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Abstract. Markov Decision Problems (MDPs) are a widely-used abstraction of
sequential decision-making. A policy specifies an action to take from each state
of the MDP. Every MDP has an optimal policy, which maximises the expected
long-term reward from each starting state. A well-known approach to compute an
optimal policy for a given MDP is by solving an induced Linear Program (LP). This
paper establishes the computational efficiency of a family of “Algebraic Simplex”
(AS) algorithms for solving these induced LPs. Unlike geometric methods that
rely on quantities such as “value”, “gain”, or “flux”, AS algorithms query policies
sequentially for the discrete set of locally-improving state-action pairs. We provide
upper bounds on the complexity of AS algorithms in three settings: (1) when there
are many more states than actions, (2) when there are many more actions than
states, and (3) when transitions are deterministic. For all three cases, we furnish AS
algorithms with running-time upper bounds that are within a polynomial factor
of the tightest known yet across all algorithms. These results demonstrate that
the use of geometric information and random access memory do not contribute
substantively to the established efficiency of state-of-the-art algorithms.

Keywords: Markov Decision Process · Linear Programming · Simplex · Policy
Iteration · Abstract Models

1 Introduction

Markov Decision Problems (MDPs) [32] are a well-studied and widely-applied formal-
ism of long-term decision making under uncertainty. The most common approaches to
solve MDPs—such as value iteration, policy iteration, and linear programming—were
originally proposed as early as 7–8 decades back. The last 3–4 decades have also wit-
nessed several results published on the computational complexity of solving MDPs, and
of specific algorithms. Since MDPs can be solved through induced linear programs, the
emergence of poly-time algorithms for linear programming [21, 22] has implied that the
number of arithmetic operations required to solve any MDP is at most a polynomial in
the number of bits used to encode the MDP. In the other direction, it has been shown that
solving MDPs under common reward structures such as finite horizon, infinite horizon
with discounted rewards, and infinite horizon with average reward, is 𝑃-complete [30].

An alternative measure of computational complexity arises from the “real RAM”
or “infinite precision arithmetic” model, under which any arithmetic operation on real-
valued operands can be performed in constant time, regardless of the bit-size [29]. This
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perspective furnishes running-time bounds that depend only on the number of states
and actions in the input MDP: in particular the bounds do not depend on the bit-size of
real-valued parameters such as the transition probabilities, rewards, and discount factor.
It remains unknown if general MDPs can be solved in strongly polynomial time: that is,
by using at most poly(𝑛, 𝑘) real RAM operations, where 𝑛 ≥ 2 denotes the number of
states, and 𝑘 ≥ 2 denotes the number of actions in the input MDP.

In this paper, we consider the complexity of solving MDPs under the real RAM
computational model. Concretely, we take long-term rewards to be infinite discounted
sums. We review three algorithms for this setting, chosen because they provide the
tightest upper bounds currently known.

1. MDPs with 𝑛 ≥ 2 states and 𝑘 = 2 actions induce acyclic unique sink orientations
(AUSOs) of 𝑛-dimensional hypercubes [36], which the Random Facet algorithm [12]
can solve using poly(𝑛) · 𝑂 (𝑒2

√
𝑛) operations in expectation. For 𝑘 ≥ 2, the upper

bound can be generalised to poly(𝑛, 𝑘) · 𝑒𝑂
(√

𝑛 log 𝑛𝑘
)

[27, 18]. For any fixed 𝑘 > 2,
this upper bound has the slowest (sub-exponential) growth rate in 𝑛. Let us denote
the generalised version of the Random Facet algorithm L1.

2. Clarkson [7] proposed a randomised recursive algorithm to solve linear programs
with a large number of constraints. Combined with the Random Facet algorithm
it is possible to solve LPs induced by 𝑛-state, 𝑘-action MDPs with a guaranteed
running-time of 𝑂 (𝑛3𝑘 + 𝑒𝑂 (

√
𝑛 log 𝑛) ) expected operations. This upper bound is

only linear in 𝑘 , and hence tighter than the one for L1 when 𝑘 ≫ 𝑛 (albeit looser
when 𝑛 ≫ 𝑘). For our purposes, denote by L2 the algorithm of Clarkson.

3. An interesting sub-class of MDPs, called Deterministic MDPs (DMDPs) are those
in which all transitions are deterministic. It is well known that DMDPs can be
solved in strongly polynomial time—that is, using poly(𝑛, 𝑘) operations. Of the
several algorithms that do enjoy polynomial running time on DMDPs [1, 25, 31],
denote the one of Post and Ye [31] as L3. This algorithm implements the “max
gain” simplex procedure on an LP induced by the input MDP.

