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ABSTRACT

Reinforcement learning (RL) enables an agent interacting with an unknown MDP M to
optimise its behaviour by observing transitions sampled from M . A natural entity that
emerges in the agent’s reasoning is M̂ , the maximum likelihood estimate of M based on
the observed transitions. The well-known certainty-equivalence method (CEM) dictates that
the agent update its behaviour to π̂, which is an optimal policy for M̂ . Not only is CEM
intuitive, it has been shown to enjoy minimax-optimal sample complexity in some regions of
the parameter space for PAC RL with a generative model (Agarwal et al., 2020).
A seemingly unrelated algorithm is the “trajectory tree method” (TTM) (Kearns et al., 1999),
originally developed for efficient decision-time planning in large POMDPs. This paper
presents a theoretical investigation that stems from the surprising finding that CEM may
indeed be viewed as an application of TTM. The qualitative benefits of this view are (1) new
and simple proofs of sample complexity upper bounds for CEM, in fact under a (2) weaker
assumption on the rewards than is prevalent in the current literature. Our analysis applies to
both non-stationary and stationary MDPs. Quantitatively, we obtain (3) improvements in the
sample-complexity upper bounds for CEM both for non-stationary and stationary MDPs, in
the regime that the “mistake probability” δ is small. Additionally, we show (4) a lower bound
on the sample complexity for finite-horizon MDPs, which establishes the minimax-optimality
of our upper bound for non-stationary MDPs in the small-δ regime.

1 Introduction

The principle of certainty-equivalence has been a recurring theme in the design of reinforcement learning
(RL) algorithms (Azar et al., 2013; Agarwal et al., 2020). Concretely, consider an agent interacting with an
unknown Markov Decision Problem (MDP) M . The agent gains information about M by repeatedly querying
a generative model with an arbitrary (state, action) pair or (state, action, time-step) triple, and it is provided an
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accordingly-sampled next state and reward. Based on this set of samples D, the agent must propose rewarding
behaviour for M . The first step in applying the certainty-equivalence method (CEM) is to identify M̂ , a
maximum likelihood estimate of M based on D (M̂ is also called the “empirical model”). The agent then
computes a policy π̂ that is optimal for M̂ . In other words, the agent computes the same behaviour as it would
if it were certain that M̂ = M . The idea is intuitive since M̂ indeed approaches M as D grows larger.

A natural question is whether CEM is optimal in its sample complexity. A line of work that formalises the
problem using the PAC framework has provided partially affirmative answers, although gaps remain. If M is
a stationary MDP, the baseline for comparison has been a sample-complexity lower bound from Azar et al.
(2013). These authors also provide a sample-complexity upper bound for an iterative implementation of CEM.
Their upper bound matches the lower bound when restrictions are placed on some problem parameters—the
tolerance ϵ and the discount factor γ. In subsequent work, Agarwal et al. (2020) partially relax the restriction.
Interestingly, Li et al. (2023) show that minimax-optimality is possible over the full range of problem parameters
by injecting randomness into CEM (hence, technically, the resulting algorithm is not CEM). They also provide
an upper bound for CEM itself in the case that M is a non-stationary MDP, adopting the convention of using a
finite horizon H in place of discount factor γ. Although the preceding analyses (Azar et al., 2013; Agarwal
et al., 2020; Li et al., 2020) vary in approach, they have a common technical core that uses bounds on the
variance of the long-term return.

1.1 Contribution

In this paper, we provide an alternative perspective on CEM, which offers a new template for analysis and new
upper bounds.

1.1.1 New analytical framework

We illustrate a connection between CEM and the seemingly-unrelated trajectory tree method (TTM), proposed
by Kearns et al. (1999) for decision-time planning in large MDPs and POMDPs. A trajectory tree is designed to
provide unbiased estimates of the value function of every possible policy for the task. In TTM, Kearns et al.
(1999) deliberately generate several independent trajectory trees, so that confident estimates of value functions
can be obtained by averaging. Our main insight is that CEM implicitly performs the same kind of averaging.
Consequently, we can reuse the proof structure accompanying TTM (summarised in Section 3), only now using
a variant of Hoeffding’s inequality for a sum of dependent random variables (Hoeffding, 1963, see Section
5). Otherwise, we only need elementary probability and counting, setting up simple, intuitive proofs. We also
obtain quantitative gains.

1.1.2 Upper bound for non-stationary MDPs

The more straightforward case for us to analyse is when M is non-stationary: that is, its dynamics can change
over time. Let CEM-NS denote the algorithm based on the certainty-equivalence principle for this setting. Under
CEM-NS, the maximum likelihood MDP M̂ is also a non-stationary MDP, which estimates a separate transition
probability distribution over next states for each (state, action, time-step) triple. If M has a set of states S, a set
of actions A, and horizon H , our analysis shows that CEM-NS requires O

(
|S||A|H3

ϵ2 log 1
δ + |S|2|A|H4 log |A|

ϵ2

)
samples, where tolerance ϵ and mistake probability δ are the usual PAC parameters (formally specified in the
next section). This bound is in general incomparable with the O

(
|S||A|H4

ϵ2 log |S||A|H
δ

)
upper bound shown

recently by Li et al. (2023), and is tighter by a factor of H in the regime of small δ. Interestingly, our upper
bound holds with a weaker assumption on the rewards (explained in Section 2.1) than is common in the
literature. We present the main elements of our analytical approach, situated in the context of the non-stationary
setting, in Section 4.
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1.1.3 Upper bound for stationary MDPs

If it is known that M is a stationary MDP, then the certainty-equivalence principle would imply constructing a
stationary maximum likelihood MDP M̂ by pooling together all the samples for any (state, action) pair. Let
CEM-S denote the algorithm that is consistent with this approach. In Section 5, we analyse CEM-S under the
usual assumption that M is infinite-horizon, with discount factor γ < 1. A key technical difference emerges
when we analyse CEM-S using the TTM toolkit. In the stationary setting, some trajectory trees—or equivalently,
“worlds”, as we shall denote them—use the same sample transition at different time steps, and therefore no
longer provide unbiased value estimates of policies. We simply use the fact that such worlds constitute only a
small fraction of the universe of worlds, and hence their influence is limited.

Our eventual sample-complexity upper bound for CEM-S is Õ
(

|S||A|
(1−γ)3ϵ2

(
log 1

δ + |S||A|ϵ
))

, where Õ sup-

presses factors that are logarithmic in 1
ϵ and 1

1−γ . This upper bound matches the lower bound from Azar et al.
(2013) in the regime of small δ. By contrast, the upper bounds provided by Azar et al. (2013) and Agarwal et al.
(2020) hold for all δ ∈ (0, 1), but unlike ours, apply only to restricted ranges of ϵ.

1.1.4 Lower bound for finite-horizon MDPs

As an independent contribution, we adapt the lower bound of Azar et al. (2013) to the finite horizon setting,
showing that Ω

(
|S||A|H3

ϵ2 log 1
δ

)
samples are necessary on some instances for any PAC algorithm in the finite-

horizon setting. This result, presented in Section 6, establishes the new finding that within the small-δ regime,
CEM is indeed a minimax-optimal algorithm for non-stationary MDPs.

In short, our paper furthers the understanding of CEM, a natural and intuitive algorithm, by bringing out its
connection with TTM, itself a classical algorithm. Our analysis and results are significant to the theory of RL,
which is a central paradigm for agent learning. Our work also motivates further analysis and algorithm design.
We begin with a formal problem statement (Section 2) and a review of the relevant literature (Section 3) before
presenting our analysis.

2 PAC RL: Problem Statement

We formalise the requirement of PAC RL with a generative model.

2.1 Markov Decision Problems

We adopt a definition of MDPs that covers both stationary and non-stationary tasks, with both finite and
infinite horizons. An MDP M = (S,A, T,R,H, γ) comprises a set of states S and a set of actions A. We
assume S and A are finite. Positive integer H (possibly infinite) denotes the task horizon; let [H] denote
the set {0, 1, 2, . . . ,H − 1}. The transition function T : S × A × [H] × S → [0, 1] assigns a probability
T (s, a, t, s′) to change state from s ∈ S to s′ ∈ S by taking action a ∈ A at time step t ∈ [H]; hence∑

s′∈S T (s, a, t, s′) = 1 for s ∈ S, a ∈ A, t ∈ [H]. Taking action a ∈ A from state s ∈ S at time step
t ∈ H also earns a numeric reward R(s, a, t). Hence, an agent’s interaction with the MDP is a sequence
s0, a0, r0, s1, a1, r1, . . . , sH−1, aH−1, rH−1, sH wherein for time step t ∈ [H], the agent (1) takes action at

from state st, (2) obtains reward rt = R(st, at, t), and (3) proceeds to state st+1 ∼ T (st, at, t), with the
convention that sH is a terminal state. The discount factor γ ∈ [0, 1] is used to compute long-term values; we
permit γ = 1 only when H is finite.

Previous work (Azar et al., 2013; Agarwal et al., 2020; Li et al., 2020) has typically assumed that each reward
comes from a known, bounded range (taken by convention as [0, 1]). However, we only enforce the weaker
requirement that the discounted sum of rewards

∑
t∈[H] γ

trt lie in a known interval (Jiang and Agarwal, 2018).

For easy comparison with previous results, we take this interval as [0, Vmax], where Vmax ≤ min
{
H, 1

1−γ

}
, as

would follow if each reward is at most 1. To simplify exposition, we assume that the rewards are deterministic,
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and that the reward function is known to the agent. Approximating a stochastic reward function R from samples
would not alter the asymptotic complexity of our upper bounds, as also observed by Agarwal et al. (2020).

