, we can infer that
trajectories taken by the method are constrained as follows.
Proposition 5 (Constraint on trajectories taken by PI). If
(π1, IS1), (π2, IS2), . . . , (πt, ISt) is a trajectory encoun-
tered by PI, it must satisfy, for 1 ≤ i < j ≤ t:

L−πi,ISi
∩ L+

πj ,ISj
= ∅. (4)

The effect of (4) in constraining the path taken by pol-
icy iteration can be visualised in the form of a “trajectory-
bounding tree” (TBT), shown in Figure 1 for n = 2 (top row)
and n = 3 (middle and bottom rows).
• Each node in a TBT corresponds to a policy along with

an improvement set; one tree is grown with each possi-
ble improvement set occurring at the root.
• Nodes with empty improvement sets are leaves.
• Every child contains the policy obtained by switching

the parent’s policy appropriately—in this paper, we only
consider greedy switching (as in Howard’s PI).
• Together the children of a node contain every improve-

ment set that does not violate (4).
Clearly, every trajectory taken by Howard’s PI must be a path
from the root to some leaf in the corresponding TBT. How-
ever, we cannot be certain that there exist MDPs and starting
policies to instantiate every possible path in the TBTs. In
this sense, the trees only “upper-bound” the trajectories taken
by Howard’s PI. We conclude from Figure 1 that on 3-state
MDPs, Howard’s PI can take at most 5 iterations. We ob-
tain bounds for higher values of n by implementing a proce-
dure based on the logic described above. The corresponding
bounds for n = 4, 5, 6 are 8, 13, 21, respectively. While the
complexity of TBTs for n = 7 makes it infeasible for the au-
thors to compute the tree depths, we can infer a bound of 33
iterations from results published by Gerencsér et al. [2015].

Gerencsér et al. [2015] undertake the computation of the
size of “order-regular” (OR) matrices, whose rows satisfy
constraints imposed by acyclic unique sink orientations of
cubes [Szabó and Welzl, 2001]. Although the authors of the
present paper conceived the idea of TBTs independently, they
have subsequently realised that TBTs implementing greedy
switching bear a one-to-one correspondence with OR ma-
trices. Essentially, (4), if coupled with greedy policy im-
provement, can be shown to be equivalent to the constraint
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Figure 1: The set of trajectory-bounding trees (TBTs) for 2-
state MDPs (top row) and 3-state MDPs (middle and bottom
rows). Each node corresponds to a policy and an improve-
ment set. States in the improvement set have a line drawn
above the corresponding action. For every set of paths that
differ solely in the naming of states and actions, only one is
shown (for example: 01, 10, and 11 are not shown because
00 is; 00—11—01 is not shown because 00—11—10 is).

on OR matrices [Hansen, 2012, see Lemma 3.3.1]. While
it exceeds the scope of this paper to demonstrate the equiv-
alence, the authors willingly attribute the ideas underly-
ing TBTs to work that predates this paper [Hansen, 2012;
Gerencsér et al., 2015]. Interestingly, previous work, too, has
not been able to furnish tight bounds for n ≥ 8.

4 Batch-Switching Policy Iteration
Although TBTs help bound the complexity of Howard’s PI on
small, constant-size MDPs, they do not automatically yield
improved bounds for general (n-state) MDPs. The key tech-
nical idea of this paper is to fashion a variant of PI that ex-
ploits available bounds for TBTs to derive tighter bounds for
general MDPs. The first step in our approach is to partition
the set of states into batches, and to implement the logic of
TBTs “within each batch”. Second, assuming a fixed index-
ing of batches, we restrict switching for policy improvement
to the “active” batch with the highest index (much as in Sim-



ple PI [Melekopoglou and Condon, 1994]). This strategy in-
duces a recursive structure for our analysis to exploit. Be-
low we formalise these ideas and present the Batch-Switching
Policy Iteration (BSPI) algorithm.

We assume that a batch size b ∈ {1, 2, . . . , n} is given
as an input to BSPI, which partitions the set of states S =
{s1, s2, . . . , sn} into m = dn/be sets. Each set Bj in the
partition, j ∈ {1, 2, . . .m}, is of size b, possibly except Bm,
which could be smaller:

Bj = {sb(j−1)+1, sb(j−1)+2, . . . , smin{bj,n}}.
If π ∈ Π is the policy currently being evaluated, and it

is not optimal, BSPI considers the highest-indexed set in the
partition that intersects IS(π), and switches all those states in
the intersection. In other words, the iterate π′ takes the same
actions as π on all states except those in Bj ∩ IS(π), where j
is the largest element in {1, 2, . . .m} such that a non-empty
intersection results. Below is a full description of BSPI. Ob-
serve that if b is set to 1, the algorithm is the same as Simple
PI [Melekopoglou and Condon, 1994]. If run with b = n,
BSPI is equivalent to Howard’s PI.