From a distance, L1, L2, and L3 appear quite different in the way they consume and
manipulate information from the input MDP.L1 andL2 operate on the set of constraints
of an induced LP, eliminating constraints by random testing. Critical to the analysis of
L3 is its choice of the single “max-gain” action for each policy update; other Simplex
variants are known with even exponential lower bounds on their running time [2]. In
this paper, we demonstrate that in spite of their apparent disparity, L1, L2, and L3
can all be implemented (albeit with minor modifications) as “Algebraic Simplex” (AS)
algorithms. In the remainder of this section, we provide an informal introduction to this
class of algorithms. Formal definitions follow in sections 2 and 3.

1.1 Algebraic Simplex Family of Algorithms

In a commonly-used formulation of an LP from an MDP, vertices of the feasible polytope
of the LP are in 1-1 correspondence with (deterministic) policies of the MDP [31]. In this
feasible polytope, edges connect any two policies that differ in their action for exactly
one state. Simplex algorithms begin at some vertex of the LP, and repeatedly update to a
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neighbouring vertex that improves the objective function. In general, Simplex algorithms
can use any available information—such as the real-valued objective function (or “gain”)
along each edge, the geometric coordinates of the vertex, and so on—for selecting the
next vertex at any iteration. We denote as Algebraic Simplex (AS) algorithms the subclass
of Simplex algorithms that are only provided at each iteration the set of neighbouring
vertices that improve the objective function (equivalently the set of improving state-
action pairs). Algorithms from the AS family do not use any geometric information; for
example, L3 [31], which implements the “max-gain” pivot rule, does not belong to the
AS family. Note that standard policy iteration algorithms [16] that “jump” in the space
of policies (equivalently, which switch multiple state-action pars at each iteration) are
also not from the AS family.

The withholding of geometric information would appear rather restrictive. As we
demonstrate in Section 2.2, the states values (that is, the expected long-term rewards)
of only poly(𝑛, 𝑘) policies are needed to construct the LP induced by an MDP—and
this LP, in turn, determines the set of optimal policies for the MDP. Hence, from an
information-theoretic standpoint, only poly(𝑛, 𝑘) queries of the MDP are needed if each
query—of a policy— can return the state values under that policy. On the other hand, if
querying a policy only returns its discrete, locally-improving set of policies, how many
queries are needed? And how much further limiting is the constraint of having to move
only to some neighbouring vertex in the LP’s feasible polytope?

Our contribution is to illustrate the surprising finding that algorithms from the AS
family match the known upper bounds for L1, L2, and L3 up to a poly(𝑛, 𝑘) factor. In
Section 4, we propose an implementation ofL1 as a member of AS, denoting our variant
L′1. Similarly, in Section 5, we implement L2 an AS algorithm L′2. For DMDPs, we
propose an AS algorithm L′3, which is inspired by L3, but different. We show in Section
6 that L′3 is also strongly polynomial for DMDPs. Not surpisingly, a key element of AS
algorithms L′1, L′2, and L′3 is the effective use of memory, which, nonetheless, remains
polynomially-sized in the number of states and actions.

MDPs are at the heart of planning and reinforcement learning [28, 35]—topics
pursued by the artificial intelligence community. The theoretical analysis of MDPs
(and their induced LPs) has been of interest within operations research [31, 38] and
combinatorial optimisation [33, 36]. Our results add to this literature. We begin with
formal definitions of MDPs (Section 2) and the AS family (Section 3).

2 MDPs and Induced LPs

A Markov Decision Problem (MDP) models the interaction between an agent and a
stochastic environment that the agent navigates sequentially. An MDP 𝑀 = (𝑆, 𝐴, 𝑇, 𝑅, 𝛾)
consists of a set of states 𝑆, a set of actions 𝐴, a transition probability function 𝑇 , a
reward function 𝑅, and a discount factor 𝛾 ∈ [0, 1). We assume 𝑆 and 𝐴 are finite, with
|𝑆 | = 𝑛 ≥ 2 and |𝐴| = 𝑘 ≥ 2. If an agent chooses action 𝑎 ∈ 𝐴 from state 𝑠 ∈ 𝑆, then
the probability of transitioning to state 𝑠′ is denoted by 𝑇 (𝑠, 𝑎, 𝑠′), and the associated
reward is given by 𝑅(𝑠, 𝑎) ∈ R.