Let π : S × [H] → A be a non-stationary policy for M . Its value function V π : S × [H] → R specifies the
expected long-term discounted reward for each (s, t) ∈ S × [H], and is given by

V π(s, t) = R(s, π(s, t), t) + γ
∑
s′∈S

T (s, π(s, t), t, s′)V π(s′, t+ 1),

with the convention that V π(·, H)
def
=0. It is well-known that every MDP has an optimal policy π⋆ : S × [H] →

A, which satisfies V π⋆

(s, t) ≥ V π(s, t) for all (s, t) ∈ S × [H] and π : S × [H] → A. The value function of
π⋆ is denoted V ⋆. We may assume π⋆ to be stationary (that is, independent of time step t ∈ [H]) if M is also
stationary (that is, T and R do not depend on t) and H is infinite.

2.2 Learning Algorithms

When learning with a generative model, an algorithm L can repeatedly query arbitrary (s, a, t) ∈ S ×A× [H],
and is returned r = R(s, a, t), s′ ∼ T (s, a, t) by the environment. Hence, at any stage, the data D available
with the algorithm is the sequence of samples so gathered. Based on D, the algorithm may either pick a new
tuple to query, or stop and return a policy.

In the PAC formulation, the other inputs to the learning algorithm are a tolerance parameter ϵ ∈ (0, Vmax) and a
mistake probability δ ∈ (0, 1). The policy π returned by L is ϵ-optimal if for all s ∈ S, V π(s, 0) ≥ V ⋆(s, 0)−ϵ.
We require that on every MDP M it is run, L stop and return an ϵ-optimal policy with probability at least 1− δ.
The sample complexity of L on a run is the number of samples it has gathered before termination. In this paper,
we restrict our attention to worst case sample-complexity upper bounds (across problem instances) for CEM.
For simplicity, we assume that the algorithm samples each (s, a, t) ∈ S ×A× [H] the same number of times
N , where N is a function of |S|, |A|, H , γ, Vmax, ϵ, and δ. We seek upper bounds on N to ensure the PAC
guarantee.

3 Related Work

In this section, we review sample-complexity bounds for PAC RL, and provide a sketch of TTM.

3.1 PAC RL with a Generative Model

The original PAC formulation of RL was put forth by Fiechter (1994), who established that its sample complexity
is polynomial in the problem parameters. Kearns and Singh (1999) then demonstrated that model-free learning
algorithms such as Q-learning can also achieve polynomial sample complexity. For a stationary, infinite-horizon
MDP, the model size scales as Θ(|S|2|A|), whereas Q-learning uses Θ(|S||A|) entries. Progress on PAC RL
with a generative model has accelerated in the last decade, owing to the minimax-optimal bounds furnished
by Azar et al. (2013). For stationary, infinite-horizon tasks having k (state, action) pairs, Azar et al. (2013)
show a sample-complexity lower bound of Ω

(
k

(1−γ)3ϵ2 log
k
δ

)
for obtaining an ϵ-approximation of the optimal

action value function Q⋆. They construct an MDP instance on which every PAC algorithm must incur at least
the specified sample complexity. They also provide an upper bound (applicable to all MDPs), which is is
“minimax-optimal” in the sense that there exists an MDP on which the lower and upper bounds match up to a
constant factor.

The tools proposed by Azar et al. (2013) have been the basis for many subsequent investigations. The essential
idea is to construct the empirical model M̂ , and to compute an output policy by running value iteration (or
policy iteration) on M̂ for a finite number of iterations. If Qk is the k-step action value function of the output
policy on M̂ , for k ≥ 1, the analysis proceeds by inductively upper-bounding the difference between Qk

and Q⋆. Although the original algorithms of Azar et al. (2013) estimate Q⋆ with minimax-optimal sample
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complexity, they do not automatically yield a near-optimal policy. Obtaining such a policy from the action
value function would ordinarily require scaling the sample complexity by 1

1−γ . A variance-reduction technique
proposed by Sidford et al. (2018), while different from CEM, directly yields a near-optimal policy without this
additional complexity. Yet, the minimax-optimal upper bounds given above do not apply to the entire range of
ϵ ∈ (0, Vmax). For instance, the upper bound given by Azar et al. (2013) only holds for ϵ ∈ (0, 1/

√
(1− γ)|S|),

and that of Sidford et al. (2018) only for ϵ ∈ (0, 1]. The most recent advance in this line of work is due to
Agarwal et al. (2020), who show that CEM itself can deliver a near-optimal policy for stationary MDPs with
minimax-optimal sample complexity, under the constraint that ϵ ≤

√
1/(1− γ). The main components of

their analysis are bounds on the variance of the return (introduced by Azar et al. (2013)), and an intermediate
MDP designed to break the dependence among samples used to construct the empirical model. In contrast to
all these approaches, our analysis only relies on a version of Hoeffding’s inequality (Hoeffding, 1963). We
obtain an upper bound for the entire range of problem parameters, whose ratio to the lower bound approaches a
logarithmic term as δ → 0 (while keeping other parameters fixed).

Li et al. (2023) devise learning algorithms that are minimax-optimal for stationary MDPs for the entire range of
parameters, including ϵ ∈ (0, 1/(1− γ)) . A key feature of their algorithms is the careful use of randomness
for perturbing rewards or action-selection probabilities. The statistical guarantees of these algorithms kick in as
soon as the sample size reaches Θ(|S||A|/(1− γ)), whereas the so-called “sample barrier” in the guarantees
of Agarwal et al. (2020) is Θ(|S||A|/(1− γ)2). Li et al. (2023) do not need to randomise their algorithm for
the non-stationary setting, and consequently it boils down to exactly CEM. Our upper bound for CEM in the
non-stationary setting is tighter than theirs by a factor of H in the regime of small δ, although it can be looser
for large δ.

Suppose we wish to estimate the action-value for some (s, a) ∈ S ×A, and this state-action pair gives reward
r and transitions to a (random) next state s′. If the horizon H is finite, then the H-step action-value of (s, a)
depends only on the (H − 1)-step return from s′. Since our problem does not require us to explicitly estimate
h-step returns for h < H , we make no independent assumption on the range of the h-step returns. We allow
rewards obtained after visiting s′ to be arbitrarily large or small (possibly negative), provided the sum of the
first H rewards following (s, a) is bounded in [0, Vmax]. This distinction between the ranges of H-step and
(H − 1)-step rewards becomes inconsequential if H is infinite, and we anyway have to estimate action-values
at all states. Mainly focused on stationary, infinite-horizon MDPs, the previous literature (Azar et al., 2013;
Agarwal et al., 2020; Li et al., 2023) constructs concentration bounds by expressing the variance of the return
from (s, a) in terms of the variance of the return from s′. We do not employ such a step. Rather, like in the
analysis of TTM, we only apply Hoeffding’s inequality to H-step returns.

3.2 Trajectory Tree Method

In decision-time planning (Kearns et al., 2002), the aim is to identify, a near-optimal action to take from the
agent’s current state s0, with a given probability. A trajectory tree (Kearns et al., 1999) is a randomly-grown tree
whose nodes correspond to states, starting with s0 at the root. From any node st, t ∈ [H], exactly one sample
s′ ∼ T (st, a, t) is drawn for each possible action a ∈ A, giving rise to a child node s′. This process results in a
tree of size |A|H (but independent of |S|), as illustrated in Figure 1. Each transition has an associated reward.
In POMDPs, each node additionally stores a randomly generated observation.

The rationale for building such a tree is that it can provide an unbiased estimate of the value of any arbitrary
policy π (possibly history-dependent), starting from s0. Observe that applying the policy takes us through
a trajectory (fixed actions, random next states) with the same probability as in the true MDP or POMDP.
Hence, V π(s) can be estimated by growing some m independent trajectory trees rooted at s0, and averaging
their value estimates. Crucially, the same m trees can be used to evaluate every policy π from the policy
class Π being considered (which can be arbitrary). If Π is finite, then setting m = O

(
Vmax

ϵ2 log |Π|
δ

)
and

selecting the empirically-best policy guarantees ϵ-optimality of the chosen action with probability at least 1− δ.
This is because, by Hoeffding’s inequality, each policy is estimated Θ(ϵ)-accurately with probability at least
1− δ

|Π| (Kakade, 2003, see Chapter 6).
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TTM essentially arises from a view of any MDP as a distribution over deterministic MDPs (each represented as
a trajectory tree from the current state). This same view also facilitates variance reduction in policy search (Ng
and Jordan, 2000). To obtain bounds independent of |S|, Kearns et al. (1999) branch from every action sequence.
On the other hand, to analyse CEM, we are happy with bounds that depend on |S|. Correspondingly, we
represent each deterministic MDP as a collection of samples, one for each (state, action, time-step) triple. We
call such a collection a “world”.

4 Non-Stationary MDPs

We present our main ideas for the more general setting of non-stationary MDPs. First we summarise CEM in
this setting.

4.1 Certainty-Equivalence: CEM-NS Algorithm

If the underlying MDP M = (S,A, T,R,H, γ) is known to be non-stationary, then so is its maximum likelihood
estimate M̂ . It is sufficient for our purposes to assume that D contains the same number of samples, N ≥ 1, for
each tuple (s, a, t) ∈ S ×A× [H]. Let count(s, a, t, s′) denote the number of observed transitions of (s, a, t)
to s′ ∈ S. The empirical transition function T̂ is set to

T̂ (s, a, t, s′) =
count(s, a, t, s′)

N
.