Algorithm BSPI
Input parameter b ∈ {1, 2, . . . , n}.
π ← Arbitrary policy in Π.
Evaluate π; derive IS(π).
While IS(π) 6= ∅

j ← dn/be.
While Bj ∩ IS(π) = ∅

j ← j − 1.
For i ∈ {1, 2, . . . , n}:

If si ∈ (Bj ∩ IS(π)) Then
π′(si)← π(si)

C

Else
π′(si)← π(si).

π ← π′.
Evaluate π; derive IS(π).

Return π.

We proceed to provide a bound on the number of iterations
taken by BSPI. For simplicity, our analysis assumes that n is
a multiple of b (thus m = n/b). We shall denote by τ(b) the
maximal number of nodes that can be encountered along any
path from root to leaf (both inclusive) in a TBT corresponding
to a b-state MDP. The concatenation of bit-strings w1 and w2

shall be denoted w1w2.
In our view of policies as strings, a prefix of length l fixes

the actions taken at s1, s2, . . . , sl. The following lemmas es-
tablish the centrality of prefixes in the analysis of BSPI. Con-
cretely, fix r ∈ {1, 2, . . . ,m}, and fix x, an arbitrary bit-string
of length (r − 1)b, which the lemmas consider as a prefix.
Lemma 6 (Prefix contiguity). Let π = xy and π′ = x′y′

(with |x′| = (r − 1)b) be policies visited consecutively by
BSPI, such that x′ 6= x. Then, for every policy π′′ = x′′y′′

(with |x′′| = (r − 1)b) visited subsequently, x′′ 6= x.

Proof. Since π and π′ have different (r−1)b-length prefixes,
we infer from the construction of BSPI that there are no im-
provable states in the “y” portion of π. It follows that π dom-
inates or equals in value every policy of the form xȳ, and so,
by Theorem 2, no such policy can be visited after π.

In other words, the occurrences of a prefix along a trajec-
tory taken by BSPI must be contiguous. As the key step in
our analysis, we consider policies that have x as a prefix, fol-
lowed by a middle b-length segment y, and a suffix z with no
improvable states. We show that BSPI can visit no more than
τ(b) such policies.

Lemma 7 (Sandwiched segments). BSPI can encounter at
most τ(b) policies of the form π = xyz, where (1) y is a bit-
string of length b, and (2) for all j ∈ {r + 1, r + 2, . . . ,m} :
IS(π)∩Bj = ∅ (the “z” part of π has no improvable states).

Proof. We prove the lemma by contradiction. Assume that
BSPI encounters at least τ(b) + 1 distinct policies of the
form specified in the lemma. Let the first τ(b) + 1 poli-
cies of such form visited, in sequence, be π1 = xy1z1, π2 =
xy2z2, . . . , πτ(b)+1 = xyτ(b)+1zτ(b)+1, with |y1| = |y2| =
· · · = |yτ(b)+1| = b. By Theorem 2, we have

πτ(b)+1 � πτ(b) � · · · � π1. (5)

We focus on the “y” part of the policies, which corre-
sponds to states in Br. Specifically we consider the im-
provable states therein. For t ∈ {1, 2, . . . , τ(b) + 1},
let ISt = IS(πt) ∩ Br . Now consider the sequence
(y1, IS1), (y2, IS2), . . . , (yτ(b)+1, ISτ(b)+1). By construc-
tion, BSPI ensures that for t ∈ {1, 2, . . . , τ(b)}, yt+1 is the
string obtained by taking yt and switching all the states in
ISt. Thus, the sequence must follow a path in the TBT for
b-state MDPs rooted at (y1, IS1) . However, since the se-
quence exceeds τ(b) in length, it must violate (4): that is,
there must exist i and j, 1 ≤ i < j ≤ τ(b) + 1, such that
L−yi,ISi

∩ L+
yj ,ISj

6= ∅.
Indeed let y? be a b-length bit-string that belongs both to

L−yi,ISi
and to L+

yj ,ISj
. Consider the policy xy?zj , and also

consider condition (2) of the lemma. We see that xy?zj dif-
fers from πj only on states in IS(πj), and it differs from πi (if
at all) only on states in S \ IS(πi). Therefore, we must have

xy?zj � πj and πi � xy?zj . (6)

From (6), we get πi � πj , which contradicts (5).

We are now ready to bound the number of occurrences of
the prefix x in any trajectory taken by BSPI.

Lemma 8 (Prefix occurrences). BSPI can encounter at most
τ(b)m−r+1 policies of the form π = xy.

Proof. We prove this lemma by induction on r. As the base
case, consider r = m, for which the claim follows directly
from Lemma 7. Our induction hypothesis is that the claim
holds for r = q + 1, where q ∈ {1, 2, . . . ,m − 1}. Now
consider r = q.

If BSPI never visits a policy prefixed by x, there is noth-
ing left to prove. Otherwise, let the first such policy visited
be xy1z1, where y1 is a b-length bit-string. By the induction
hypothesis, BSPI can visit policies of the form xy1z at most
(τb)

m−q times. Therefore, within (τb)
m−q iterations, the al-

gorithm must visit a policy of the form xy1z
?
1 , in which the z?1

portion has no improvable states. If y1, too, has no improv-
able states in xy1z?1 , it follows from Lemma 6 that no more



x-prefixed policies will be visited, and so we are done. If y1
does contain improvable states in xy1z?1 , BSPI will update to
a new policy xy2z?1 . We can now repeat the argument in this
paragraph by taking xy2z?1 = xy2z2.