Formally, the agent’s behaviour is encoded as a policy, which is a mapping from
the set of states to the set of actions. For a policy 𝜋 : 𝑆 → 𝐴, the value function 𝑉 𝜋
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characterises the expected long term reward while adhering to 𝜋. It can be recursively
defined using the Bellman Equations for 𝑠 ∈ 𝑆 as follows:

𝑉 𝜋 (𝑠) = 𝑅(𝑠, 𝜋(𝑠)) + 𝛾
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝜋(𝑠), 𝑠′) · 𝑉 𝜋 (𝑠′).

We define two natural partial orders, ⪰ and ≻, on the set of policies Π. For policies
𝜋, 𝜋′ ∈ Π, we define 𝜋 ⪰ 𝜋′ ⇐⇒ (𝑉 𝜋 (𝑠) ≥ 𝑉 𝜋′ (𝑠), ∀𝑠 ∈ 𝑆). Also, 𝜋 ≻ 𝜋′ ⇐⇒
(𝜋 ⪰ 𝜋′ and ∃𝑠 ∈ 𝑆 such that 𝑉 𝜋 (𝑠) > 𝑉 𝜋′ (𝑠)). It is well known that there exists a
policy 𝜋★ ∈ Π which maximises the values of all states: that is, 𝑉 𝜋★ (𝑠) ≥ 𝑉 𝜋 (𝑠), ∀𝑠 ∈
𝑆,∀𝜋 ∈ Π (equivalently, 𝜋★ ⪰ 𝜋 for all 𝜋 ∈ Π) [3]. To simplify exposition, we assume
that the optimum is unique. Thus, given an MDP 𝑀 , the task is to compute the optimal
policy for 𝑀 .

In addition to value vectors, some other quantities are useful while designing and
analysing algorithms for MDPs. The action value function 𝑄 𝜋 of policy 𝜋 gives for
each (𝑠, 𝑎) ∈ 𝑆 × 𝐴 the expected total discounted reward obtained by taking action 𝑎

from state 𝑠 and following policy 𝜋 afterwards. We can write it as:

𝑄 𝜋 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′) · 𝑉 𝜋 (𝑠′).

The flux 𝑥 𝜋 of a policy 𝜋 represents the total discounted number of times each
(𝑠, 𝑎) ∈ 𝑆× 𝐴 is visited when the MDP starts simultaneously in all states and follows the
Markov chain𝑇 𝜋 , which is defined by taking action 𝑎 = 𝜋(𝑠) at each state 𝑠, discounting
by 𝛾 at each step. If an action 𝑎 is unused by 𝜋, then 𝑥 𝜋 (𝑠, 𝑎) = 0; otherwise, for 𝑠 ∈ 𝑆,

𝑥 𝜋 (𝑠, 𝜋(𝑠)) = 1 + 𝛾
∑︁
𝑠′∈𝑆

𝑇 (𝑠′, 𝜋(𝑠′), 𝑠) · 𝑥 𝜋 (𝑠′, 𝜋(𝑠′)).

The gain of 𝑎 ∈ 𝐴 for state 𝑠 ∈ 𝑆 with respect to a policy 𝜋 is defined as: 𝐺 𝜋 (𝑠, 𝑎) =
𝑄 𝜋 (𝑠, 𝑎) −𝑉 𝜋 (𝑠).

2.1 LPs and Induced LPs

A linear programming problem is defined by a set of linear inequality constraints 𝐻 and
an objective vector 𝑐 ∈ R𝑑 , where each constraint ℎ ∈ 𝐻 has the form 𝑎𝑇𝑥 ≤ 𝑏 with
𝑎 ∈ R𝑑 , 𝑏 ∈ R, and 𝑥 ∈ R𝑑 .

Let P(𝐻) be the polyhedron defined by 𝐻. The objective is to find a point 𝑥 ∈ P(𝐻)
that minimises 𝑐𝑇𝑥. We define the value of 𝐻, denoted as 𝑣𝐻 , as the lexicographically
smallest point in P(𝐻). If P(𝐻) = ∅, then 𝑣𝐻 = ∞, and if P(𝐻) ≠ ∅ but contains no
minimum, then 𝑣𝐻 = −∞.

A set 𝐵 ⊆ 𝐻 with |𝐵 | = 𝑑 is called a (feasible) basis if there exists a unique solution
𝑥𝐵. The point 𝑥𝐵 corresponds to a vertex of the polyhedron defined by 𝐻. The value
of a basis 𝐵 is given by 𝑣𝐵 = 𝑐𝑇𝑥𝐵, and for any proper subset 𝐵′ ⊂ 𝐵, it follows that
𝑣𝐵′ < 𝑣𝐵. If 𝑣𝐻 > −∞, a basis of 𝐻 is a minimal subset 𝐵 ⊆ 𝐻 such that 𝑣𝐵 = 𝑣𝐻 . A
constraint ℎ ∈ 𝐻 is said to be violated by 𝐻 if 𝑣𝐻 < 𝑣𝐻∪{ℎ} .