M̂ = (S,A, T̂ , R,H, γ) is a maximum likelihood estimate of M based on D. Let V ⋆
M̂

: S × [H] → R denote

the optimal value function of M̂ , and let π̂ : S × [H] → A be a corresponding optimal policy. V ⋆
M̂

and π̂ are
easily computed by dynamic programming. For (s, t) ∈ S × [H],

V ⋆
M̂
(s, t) = max

a∈A

(
R(s, a, t) + γ

∑
s′∈S

T̂ (s, a, t, s′)V ⋆
M̂
(s′, t+ 1)

)
; (1)

π̂(s, t) ∈ argmax
a∈A

(
R(s, a, t) + γ

∑
s′∈S

T̂ (s, a, t, s′)V ⋆
M̂
(s′, t+ 1)

)
. (2)

We denote by CEM-NS (“NS” for “non-stationary”) the algorithm that computes π̂ as its answer.

4.2 Set of Worlds

The unknowns in M are the transition probabilities for each (s, a, t) ∈ S × A × [H]. Hence the minimum
amount of information required to build a complete estimate of M is exactly one transition for each (s, a, t)

tuple. In our notation, the resulting estimate would be M̂ with N = 1—a deterministic MDP that is a “sample”

s0

s11 s12

s211 s212 s221 s222

a1 a2

a1 a2 a1 a2

Figure 1: Example of trajectory tree for horizon H = 2, with starting state s0, and actions a1, a2. Rewards are
not shown.

6



of M . This estimate would allow the agent to evaluate any arbitrary behaviour, albeit with significant error. The
conventional view is that as more transitions are observed, they make the point estimate M̂ more accurate. In our
complementary view, larger N simply means more samples of M , each sample still an atomic (deterministic)
MDP.

Recall that D contains N transitions for each (s, a, t) ∈ S × A × [H]. Take [N ]
def
={1, 2, . . . , N}, so each

collected transition for (s, a, t) is indexed by some number i ∈ [N ]. Let x ∈ X
def
=[N ]|S||A|H be a string of

length |S||A|H on the alphabet [N ]. We view x as a code specifying a process to construct a deterministic MDP.
The input to the process is the random data D; hence the resulting MDP Mx is a random variable. Concretely,
x picks out a particular transition from the N collected in D for each (s, a, t) tuple. If x(s, a, t) = i ∈ [N ] for
some (s, a, t) ∈ S ×A× [H], then the transition function Tx of Mx puts the entire transition probability from
(s, a, t) on the state s′ ∈ S observed in the i-th sample of (s, a, t).

We refer to each x ∈ X as a “world”, defined by the code described above, and specifying a random deterministic
MDP Mx = (S,A, Tx, R,H, γ). Thus X is the “set of all worlds”, of size N |S||A|H . For any fixed D, the
collection of N |S||A|H induced MDPs would generally be a multi-set, since multiple worlds x ∈ X can induce
the same MDP. Example 1 illustrates the definition of X and the process of sampling MDPs from D. A world
is the semantic counterpart of a trajectory tree, since it allows for any policy to be evaluated. The syntactic
difference is that a world associates a sample with every (s, a, t) ∈ S × A × [H], whereas a trajectory tree
associates a sample with each (state, action, state, action, . . . ) sequence visited while constructing the tree.

.
Example 1. Consider MDP M with states S = {s0, s1}, actions A = {a0, a1}, and horizon H = 3. The table
below describes a possible configuration of data D resulting from sampling each (state, action, time-step) tuple
N = 3 times.

s s0 s0 s0 s0 s0 s0 s1 s1 s1 s1 s1 s1
a a0 a0 a0 a1 a1 a1 a0 a0 a0 a1 a1 a1
t 0 1 2 0 1 2 0 1 2 0 1 2

Samples i = 1 s1 s1 s1 s1 s1 s1 s0 s1 s0 s1 s0 s0
of i = 2 s0 s0 s1 s0 s1 s1 s1 s1 s1 s0 s0 s1
s′ i = 3 s1 s0 s0 s1 s1 s1 s0 s1 s1 s1 s0 s1

Each sample i ∈ [N ] contains the next state. Each world is specified by a 12-length string over the alphabet
{1, 2, 3}. If we interpret this string in the sequence of the columns in the table, the world x = 132121123211
induces MDP Mx with transition probabilities Tx(s0, a0, 0, s1) = 1, Tx(s0, a0, 1, s0) = 1, Tx(s0, a0, 2, s1) =
1, and so on. Notice that x′ = 122121123211, which differs from x only in its second position, would induce
the same MDP since the second and third samples of (s0, a0, 1) both lead to s0. The total number of worlds is
3|S||A|H = 531441; for D in our example the number of unique MDPs induced is 28 = 256, since only 8 of the
12 (s, a, t) triples have samples with both possible next states.

4.3 Evaluating Policies on the Set of Worlds

The value of policy π : S × [H] → A on MDP Mx corresponding to world x ∈ X is given by

V π
x (s, t) = R(s, π(s, t), t) + γ

∑
s′

Tx(s, π(s, t), t, s
′)V π

x (s′, t+ 1) (3)

for (s, t) ∈ S × [H]. We note V π
x to be an unbiased estimator of V π .

Lemma 2 (Worlds provide unbiased estimates). For x ∈ X , π : S × [H] → A, and (s, t) ∈ S × [H]:
E[V π

x (s, t)] = V π(s, t).

Proof. Fix x ∈ X and π : S × [H] → A. As base case of an inductive argument, note that for s ∈ S,
E[V π

x (s,H)]
def
=E[0] = 0 = V π(s,H). Assume that for some t ∈ [H], for s ∈ S, E[V π

x (s, t + 1)] =
V π(s, t+ 1).
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Now, in (3), Tx(s, π(s, t), t, s
′) is the outcome of a sample for time step t, but the samples for computing

V π
x (s′, t + 1) are all from time steps t + 1 and higher. Hence, random variables Tx(s, π(s, t), t, s

′) and
V π
x (s′, t+ 1) are independent, implying that for s ∈ S,

E[V π
x (s, t)] = E[R(s, π(s, t), t)]+

γ
∑
s′

E
[
Tx(s, π(s, t), t, s

′)
]
E
[
V π
x (s′, t+ 1)

]
= R(s, π(s, t), t) + γ

∑
s′

T (s, π(s, t), t, s′)V π(s′, t+ 1),

since (1) Tx(s, π(s, t), t, s
′) is 1 with probability T (s, π(s, t), t, s′), and otherwise 0; and (2) from the induction

hypothesis, E[V π
x (s, t + 1)] = V π(s, t + 1) . The RHS is the same as in the Bellman equation on M for π;

hence E[V π
x (s, t)] = V π(s, t).

Our upcoming analysis will depend on generalising value functions to sets of worlds. We define the value
function of a set as the average over its members.

Definition 3. For Z ⊆ X , π : S × [H] → A, (s, t) ∈ S × [H],

V π
Z (s, t)

def
=

1

|Z|
∑
z∈Z

V π
z (s, t).

At this point, we can already conceive a recipe based on the classical TTM method to construct a near-
optimal policy for M . To implement the idea of Kearns et al. (1999), consider the N -sized subset of worlds
X ′ ⊆ X , given by X ′ =

{
1|S||A|H , 2|S||A|H , . . . , N |S||A|H}. By design, no two worlds in X ′ share any

samples; hence they can provide N independent value function estimates for each policy. From Hoeffding’s
Inequality (Hoeffding, 1963), the value function of each policy would be ϵ-optimal with probability 1− δ/|Π|
for N = O

(
(Vmax)

2

ϵ2 log |Π|
δ

)
. Thus, an algorithm that returns an “optimal policy” for X ′ from a set of policies

Π would meet our PAC criterion with about O
(

|S||A|H(Vmax)
2

ϵ2 log |Π|
δ

)
samples (Kearns et al., 1999; Kakade,

2003). Unfortunately, it is not easy to compute an optimal policy for X ′ if the policy class Π is the (usual) set
of Markovian, non-stationary policies. The structure of X ′ is such that in general, history-dependent policies
can perform strictly better than Markovian policies. On the other hand, it is straightforward to compute an
optimal Markovian, non-stationary policy for the entire universe of worlds X . In fact, as formalised in the
following lemma, value functions of policies turn out to be identical on M̂ and on X . Therefore, the output of
CEM-NS—π̂—is itself an optimal policy for X!

Lemma 4 (Consistency of X and M̂ ). For π : S × [H] → A and (s, t) ∈ S × [H],

V π
X(s, t) = V π

M̂
(s, t).

The proof of this important lemma is given in Appendix A. The idea is to expand V π
X and use the fact that each

sample in D occurs in exactly the same number of worlds x ∈ X , whereupon it emerges that V π
X satisfies the

Bellman equations for π on M̂ .

The crux of our paper is in the contrast between X ′ and X . Although V π
x is an unbiased estimate of V π for

each x ∈ X and π : S × [H] → A, the deviation of their average V π
X from V π cannot be bounded directly

using Hoeffding’s inequality, since V π
x and V π

x′ could be dependent for worlds x, x′ ∈ X . For example, the
worlds 1|S||A|H and 12|S||A|H−1 use the same sample for (s0, a0, 0). In spite of this dependence, can we still
piggyback on the analytical framework of TTM? Our answer is affirmative, and forms the basis of our view of
CEM as an application of TTM.
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4.4 Batches of Mutually-Disjoint Worlds

We consider N -sized “batches” within X that do lead to independent samples of M . Define worlds x, x′ ∈ X
to be disjoint if for all (s, a, t) ∈ S ×A× [H], x(s, a, t) ̸= x′(s, a, t). In other words, x and x′ are disjoint if
they do not share any samples. A batch b ⊆ X is a set of some N mutually disjoint elements of X . The set
{132212312132, 221323121321, 313131233213} is a batch in Example 1, as also is set X ′ from Section 4.3.
For x ∈ X , let Bx be the set of all batches in which x is present, and let B be the set of all batches. Simple
counting (provided in Appendix B) shows that for x ∈ X , |Bx| = (N − 1)!|S||A|H−1, and |B| = N !|S||A|H−1.
Recall that V π

X is the average value function of π over worlds x ∈ X . At the heart of our proof is the following
equation, which shows V π

X also as the average of the value functions of π over batches b ∈ B.