If the argument above is indeed made τb times, it implies
that BSPI has visited policies xy1z?1 , xy2z

?
2 , . . . , xyτ(b)z

?
τ(b),

where the “z?” portion of each policy has no improvable
states. It follows from Lemma 7 that the “y” portion of
xyτ(b)z

?
τ(b) can have no improvable states, and so x can be

a prefix in no policy that is subsequently visited. The total
number of x-prefixed policies visited by BSPI is therefore at
most τ(b) · τ(b)m−q = τ(b)m−q+1.

Invoking Lemma 8 with an empty prefix x (that is, r = 1)
gives us our final complexity bound for BSPI.

Theorem 9 (BSPI bound). BSPI, when run with parameter
b, terminates after at most τ(b)n/b iterations.

Our assumption that n is a multiple of b is easily im-
plemented by adding a few dummy states to the MDP; for
general n, the bound is τ(b)dn/be ≤ τ(b) · τ(b)n/b, which is
O(τ(b)n/b) if b is a constant.

Effect of Batch Size. We observe a remarkable pattern when
we invoke Theorem 9 with values of b for which τ(b) is
known. As shown in Table 1, the bound gets progressively
tighter as b is increased from 1 to 7. If it can be formally
shown that τ(b)1/b is a non-increasing function of b, it would
follow that Howard’s PI itself enjoys a bound of 1.6479n.

In the absence of any such theoretical guarantee for n ≥ 8,
we undertake some preliminary experiments. We generate n-
state MDPs through a procedure that picks n/5 states, with
equal probability, as “target” states for each state-action pair:
transition probabilities are picked uniformly at random from
[0, 1] and subsequently scaled to sum to 1. Each reward is a
sample drawn from a standard normal distribution. The dis-
count factor γ is set to 0.99.

As seen in Figure 2(a), the running time of BSPI (aggre-
gated over MDPs and initialisations) decreases as b is in-
creased. It should also be noted that the actual number of
iterations in practice (≈ 5 for b = 5) is much smaller than
the bounds given by Theorem 9 (1310/5 = 169 for b = 7).
The decreasing trend in Table 1 motivates the hypothesis that
BSPI will progressively run faster as b is increased beyond
7; the empirical results strongly support this hypothesis. For
1000-state MDPs (Figure 2(b)), Howard’s PI is two orders

Table 1: Dependence of bound in Theorem 9 on b.

b τ(b) Base of exponent in bound (τ(b)1/b)

1 2 2
2 3 1.7321
3 5 1.7100
4 8 1.6818
5 13 1.6703
6 21 1.6611
7 33 1.6479
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Figure 2: Performance of BSPI. Each point is an average over
100 randomly-generated MDP instances and initial policies.

of magnitude more efficient than BSPI with b = 7. While
these aggregate experimental results from a specific family
on MDPs are by no means definitive, they certainly motivate
a deeper investigation into the structure of BSPI, which would
also open up a new approach to the analysis of Howard’s PI.

5 Conclusion
In this paper, we consider Policy Iteration (PI) [Howard,
1960], an elegant and widely-used family of algorithms for
MDP planning. Although PI is efficient in practice, its theo-
retical analysis has been a hard nut to crack even for 2-action
MDPs. It took nearly four decades to show the first non-
trivial upper bound of O(2n/n) for Howard’s PI [Mansour
and Singh, 1999], a bound that has thereafter been optimised
even for constant factors [Hollanders et al., 2014]. We present
a worst-case bound of O(1.6479n) iterations for PI, which is
an exponential improvement both over the tightest existing
worst case bound of O(2n/n), and the tightest existing ex-
pectation bound of O(1.7172n). Our result therefore takes a
position of prominence in the body of literature on PI.

Our bound of O(1.6479n) iterations is shown for an in-
stance of Batch-Switching Policy Iteration (BSPI), a family
of PI algorithms that we introduce in this paper. By varying
a batch size b, BSPI interpolates between Howard’s PI and
another previously-studied variant called Simple PI [Meleko-
poglou and Condon, 1994]. For analysing BSPI, we devise a
construct called trajectory-bounding trees, which have also
been considered previously in the form of “order-regular”
matrices [Hansen, 2012; Gerencsér et al., 2015]. Both our
theoretical analysis and supplementary experiments suggest
that Howard’s PI might indeed be more efficient than the
BSPI variant we formally bound. We believe the ideas in-
troduced in this paper can benefit the study of Howard’s PI.

Recently, the authors have proposed improved randomised
algorithms for MDPs with more than two actions per
state [Kalyanakrishnan et al., 2016]. In future work, we aim
to generalise BSPI and its analysis to the same setting.
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