The problem of finding an optimal policy of an MDP can be formulated as a linear
program (LP). In this framework, the solution to the primal LP yields the optimal values
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associated with the MDP, while the solutions to the dual LP encapsulate the flux of the
optimal state-action pairs. The primal and dual LPs [24] are given below.

Primal: Minimise:
∑︁
𝑠′∈𝑆

𝑉 (𝑠′)

Subject to: 𝑉 (𝑠) ≥ 𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑉 (𝑠′), ∀𝑠 ∈ 𝑆,∀𝑎 ∈ 𝐴.

Dual: Maximise:
∑︁
𝑠∈𝑆

∑︁
𝑎∈𝐴

𝑅(𝑠, 𝑎) · 𝑥(𝑠, 𝑎)

Subject to:
∑︁
𝑎∈𝐴

𝑥(𝑠, 𝑎) = 1 + 𝛾
∑︁
𝑠′∈𝑆

∑︁
𝑎∈𝐴

𝑇 (𝑠′, 𝑎, 𝑠) · 𝑥(𝑠′, 𝑎), ∀𝑠 ∈ 𝑆.

The constraints of the induced primal LP correspond bijectively to the state-action
pairs of the MDP, resulting in a total of 𝑛 variables and 𝑚 = 𝑛𝑘 constraints. Similarly,
there exists a bijection between the policies of the MDP and the vertices of the induced
dual LP [31]. Our work primarily consists of the induced primal LP, although the reader
may find useful to conceptualise certain ideas through the dual.

The LP digraph of a Markov Decision Problem (MDP) is a directed graph where
each vertex corresponds to a policy (feasible basis of the induced dual LP), and a
directed edge exists between two vertices if one policy can be obtained from the other
by improving a single state-action pair.

2.2 A Polynomial-time extraction of MDP information

Below, we present a procedure that uses a polynomial number of evaluations to extract all
the necessary information to solve an MDP. This is achieved by utilising value functions,
which serve as geometric coordinates. In contrast, the LP Digraph represents a much
more restricted setting where such extraction is not feasible.

Consider the primal linear programming formulation of an MDP 𝑀 , where each
constraint corresponds to a state-action pair. For state 𝑠 and action 𝑎, the hyperplane is:

𝐻𝑠,𝑎 =

{
𝑉 ∈ R𝑛

���� 𝑉 (𝑠) = 𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑉 (𝑠′)
}

With 𝑛 states and 𝑘 actions per state, there are 𝑛 sets of 𝑘 hyperplanes, resulting in a total
of 𝑛𝑘 hyperplanes. Since a policy 𝜋 prescribes exactly one action per state, its value can
be represented in R𝑛 as: 𝑉 𝜋 =

⋂
𝑠∈𝑆 𝐻𝑠, 𝜋 (𝑠) , where the intersection captures the value

function 𝑉 𝜋 , satisfying all constraints associated with 𝜋. For a given state-action pair
(𝑠, 𝑎), we define the set of policies: Π𝑠,𝑎 = {𝜋 | 𝜋(𝑠) = 𝑎}. Clearly, |Π𝑠,𝑎 | = 𝑘𝑛−1 and
for 𝜋 ∈ Π𝑠,𝑎, 𝑉 𝜋 ∈ 𝐻𝑠,𝑎.

At each step, the algorithm selects an arbitrary subset 𝑃𝑠,𝑎 of 𝑛 policies fromΠ𝑠,𝑎 and
evaluates their value functions, yielding their coordinates in R𝑛. Since 𝑛 non-collinear
points in R𝑛 uniquely determine a hyperplane, these evaluations suffice to construct
the hyperplane 𝐻𝑠,𝑎. By repeating this process for all state-action pairs, the algorithm
constructs all 𝑛𝑘 hyperplanes using at most 𝑛2𝑘 policy evaluations.
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With this information extracted from the MDP, the optimal value function 𝑉★ can
be solved as: 𝑉★ = max

𝜋∈Π

{⋂
𝑠∈𝑆 𝐻𝑠, 𝜋 (𝑠)

}
without any further access to the MDP.

This highlights how value functions encode rich structural information about the
MDP, enabling efficient computation of optimal policies. However, our approach cir-
cumvents the use for such continuos data, relying instead on discrete inputs—improving
state-action pairs—to solve the MDP.