V π
X(s, t) =

1

|X|
∑
x∈X

V π
x (s, t) =

1

|X|
∑
b∈B

∑
x∈b

1

|Bx|
V π
x (s, t)

=
N

|X|(N − 1)!|S||A|H−1

∑
b∈B

∑
x∈b V

π
x (s, t)

N

=
1

|B|
∑
b∈B

V π
b (s, t). (4)

The significance of (4) is that for each batch b ∈ B, V π
b is indeed an average of N independent random

variables, whose deviation from their expected value can be bounded using Hoeffding’s inequality. Since V π
X is

a convex combination of V π
b , b ∈ B, we can apply Hoeffding’s (less-used) result on the sums of dependent

random variables (Hoeffding, 1963, see Section 5). We restate Hoeffding’s result as the following lemma. The
commonly-used version of Hoeffding’s inequality for independent random variables (Hoeffding, 1963, see
Theorem 2) is obtained by taking m = 1.
Lemma 5. [Hoeffding’s inequality for average of certain dependent random variables] Fix positive integers
ℓ and m. For i ∈ {1, 2, . . . ℓ}, j ∈ {1, 2, . . . ,m}, let Ui,j be a real-valued random variable supported on
[α, β] ⊂ R; suppose Ui,j and Ui,j′ are independent for j, j′ ∈ {1, 2, . . . ,m} if j ̸= j′. Note that Ui,j and
Ui′,j′ could be dependent if i ̸= i′, for i, i′ ∈ {1, 2, . . . , ℓ}, and j, j′ ∈ {1, 2, . . . ,m}. Define

Ui
def
=

1

m

m∑
j=1

Ui,j and U
def
=

ℓ∑
i=1

piUi

for some p1, p2, . . . , pℓ ∈ [0, 1] satisfying
∑ℓ

i=1 pi = 1. For γ > 0,

P{U ≥ E[U ] + γ} ≤ exp

(
−2mγ2

(β − α)2

)
and

P{U ≤ E[U ]− γ} ≤ exp

(
−2mγ2

(β − α)2

)
.

For convenient reference, we give a proof of this lemma in Appendix C (the original proof is from Hoeffding
(1963, see Section 5)). We are ready for our main result, which uses Lemma 5 to legitimise CEM’s approach of
optimising behaviour uniformly over every possible batch, in contrast with TTM’s approach of doing so for a
single, arbitrary batch.
Theorem 6 (Sample complexity of CEM-NS). The CEM-NS algorithm provides the relevant PAC guarantee
for non-stationary MDP M with parameters ϵ ∈ (0, Vmax), δ ∈ (0, 1) if run with

N =

⌈
2(Vmax)

2

ϵ2
ln

|S||A||S|H

δ

⌉
.

Proof. Recall that CEM-NS returns π̂, which depends on the data D, and hence is random. Lemma 4 gives us
that π̂ is optimal for X . Now, if π̂ is not ϵ-optimal for M , it means that either (i) X under-estimates V π⋆

(s, 0)
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by at least ϵ
2 , or (ii) X over-estimates V π(s, 0) by at least ϵ

2 for some non-ϵ-optimal policy π : S × [H] → A

and state s ∈ S. From (4), we have that V π
X(s, 0) =

∑
b∈B

1
|B|V

π
b (s, 0), where V π

b (s, 0) for each b ∈ B

is a sum on N independent random variables with mean V π(s, 0) (from Lemma 2). Define δ′
def
= δ

|S||A||S|H .

We apply Lemma 5 to get P
{
V π⋆

X (s, 0) ≤ V π⋆

(s, 0)− ϵ
2

}
≤ δ′ and P

{
V π
X(s, 0) ≥ V π(s, 0) + ϵ

2

}
≤ δ′ for

s ∈ S and π : S ×H → A. Since there are |S| states and |A||S|H policies, a union bound establishes that π̂ is
ϵ-optimal with probability at least |S||A||S|Hδ′ = δ.

Since each (s, a, t) ∈ S × A × [H] is sampled N times by CEM-NS, and since Vmax ≤ H , the algorithm’s
overall sample complexity is

O

(
|S||A|H3

ϵ2

(
log

1

δ
+ |S|H log |A|

))
.

Recall that Li et al. (2023) show a bound of Õ
(

|S||A|H4

ϵ2 log 1
δ

)
samples for CEM-NS. In the regime that δ

is made small after fixing other parameters, our bound is tighter by a factor of H . This is a significant result
since the coefficient of log 1

δ now has a cubic dependence on the horizon—which we show is unavoidable by
providing an explicit lower bound in Section 6.

5 Stationary MDPs

In this section, we analyse CEM when applied to stationary MDP M . We now use M̂ , π̂, and X to denote
corresponding objects in the stationary setting.

5.1 Certainty-Equivalence: CEM-S Algorithm

We continue with the same definition of M = (S,A, T,R,H, γ), only now assuming that T and R do not
depend on the time step t (which we drop from our notation). Consistent with previous literature, we also
assume H = ∞. Since there is no time-dependence, we take that each tuple (s, a) ∈ S × A is sampled N
times, N ≥ 1, in the data D. For (s, a, s′) ∈ S × A× S, let count(s, a, s′) denote the number of transitions
observed in D to reach s′ by taking a from s. The empirical MDP M̂ = (S,A, T̂ , R,H, γ) therefore satisfies

T̂ (s, a, s′) =
count(s, a, s′)

N

for s, s′ ∈ S, a ∈ A. It is well-known that every stationary, infinite-horizon MDP admits a deterministic optimal
policy. The optimal value function V ⋆

M̂
and optimal policy π̂ : S → A satisfy

V ⋆
M̂
(s) = max

a∈A

(
R(s, a) + γ

∑
s′∈S

T̂ (s, a, s′)V ⋆
M̂
(s′)
)
;

π̂(s) ∈ argmax
a∈A

(
R(s, a) + γ

∑
s′∈S

T̂ (s, a, s′)V ⋆
M̂
(s′)
)

for s ∈ S. V ⋆
M̂

and π̂ may be computed from D by value iteration, policy iteration, or linear program-
ming (Littman et al., 1995). Our upcoming sample-complexity bound would only get scaled by a constant
factor, say, if an ϵ

2 -optimal policy is computed for M̂—and this computation needs only a polynomial number
of arithmetic operations in |S|, |A|, 1

1−γ , and log 1
ϵ . To keep the exposition uncluttered, we assume that our

certainty-equivalence implementation—denoted CEM-S (“S” for “stationary”)—indeed computes and returns
π̂ exactly.
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5.2 Truncated Horizon

The assumption of a finite horizon H in the non-stationary setting meant that our worlds would also have this
same horizon H . Since we have taken H = ∞ for stationary M , we require an intermediate step to apply
the framework of a set of worlds. Consider a finite horizon MDP MH = (S,A, T,R,H, γ) that is identical

to M other than for having a finite horizon H
def
=
⌈

1
1−γ ln

(
4Vmax

ϵ

)⌉
. The corresponding empirical MDP is

M̂H = (S,A, T̂ , R,H, γ). Since the infinite-discounted sum from each state is constrained to [0, Vmax], the
truncation loss Eπ[

∑∞
t=H γtrt] must lie in [0, γHVmax] ⊆ [0, ϵ

4 ] on both M and M̂ .
Proposition 7 (Bounded truncation loss). For π : S → A, s ∈ S:

V π(s)− ϵ

4
≤ V π

MH
(s, 0) ≤ V π(s);V π

M̂
(s)− ϵ

4
≤ V π

M̂H

(s, 0) ≤ V π
M̂
(s).

The truncated horizon H has no relevance to the CEM-S algorithm itself; the algorithm is based on the true
(infinite) horizon of M . However, our analysis works on MH , using worlds of length |S||A|H to encode
samples. Proposition 7 enables us to relate the extent of sub-optimality over a finite horizon H with that on an
infinite horizon.

5.3 Set of Worlds

Each world x in our set of worlds X is an |S||A|H-length string on the alphabet [N ]. It associates a transition
sample from D for each (s, a, t) ∈ S×A×[H]. However, since MH is stationary, samples are not distinguished
based on time step in the data D. Hence, if D in Example 1 had come from a stationary MDP, we would
ignore t and pool together all N = 9 samples for each (state, action) pair. Thus, for the pair (s0, a0),
the sequence of samples (read row by row from top to bottom, and left to right within each row) would
be s1, s1, s1, s0, s0, s1, s1, s0, s0. The world x = 571634978542 would induce a deterministic MDP with
probabilities of 1 for the twelve transitions (s0, a0, 0, s0), (s0, a0, 1, s1), (s0, a0, 2, s1), (s0, a1, 0, s1),
(s0, a1, 1, s1), (s0, a1, 2, s0), (s1, a0, 0, s1), (s1, a0, 1, s0), (s1, a0, 2, s1), (s1, a1, 0, s0), (s1, a1, 1, s0), and
(s1, a1, 2, s0). In general there are N |S||A|H worlds x ∈ X .

In the stationary setting, it is seen that X evaluates policies identical to M̂H .

Lemma 8 (Consistency of X and M̂H ). For π : S × [H] → A and (s, t) ∈ S × [H],

V π
X(s, t) = V π

M̂
Ĥ

(s, t).

The proof of Lemma 8 is identical to that of Lemma 4, and given in Appendix A. The lemma and upcoming
results also apply to stationary policies (the “t” comes from the finite horizon of M̂H ).

5.4 Biased and Unbiased Worlds

Recall that in the non-stationary setting, not all x ∈ X were mutually disjoint—which means their induced
MDPs had dependent transitions. We resolved this issue by partitioning X into N -sized batches of mutually-
disjoint worlds. In the stationary setting, we could encounter an issue of dependence even within a single
world x ∈ X . Consider the world x = 4416823295 from Example 1: this world is constrained to set both
Tx(s0, a0, 0, s0) and Tx(s0, a0, 1, s0) based on the the same sample, namely the 4th one collected for (s0, a0).
Consequently, Tx(s0, a0, 0, s0) is dependent on V π

x (s0, 1) for any policy π that takes a0 from s0 at time step 1.
We can no longer claim E[V π

x ] = V π
MH

(like we did while analysing CEM-NS, in the proof of Lemma 2).

To proceed, we partition X into sets Xbiased and Xunbiased. The set Xbiased contains all worlds x ∈ X for which
there exist (s, a, t, t′) ∈ S × A × [H] × [H], t ̸= t′, such that x(s, a, t) = x(s, a, t′). Such worlds induce
MDPs that provide possibly biased value estimates. The complementary set Xunbiased

def
=X \Xbiased contains

worlds that do provide an unbiased estimate of the value function of each policy π : S × [H] → A on MH .
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Lemma 9 (Worlds in Xunbiased provide unbiased estimates). For x ∈ Xunbiased, π : S × [H] → A, (s, t) ∈
S × [H],

E[V π
x (s, t)] = V π

MH
(s, t).

The proof is identical to the one of Lemma 2, relying on the independence of random variables Tx(s, π(s), t, s
′)

and V π
x (s′, t+ 1) for x ∈ Xunbiased.

Without any useful handle on worlds x ∈ Xbiased, our strategy is to show that the size of Xbiased as a fraction of
|X| vanishes with N , implying that V π

Xbiased
influences V π

X only marginally when N is sufficiently large. The
following lemma is proven in Appendix D.

Lemma 10 (Error from biased worlds vanishes with N ). For π : S × [H] → A, (s, t) ∈ S × [H]:∣∣V π
X(s, t)− V π

Xunbiased
(s, t)

∣∣ ≤ |S||A|H(H − 1)Vmax

N
.

Finally, just as we grouped x ∈ X into mutually-disjoint batches in Section 4, we do the same for x ∈ Xunbiased
in the stationary setting. We do not consider worlds in Xbiased for this grouping. Recall that worlds x and
x′ are disjoint if and only if x(s, a, t) ̸= x′(s, a, t) for all (s, a, t) ∈ S × A × [H]. Assume for simplicity
that N is a multiple of H , and define N ′ = N/H . Calculations provided in Appendix B show that (1)
|Xunbiased| = N !|S||A|

(N−H)!|S||A| , (2) the set of all batches B (each batch containing N ′ mutually-disjoint worlds

x ∈ Xunbiased) is of size N !|S||A|

N ′! , and (3) the set of all batches Bx that contain any particular world x ∈ Xunbiased

is of size (N−H)!|S||A|

(N ′−1)! . Substituting into a working similar to (4), we observe

V π
Xunbiased

(s, t) =
1

|B|
∑
b∈B

V π
b (s, t) (5)

for π : S × [H] → A, (s, t) ∈ S × [H], which facilitates the use of Lemma 5 on V π
Xunbiased

.

We have all the elements ready for an upper bound on the sample complexity of CEM-S.
Theorem 11 (Sample complexity of CEM-S). The CEM-S algorithm provides the relevant PAC guarantee for
stationary MDP M with parameters ϵ ∈ (0, Vmax), δ ∈ (0, 1) if run with

N = max

(⌈
32(Vmax)

2

ϵ2
ln

|S||A||S|

δ

⌉
,

⌈
8|S||A|(H − 1)Vmax

ϵ

⌉)
H.

The proof (given in detail in Appendix E) follows the same core structure as of the non-stationary case in
Theorem 6, but requires additional steps to account for the truncated horizon H and the partition of X into sets
Xbiased and Xunbiased. We infer that the sample complexity of CEM-S is

O

(
|S||A|

(1− γ)3ϵ2

(
log

1

(1− γ)ϵ

)(
log

1

δ
+ |S||A|ϵ log 1

1− γ

))
.

Unlike existing upper bounds (Azar et al., 2013; Agarwal et al., 2020) that only hold for restricted ranges
of ϵ, this bound applies to the entire range of problem parameters. Observe that the coefficient of log( 1δ ) is

Õ
(

|S||A|
(1−γ)3ϵ2

)
. Thus, we have the novel result that for arbitrary, fixed values of |S|, |A|, ϵ, and γ, CEM-S is

optimal up to logarithmic factors as δ → 0. The notion of optimality in the limit as δ → 0 has also been applied
in other PAC learning contexts (Garivier and Kaufmann, 2016).

6 Sample-Complexity Lower Bound For Finite-Horizon MDPs

In this section, we furnish a lower bound on the sample complexity required for any PAC algorithm on finite-
horizon MDPs. This bound, shown by constructing a family of stationary MDPs, applies to both stationary

12



and to non-stationary MDPs. The basic structure is taken from Azar et al. (2013), who provide a similar lower
bound for infinite-horizon MDPs with discounting. The main change required is to substitute terms depending
on discount factor γ with terms depending on horizon H . We also note that the lower bound of Azar et al.
(2013) applies only to a restricted class of algorithms that make “independent” predictions for “independent”
state-action pairs (Azar et al., 2013, see Lemma 18). To obtain a more general result, we also borrow from
the proof structure used by Mannor and Tsitsiklis (2004) for best-arm identification in stochastic multi-armed
bandits.

At each step, algorithm L has a history of (state, action, time step) triples that have already been sampled,
along with their observed outcomes (next states). The algorithm must either (1) stop and publish Q̂(s, a, 0) for
each (s, a) ∈ S ×A, or (2) specify a probability distribution over all (s, a, t) ∈ S ×A× [H]. If the latter, an
(s, a, t) triple is sampled, its outcome recorded, and the process moves to the next step. For ϵ > 0, the output of
L is ϵ-correct if for all (s, a) ∈ S × A, |Q⋆(s, a, 0) − Q̂(s, a, 0)| ≤ ϵ. In turn, for δ > 0, L is an (ϵ, δ)-PAC
algorithm if on each input MDP, the probability that L stops and returns an ϵ-correct output is at least 1− δ.

Observe that we provide a lower-bound for accurately estimating Q-values; this is mainly for being consistent
with Azar et al. (2013). It is easily shown that the same lower bound holds (up to a constant factor) for
estimating an ϵ-optimal policy with probability 1− δ. In our working, we use Q⋆(s, a) and Q̂(s, a) to denote
Q⋆(s, a, 0) and Q̂(s, a, 0), respectively. Below is our formal statement.

Theorem 12. Fix set of states S, set of actions A arbitrarily, and let horizon H > 200. There exist an MDP
(S,A, T,R,H, γ = 1), constants c1 > 0, c2 > 0 such that for all ϵ ∈ (0, 1), δ ∈ (0, 0.5), any (ϵ, δ)− PAC
algorithm L has an expected sample complexity of at least

c1|S||A|H3

ϵ2
ln
(c2
δ

)
on this MDP.

The full proof of this theorem is provided in Appendix F. The proof relies on a purposefully-designed family
of MDPs constructed by Azar et al. (2013). These authors consider two specific MDPs, M0 and M1, whose
Q-functions are more than 2ϵ apart, and hence any estimate cannot simultaneously be ϵ-correct for both MDPs.
On the other hand, since the MDPs are sufficiently close, an agent cannot distinguish them based on observed
samples alone unless the sample size is sufficiently large. Consequently, unless a sufficient number of samples
are observed, an algorithm must necessarily be non-(ϵ, δ)-PAC.

Our proof follows this same structure, except (1) we use a finite horizon H for the MDP family, and (2) we
consider k

3 + 1 MDPs where k is the number of state-action pairs. The latter adaptation lets us extend the
lower bound to arbitrary algorithms. In our proof, there is a base MDP M0 and for each state-action pair i
that represents a choice, an MDP Mi that differs from M0 only at this state-action pair. We lower-bound the
ratio of the likelihood of observing the same data from these MDPs in terms of the number of samples. If the
sample complexity is “small”, the likelihood ratio bound allows us to show that if a certain event has a high
probability under MDP M0, it also has a high probability under Mi. By choosing this event to be the event that
|Q̂−Q∗

0| < ϵ, we argue that if an algorithm gives an ϵ-correct answer with probability at least 1− δ on M0,
it gives this same (but now not ϵ-correct) answer on Mi with probability at least 1− δ. Hence an algorithm
cannot be PAC unless the sample complexity is “large”—as quantified in Theorem 12.

7 Conclusion

In this paper, we bring to light a surprising connection between the well known certainty-equivalence method
(CEM) for PAC RL, and the trajectory tree method (TTM) for decision-time planning. We show that CEM
implicitly computes a policy that simultaneously optimises over all possible “batches” of worlds, whereas
TTM explicitly sets up a single batch of trajectory trees (functionally akin to worlds) to compute its policy.
Noticing this connection, we establish upper bounds for CEM using only Hoeffding’s inequality, yet which
improve upon current bounds in the regime of small δ. Our results are especially significant in the finite-

13



horizon (non-stationary) setting, where in spite of making a weaker assumption on the rewards, we show the
minimax-optimality of CEM in the small-δ regime.

Our new perspective sets up several possible directions for future work, including (1) the derivation of instance-
specific upper bounds for sequential PAC RL algorithms, and (2) generalising the idea to formalisms that use
function approximation. Finally, (3) it would be worth investigating the applicability of our analytical framework
to related on-line learning problems, such as exploration in continuing tasks without “reset” access (Brafman
and Tennenholtz, 2003; Strehl and Littman, 2008), the episodic off-policy setting (Yin et al., 2021), and regret
minimisation (Auer and Ortner, 2006; Dann et al., 2017).
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A Proofs of Lemma 4 and Lemma 8

For proving Lemma 4, we have to show that for π : S × [H] → A, (s, t) ∈ S × [H]: V π
X(s, t) = V π

M̂
(s, t). We

use induction on t. For the base case of t = H − 1, notice that V π
X(s,H − 1) = R(s, π(s,H − 1), H − 1) =

V π
M̂
(s,H − 1). Suppose that the claim is true for t+ 1, where t ∈ {0, 1, . . . ,H − 2}. We have

V π
X(s, t) =

1

|X|
∑
x∈X

V π
x (s, t)

=
1

|X|
∑
x∈X

(
R(s, π(s, t), t) + γ

∑
s′∈S

Tx(s, π(s, t), t, s
′)V π

x (s′, t+ 1)

)
.

Recall that x is a string of length |S||A|H over [N ], organised as H segments, with each |S||A|-length segment
specifying the index of the sample from [N ] for each state-action pair. Let

• x− be x’s prefix of length |S||A|t (empty if t = 0);
• x◦ be the subsequent “middle portion” of length |S||A|, and
• x+ be the suffix of length |S||A|(H − t− 1).

In other words, x = x−x◦x+ for some x− ∈ X−
def
=[N ]|S||A|t, x◦ ∈ X◦

def
=[N ]|S||A|, x+ ∈

X+
def
=[N ]|S||A|(H−t−1). We continue based on this decomposition:

V π
X(s, t) = R(s, π(s, t), t) +

γ

|X|
∑
s′∈S

∑
x−∈X−

∑
x◦∈X◦

∑
x+∈X+

Tx−x◦x+
(s, π(s, t), t, s′)V π

x−x◦x+
(s′, t+ 1).

Now, Tx−x◦x+(s, π(s, t), t, s
′) does not depend on x− or x+, so we can simply denote it Tx◦(s, π(s, t), t, s

′).

Similarly, V π
x−x◦x+

(s′, t+ 1) does not depend on x− or x◦, and so we may denote it V π
x+

(s′, t+ 1). With this
observation, we see that

V π
X(s, t) = R(s, π(s, t), t)+

γ

|X|
∑
s′∈S

|X−|

( ∑
x◦∈X◦

Tx◦(s, π(s, t), t, s
′)

) ∑
x+∈X+

V π
x+

(s′, t+ 1)

 .

The term
∑

x◦∈X◦
Tx◦(s, π(s, t), t, s

′) is seen to be

N |S||A|−1count(s, π(s, t), t, s′) = N |S||A|T̂ (s, π(s, t), t, s′);

the N |S||A|−1 factor comes from other state-action pairs for time step t taking every possible index from [N ] in
the set of worlds. Since V π

x+
(s′, t+ 1) does not depend on x− and x◦, but x− and x◦ take all possible values

for each x+ ∈ X+, we substitute
∑

x+∈X+
V π
x+

(s′, t+ 1) with

|X+|
|X|

∑
x′∈X

V π
x′(s′, t+ 1) = |X+|V π

X(s′, t+ 1) = |X+|V π
M̂
(s′, t+ 1),

where the last step applies the induction hypothesis. In aggregate, we now have

V π
X(s, t) = R(s, π(s, t), t) +

γ

|X|
∑
s′∈S

|X−|N |S||A|T̂ (s, π(s, t), t, s′)|X+|V π
M̂
(s′, t+ 1)

= R(s, π(s, t), t) + γ
∑
s′∈S

T̂ (s, π(s, t), t, s′)V π
M̂
(s′, t+ 1) = V π

M̂
(s, t),

which completes the proof of Lemma 4.

The proof of Lemma 8 is identical: we only have to ignore the time-independence of R and T , and take H as
horizon instead of H .
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B Counting with Batches

We compute the sizes of the set of all batches B, and the set of all batches containing some fixed world x.
For the non-stationary setting, the set of worlds relevant to this exercise is the universe X , whereas for the
stationary setting, counting is only done on Xunbiased.

B.1 Non-Stationary Setting

A batch contains N worlds such that for any pair of distinct worlds x, x′ in X , there is no (s, a, t) ∈ S×A×[H]
such that x(s, a, t) = x′(s, a, t). To count the total number of such batches possible, it is helpful to visualise a
table with N rows and |S||A|H columns. In how many ways can we fill up the cells with numbers from [N ]
such that no two rows share a common element in any column?

1 2 3 . . . |S||A|H
1
2
3
...
N

We proceed row by row. The first row can be filled up in N |S||A|H possible ways. With the first row filled, the
second row can be filled in (N − 1)|S||A|H possible ways. We proceed in this manner, until entries for the last
row are fixed by those from the preceding N − 1 rows. Hence, the number of possible tables we could have
created is

N |S||A|H × (N − 1)|S||A|H × (N − 2)|S||A|H × 1|S||A|H = N !|S||A|H .

A batch is a set rather than a sequence—so any two tables that contain the same contents in each row, even if the
rows are permuted, fall in the same equivalence class of a batch. Since there are N ! possible ways to permute
the rows of the table, we observe that the number of unique batches is |B| = N !|S||A|H

N ! = N !|S||A|H−1.

If a particular world (here row) x is fixed, the same reasoning implies the number of batches containing x is
|Bx| = (N − 1)!|S||A|H−1.

B.2 Stationary Setting

Recall that world x ∈ X is biased if there exist (s, a, t, t′) ∈ S × A × [H] × [H], t ̸= t′, such that
x(s, a, t) = x(s, a, t′). Hence, in an unbiased world x ∈ Xunbiased, for each (s, a) ∈ S × A, we must
pick distinct samples for each t ∈ [H]. The number of ways to select an H-sized permutation from [N ] is
N(N − 1)(N − 2) . . . (N −H + 1) = N !

(N−H)!
.Since we gather such a permutation for each (s, a) ∈ S ×A,

the size of Xunbiased is
(

N !
(N−H)!

)|S||A|
.

In the stationary setting, we consider batches of size N ′ = N/H , which are mutually-disjoint sets of worlds
from Xunbiased. In a world x ∈ Xunbiased, no index from [N ] can repeat within the sub-table for each state-action
pair. Other than for that constraint, we can calculate the size of B as before.

To fill up the first row of the table, we must pick some H indices from [N ] for each state-action pair. The
number of ways we can do this is(

N(N − 1)(N − 2) . . . (N −H + 1)
)|S||A|

.

None of the H indices used for any state-action pair in the first row can be used subsequently. Correspondingly,
the number of ways to fill up the second row becomes(

(N −H)(N −H − 1)(N −H − 2) . . . (N − 2H + 1)
)|S||A|

.
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Proceeding similarly, the number of ways to fill up the last (N ′-th) row is(
(N − kH)(N − kH − 1)(N − kH − 2) . . . (N − (k + 1)H + 1)

)|S||A|

for k = N ′ − 1. Taking a product over rows, we observe that the total number of ways to fill it up is N !|S||A|.
Once again, we must account for permutations of the rows, which are N ′ in number. Hence, the number of
batches |B| = N !|S||A|

N ′! .

If we fix a particular row with world x, it leaves N ′ − 1 rows to fill out, but only N −H indices available for
each state-action pair. Repeating the same counting argument, we get |Bx| = (N−H)!|S||A|

(N ′−1)! .
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C Proof of Lemma 5

The lemma and the proof are from Hoeffding (1963, see Section 5). The proof is rephrased here for the reader’s
convenience. For arbitrary h > 0, we have

P{U ≥ E[U ] + γ} = P{h(U − E[U ]) ≥ hγ}
= P{exp(h(U − E[U ])) ≥ exp(hγ))}. (6)

Applying Markov’s Inequality to the non-negative random variable exp(h(U − E[U ])), we observe

P{exp(h(U − E[U ])) ≥ exp(hγ))} ≤ exp(−hγ)E[exp(h(U − E[U ]))]

= exp(−hγ)E

[
exp

(
h

ℓ∑
i=1

pi(Ui − E[Ui])

)]
. (7)

In turn, since the exponential function is convex, by Jensen’s inequality,

exp

(
h

ℓ∑
i=1

pi(Ui − E[Ui])

)
≤

ℓ∑
i=1

pi exp(h(Ui − E[Ui])). (8)

Combining (6), (7), and (8), we have

P{U ≥ E[U ] + γ} ≤ exp(−hγ)

ℓ∑
i=1

piE[exp(h(Ui − E[Ui]))]. (9)

The application of Jensen’s inequality to obtain (8) above is not needed for the common application of
Hoeffding’s Inequality to averages of independent random variables, which is the case for us if ℓ = 1. For the
general case, (8) enables us to upper-bound the deviation probability by a convex combination of expectations,
one corresponding to each i ∈ {1, 2, . . . , ℓ}. Since each Ui is indeed an average of independent random
variables, each expectation can be upper-bounded exactly as in the proof of the common variant (Hoeffding,
1963, see Theorem 2). For i ∈ {1, 2, . . . , ℓ},

E[exp(h(Ui − E[Ui]))] = E

exp
 h

m

m∑
j=1

(Ui,j − E[Ui,j ]


= E

 m∏
j=1

exp

(
h

m
(Ui,j − E[Ui,j ])

)
=

m∏
j=1

E
[
exp

(
h

m
(Ui,j − E[Ui,j ])

)]
, (10)

where the last step follows from the independence of Ui,j and Ui,j′ for j, j′ ∈ {1, 2, . . . ,m}, j ̸= j′. At this
point, we apply a mathematical fact that is sometimes called Hoeffding’s lemma (Hoeffding, 1963, see Section
4 for proof). Noting that Ui,j for i ∈ {1, 2, . . . , ℓ}, j ∈ {1, 2, . . . ,m} is bounded in [α, β], we have

E
[
exp

(
h

m
(Ui,j − E[Ui,j ])

)]
≤ exp

(
h2(β − α)2

8m2

)
. (11)

Combining (9), (10), and (11), we obtain

P{U ≥ E[U ] + γ} ≤ exp(−hγ)

ℓ∑
i=1

pi

m∏
j=1

exp

(
h2(β − α)2

8m2

)

=

ℓ∑
i=1

pi exp

(
−hγ +

h2(β − α)2

8m

)
. (12)
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Substituting the particular choice of h = 4γm
(β−α)2 in (12), we conclude

P{U ≥ E[U ] + γ} ≤
ℓ∑

i=1

pi exp

(
−2mγ2

(β − α)2

)
= exp

(
−2mγ2

(β − α)2

)
. (13)

For i ∈ {1, 2, . . . , ℓ} and j, j′ ∈ {1, 2, . . . ,m}, j ̸= j′, our precondition that Ui,j and Ui,j′ are independent
implies that −Ui,j and −Ui,j′ are also independent. Also note that −Ui,j is supported on [−β,−α]. We can
therefore present the same proof as above to obtain

P{−U ≥ E[−U ] + γ} ≤ exp

(
−2mγ2

(−α+ β)2

)
,

or equivalently,

P{U ≤ E[U ]− γ} ≤ exp

(
−2mγ2

(β − α)2

)
. (14)

(13) and (14) complete the proof of the lemma.
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D Proof of Lemma 10

We need to show that for π : S × [H] → A, (s, t) ∈ S × [H]: |V π
X(s, t)− V π

Xunbiased
(s, t)| ≤ |S||A|H(H−1)Vmax

N .

First we decompose V π
X(s, t) for π ∈ S × [H] → A and (s, t) ∈ S × [H] as

V π
X(s, t) =

1

|X|
∑
x∈X

V π
x (s, t) =

|Xunbiased|
|X|

V π
Xunbiased

(s, t) +
|Xbiased|
|X|

V π
Xbiased

(s, t)

= V π
Xunbiased

(s, t) +
|Xbiased|
|X|

(
V π
Xbiased

(s, t)− V π
Xunbiased

(s, t)
)
,

which implies

|V π
X(s, t)− V π

Xunbiased
(s, t)| = |Xbiased|

|X|
|V π

Xbiased
(s, t)− V π

Xunbiased
(s, t)|.

|V π
Xbiased

(s, t)− V π
Xunbiased

(s, t)| is at most Vmax. The proof is completed by observing

|Xbiased|
|X|

= 1− |Xunbiased|
|X|

= 1− (N(N − 1) . . . (N −H + 1))|S||A|

N |S||A|H

≤ 1−
(
1− H − 1

N

)|S||A|H

≤ |S||A|H(H − 1)

N
.
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E Proof of Theorem 11

CEM-S returns π̂ : S → A, which is an optimal policy for M̂ . If π̂ is not ϵ-optimal (for M ), then either (i)
M̂ has under-estimated π⋆ by at least ϵ

2 for some state s ∈ S, or (ii) M̂ has over-estimated some other policy
π : S → A by at least ϵ

2 for some state s ∈ S. We upper-bound the probability of these events, in turn.

Suppose for state s ∈ S, we have V π⋆

M̂
(s) ≤ V ⋆(s)− ϵ

2 . Proposition 7 then implies V π⋆

M̂H

(s, 0) ≤ V ⋆(s)− ϵ
2 .

Again from Proposition 7, V π⋆

M̂H

(s, 0) ≤ V ⋆
MH

(s.0) − ϵ
4 . Equivalently, from Lemma 8, we get V π⋆

X (s, 0) ≤

V ⋆
MH

(s, 0)− ϵ
4 . If we now apply Lemma 10 using the specified value of N , we conclude that V π⋆

Xunbiased
(s, 0) ≤

V ⋆
MH

(s, 0) − ϵ
8 . We upper-bound the probability of this consequent using Lemma 5, after observing that

V π⋆

Xunbiased
(s, 0) can be rewritten as a convex combination over batches (from (5)), and its expected value is

V π⋆

MH
(s, 0) (from Lemma 9). Defining δ′

def
= δ

|S||A||S| and recalling that each batch has N ′ = N/H worlds, it
follows from Lemma 5 that the probability of π⋆ being under-estimated by at least ϵ

2 for state s is at most δ′.

Now fix state s ∈ S and a policy π : S → A other than π⋆. By a symmetric working to the preceding one for
π⋆, we obtain that the probability π is over-estimated by at least ϵ

2 on s is again at most δ′. Since we have
considered |A||S| policies and |S| states, a union bound restricts the mistake probability to |S||A||S|δ′ = δ.
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F Proof of Lower Bound from Section 6

In this section, we fill in the full proof of Theorem 12. First we describe a family of MDPs constructed to
achieve this lower bound, and then follow with the proof. Both the construction and the proof are closely based
on those from Azar et al. (2013).

F.1 Family of MDPs

Consider an MDP Mab(p, α,H) defined as follows (see Figure 2).

1. K initial states X = {xi : i ∈ [1,K]}.
2. L initial actions A = {aj : j ∈ [1, L]} from each initial state xi. These actions are deterministic and

yield a reward of 0. Taking action aj from state xi leads us to state yij .

3. KL secondary states Y 1 = {yij : i ∈ [1,K], j ∈ [1, L]}, each with only one action. This is the only
set of states in the MDP with a non-deterministic action. With probability pij we stay at the same
state, and with 1 − pij we go to a corresponding state in Y 2 = {y2ij : i ∈ [1,K], j ∈ [1, L]}. The
reward of this action is always 1.

4.

pij =

{
p+ α, if i = a, j = b,

p, otherwise.

5. KL “terminal” states Y 2, each with only one action—looping back to the state and having a reward
of 0 (not shown).

6. A horizon of H , after which the episode ends.
7. No discounting of rewards (that is, γ = 1).

We also define another MDP M0(p, α,H) where pij = p for all i, j, and then define the set of MDPs

M(p, α,H) = {M0(p, α,H)} ∪ {Mab(p, α,H) : a ∈ [1,K], b ∈ [1, L]}.
We use i ∈ [1,KL] interchangeably with {i, j} : i ∈ [1,K], j ∈ [1, L]. Note that the total number of
state-action pairs is k def

=3KL.

We establish some properties of our family of MDPs before proceeding to the proof of Theorem 12.

xi

yi1

yi2

yiL

y2i1

y2i2

y2iL

a1

a2

aL

pi1

pi2

piL

1− pi1

1− pi2

1− piL
Figure 2: The MDP setup used to derive the lower bound.
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Lemma 13. The optimal value function for MDPs in the class M(p, α,H) is given by:

V ∗
i (yj , 0) =


1− (p+ α)H

1− (p+ α)
, if i = j,

1− pH

1− p
, otherwise.

(15)

This fact is easily verified. Note that the definition also holds for M0 because j is never equal to 0.

Lemma 14. The optimal value functions for the MDPs Mi(p = 1− 1
H , α = 40ϵ

H2 , H) and M0(p = 1− 1
H , α =

40ϵ
H2 , H) (with ϵ < 1, H > 200) are far apart: for i ∈ [1,KL],

Q∗
i (yi)−Q∗

0(yi) > 2ϵ.

Proof.

(1− p)
(
(p+ α)H − pH

)
=

1

H

(
(p+ α)H − pH

)
=

1

H
((p+ α)− p)

(
(p+ α)H−1 + (p+ α)H−2p+ . . .+ pH−1

)
≤ α

H
H(p+ α)H−1 = α(p+ α)H−1. (16)

Moreover, it can be shown that
(
1− 1

n + 40
n2

)n−1
is a series that decreases monotonically for n > 5 and

converges to 1
e . Evaluating for n = 200 gives us that

(
1− 1

H + 40
H2

)H−1
< 1.25

e ∀H > 200. Therefore,

pH < pH−1 < (p+ α)H−1

=

(
1− 1

H
+

40ϵ

H2

)H−1

<

(
1− 1

H
+

40

H2

)H−1

<
1.25

e
.
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Now,

Q∗
i (yi)−Q∗

0(yi) =
1− (p+ α)H

(1− (p+ α))
− 1− pH

1− p

=
(1− p)− (1− p)(p+ α)H − (1− (p+ α)) + (1− (p+ α))pH

(1− p)(1− (p+ α))

=
α− (1− p)(p+ α)H + (1− (p+ α))pH

(1− p)(1− (p+ α))

=
α− (1− p)(p+ α)H + (1− p)pH − αpH

(1− p)(1− (p+ α))

=
α− (1− p)((p+ α)H − pH)− αpH

(1− p)(1− (p+ α))

≥ α− α(p+ α)H−1 − αpH

(1− p)(1− (p+ α))

>
α(1− 2.5

e )

(1− p)(1− (p+ α))

>
α 1

20

(1− p)(1− (p+ α))

>
α
20

(1− p)2

= 2ϵ.

F.2 Proof of Theorem 12 (Lower Bound)

Fix H > 200, ϵ < 1, 1
2 < p = 1− 1

H < 1, 0 < α = 40ϵ
H2 < (1− p)/2, c′1 = 20, c′2 = 6. Let random variable

τ denote the sample complexity of our algorithm on the chosen instance. We prove the following statement:

E[τ ] <
c1kH

3

ϵ2
ln
(c2
δ

)
=⇒ ∃Mi ∈ M

(
1− 1

H
,
40ϵ

H2
, H

)
: Pi(|Qi − Q̂| > ϵ) > δ.

Lemma 15 (Chernoff Hoeffding’s bound for Bernoulli random variables). Define s as the sum of l i.i.d.

Bernoulli(p) tosses
(
p > 1

2

)
. Define θ = exp

(
− c′1α

2l
p(1−p)

)
, ∆ =

√
2p(1− p)l ln

c′2
2θ , and E = {s ≤ pl +∆}.

Then:

P (E) > 1− 2θ

c′2
.

Proof.

P (E) > 1− exp

(
−KL(p+∆||p)

l

)
≥ 1− exp

(
− ∆2

2lp(1− p)

)
= 1− exp

(
− ln

c′2
2θ

)
= 1− 2θ

c′2
.
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Lemma 16 (Change of measure using likelihood ratios).

Pi(E) = Ei[1E ] = Ej

[
Li(W )

Lj(W )
1E

]
(17)

where W is a sample path (for example, the actual sequence of Bernoulli tosses) that controls the event E, and
Li(w) = Pi(W = w) is the likelihood of observing this sample path under MDP Mi.

This is a well-known result from probability, used exactly in this form by Azar et al. (2013).

Lemma 17 (Bound on the ratio of likelihoods). If α ≤ (1− p)/2, then, under E , we have that

Li(W )

L0(W )
≥
(
2θ

c′2

) 2
c′1

+
2(1−p)

pc′1
+2

√
2
c′1 ≥ 2θ

c′2
.

Proof. We first note that α ≤ 1−p
2 ≤ p(1 − p) ≤ p

2 ≤ p√
2

and α ≤ 1−p
2 =⇒ α2 ≤ (1−p)

2
(1−p)

2 ≤
(1−p)

2
1
2 ≤ p(1−p)

2 . Hence, α ≤ (1 − p)/2 is a sufficient condition for the statements made in Eqn. 18, Eqn.
19, Eqn. 20, Eqn. 23 and Eqn. 24 (derived below). The first inequality simply follows by combining these
equations. The second inequality follows by observing that we chose p > 1

2 , c′1 = 20, c′2 = 6, which imply that
2
c′1

+ 2(1−p)
pc′1

+ 2
√

2
c′1

≤ 1 and that 2θ
c′2

< 1.

Let s be the sum of l Bernoulli tosses. But there are two Bernoullis - p and p+ α. Let W be some sequence of
tosses such that their sum was l. So we have:

Li(W )

L0(W )
=

(p+ α)s(1− p− α)l−s

ps(1− p)l−s

=

(
1 +

α

p

)s(
1− α

1− p

)l−s

=

(
1 +

α

p

)s(
1− α

1− p

)l− s
p
(
1− α

1− p

)s 1−p
p

.

Now, if α < (1− p)/2,(
1− α

1− p

) 1−p
p

= exp

(
ln

((
1− α

1− p

) 1−p
p

))

= exp

(
1− p

p
ln

((
1− α

1− p

)))
(a) ≥ exp

(
1− p

p

(
− α

1− p
−
(

α

1− p

)2
))

= exp

(
−
(
α

p
+

α2

p(1− p)

))
= exp

(
−α

p

)
exp

(
− α2

p(1− p)

)
(b) ≥

(
1− α

p

)(
1− α2

p(1− p)

)
(18)

where (a) follows from ln(1−u) ≥ −u−u2 for 0 ≤ u ≤ 1/2. Note that α < (1− p)/2 =⇒ α
1−p ≤ 1/2. (b)

follows from exp(−u) ≥ 1−u for 0 ≤ u ≤ 1, and the observation that α < (1−p)/2 < 1−p < p =⇒ α
p ≤ 1.
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Hence,

Li(W )

L0(W )
=

(
1 +

α

p

)s(
1− α

1− p

)l− s
p
(
1− α

1− p

)s 1−p
p

≥
(
1 +

α

p

)s(
1− α

1− p

)l− s
p
(
1− α

p

)s(
1− α2

p(1− p)

)s

=

(
1− α2

p2

)s(
1− α

1− p

)l− s
p
(
1− α2

p(1− p)

)s

≥
(
1− α2

p2

)l(
1− α

1− p

)l− s
p
(
1− α2

p(1− p)

)l

. (19)

For α2 ≤ p2/2 and α2 ≤ p(1− p)/2, we have:

(
1− α2

p2

)l

= exp

(
ln

((
1− α2

p2

)l
))

= exp

(
l ln

(
1− α2

p2

))
(a) ≥ exp

(
−2l

α2

p2

)

≥
(
2θ

c′2

) 2(1−p)

pc′1
(20)

where (a) follows from ln(1− u) ≥ −2u for 0 ≤ u ≤ 1/2, and the final step follows from the definition of θ
and choice of c′2:

exp

(
−2

lα2

p(1− p)

)
= θ

2
c′1 ≥

(
2θ

c′2

) 2
c′1

(21)

exp

(
−2

lα2

p2

)
= θ

2(1−p)

c′1p ≥
(
2θ

c′2

) 2(1−p)

pc′1
(22)

Similarly,

(
1− α2

p(1− p)

)l

≥
(
2θ

c′2

) 2
c′1

. (23)
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Finally, under E , and for α ≤ (1− p)/2, we have:

l − s

p
≤ ∆

p
. Therefore(

1− α

1− p

)l− s
p

≥ exp

(
−2

∆

p

α

1− p

)

= exp

−2
α

√
2p(1− p)l log

c′2
2θ

p(1− p)


= exp

(
−2

√
2lα2

p(1− p)
log

c′2
2θ

)

≥ exp

−2

√√√√− log

(
2θ

c′2

2
c′1

)
log

c′2
2θ


= exp

(
−2

√
2

c′1
log

c′2
2θ

log
c′2
2θ

)

= log

((
2θ

c′2

)2
√

2
c′1

)
. (24)

Lemma 18. If an algorithm is (ϵ, δ)-PAC, then,

E[τi] > τ∗i
def
=

H3

64000ϵ2
log

(
1

6δ

)
, (25)

where random variable τi denotes the number of samples of state-action pair i.

Proof. We choose p = 1 − 1
H , H > 200, ϵ < 1 and α = 40ϵ(1 − p)2 and construct the MDPs

Mi(p, α,H),M0(p, α,H). Note that this choice gives us

α =
40ϵ

H2
<

40

H2
<

1

2H
=

1− p

2
.

Now let us assume that there is some (ϵ, δ)-PAC algorithm L with

E[τi] ≤ τ∗i .

We show that this leads to a contradiction.

First we bound θ as follows:

θ = exp

(
− c′1α

2τi
p(1− p)

)
= exp

(
−c′11600ϵ

2(1− p)4τi
p(1− p)

)
> exp

(
−c′13200ϵ

2τi
H3

)
(∵ p > 1/2).
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This gives us (by applying Markov’s inequality):

τi ≤ 10τ∗i =⇒ θ

c′2
> δ.

Let Ei = {|Q∗
i − Q̂| ≤ ϵ}.

∴ P0(E
c
0) ≤ δ, Pi(E

c
i ) ≤ δ,

by the assumption that L is (ϵ, δ)-PAC. Further, let E′
i = E0 ∩ E ∩ {τi ≤ 10τ∗i }.

∴ P0(E
′
i) ≥ P0(E0)P0(E)P0 ({τi ≤ 10τ∗i })

≥ (1− δ)

(
1− 2θ

c′2

)
9

10
≥
(
1− θ

c′2

)(
1− 2θ

c′2

)
9

10

=
5

6

4

6

9

10
=

1

2
,

where we invoke Lemma 15 to bound P0(E), Markov’s inequality to bound P0 ({τi ≤ 10τ∗i }) and the fact that
θ < 1 by definition. Then, using Lemma 17 and Lemma 16 gives us:

Pi(E0) ≥ Pi(E
′
i) = E0

[
Li(W )

L0(W )
1E′

i

]
≥ E0

[
2θ

c′2
1E′

i

]
≥ E0

[
2δ1E′

i

]
= 2δP0(E

′
i) ≥ δ.

Using Lemma (14) gives us:

E0 ⊂ Ec
i =⇒ Pi(E

c
i ) > Pi(E0) ≥ δ,

which contradicts that L is (ϵ, δ)-PAC.

By constructing the family M(p, α,H), we can extend Lemma 18 to each τi and hence obtain a lower bound
on the number of samples any (ϵ, δ)-PAC algorithm must observe. Note that |M| = KL = k

3 .
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