2.3 Simplex and Policy Iteration

The Simplex method operates through single-step transitions, referred to as pivots,
shifting from one feasible vertex to an adjacent feasible vertex with a strictly higher
objective on the LP-digraph. This iterative process persists until the algorithm converges
to an optimum, which corresponds to a vertex with the highest objective.

The choice of pivot rule is key in differentiating Simplex methods and determining
their complexity. While the original pivot rule proposed by Dantzig [9] remains the
most commonly employed in practice, Klee and Minty [23] demonstrated that this rule
can necessitate an exponential number of steps to converge. Numerous other pivot rules
have subsequently been observed to exhibit similar behaviour [10, 14, 17].

On the other hand, Kalai [18] introduced a randomised algorithm akin to the Simplex

method, which achieved a subexponential bound of 2𝑂
(√

𝑛 log𝑚
)

operations for solving
an LP with 𝑛 variables and 𝑚 constraints. Matousek, Sharir, and Welzl [27] established
an identical bound for the dual version algorithm. When combined with Clarkson’s
algorithm [7], their bound resolves to 𝑂 (𝑛2𝑚 + 𝑒𝑂 (

√
𝑛 log 𝑛) ). These bounds stand as the

tightest known for solving LPs, without any derandomisations currently known.
Policy iteration (PI) [16] can be viewed as a generalised version of the Simplex

method, where multiple simultaneous pivots or “jumps” are possible. It is a commonly
used algorithm for solving Markov Decision Problems (MDPs). For a policy 𝜋, define
the set of improving state-actions pairs, 𝐽 𝜋 , as follows:

𝐽 𝜋 = {(𝑠, 𝑎) ∈ 𝑆 × 𝐴 | 𝑄 𝜋 (𝑠, 𝑎) > 𝑉 𝜋 (𝑠)}.

Policy Iteration algorithms rely on the following Policy Improvement Theorem, which
states that if a policy has no improving state-action pair, it is already optimal. Otherwise,
switching any improving pair yields a policy with a higher value. Formally,

Theorem 1. For 𝜋 ∈ Π: If 𝐽 𝜋 = ∅ then 𝜋 = 𝜋★ otherwise for (𝑠0, 𝑎0) ∈ 𝐽 𝜋 , define 𝜋′

such that 𝜋′ (𝑠0) = 𝑎0 and 𝜋′ (𝑠) = 𝜋(𝑠) for all 𝑠 ∈ 𝑆, 𝑠 ≠ 𝑠0. Then 𝜋′ ≻ 𝜋.

Starting from an initial policy, PI involves iteratively navigating through evaluation
and improvement steps until reaching an optimal policy. Policy evaluation only needs
poly(𝑛, 𝑘) arithmetic operations. For general MDPs the best known upper bounds on the
number of iterations are exponential in the number of states 𝑛 [19, 26]. In case of Deter-
ministic MDPs, Post and Ye [31] obtained the tightest known bounds of 𝑂 (𝑛5𝑘2 log2 𝑛)
iterations for the max-gain simplex method.

Figure 1 illustrates an MDP with 2 states and 3 actions. The table lists the nine
possible policies, their corresponding value functions, and the improving state-action
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pairs. The LP-digraph shows the possible simplex trajectories. Consider two simplex
procedures starting with the initial policy 𝜋0 = 22. One takes the following path:
22 → 02 → 12 → 11 → 10, requiring 5 policy evaluations. The other takes a shorter
trajectory: 22→ 20→ 10, reducing the number of evaluations to 3.

𝑠0 𝑠1

0.52,−3

1,−9

0.48,−1

1, 2 0.96, 7

0.54, 5

0.04, 6

0.46, 8
1,−4

𝛾 = 0.9

00

01

02

10

11

12

20

21

22

𝜋 𝑉 𝜋 𝐽 𝜋

0, 0 48.05, 63.89 {(1, 0)}
0, 1 18.05, 26.95 {(0, 0), (1, 1)}
0, 2 −26.31,−27.68 {(0, 0), (0, 1), (1, 2)}
1, 0 63.08, 67.87 ∅
1, 1 47.87, 50.97 {(1, 0)}
1, 2 −8.42,−11.57 {(1, 0), (1, 1)}
2, 0 −90, 27.35 {(0, 0), (1, 0), (2, 1)}
2, 1 −90, 60.07 {(0, 1), (1, 1)}
2, 2 −90,−85 {(0, 2), (1, 2), (2, 0), (2, 1)}

Fig. 1: A 2-state, 3-action MDP and its LP digraph. The red, green, and blue edges correspond to
actions 0, 1, and 2 respectively, and the tuples represent the transition probability and the rewards.
The corresponding table contains values and improving state-action pairs of policies.

3 Algebraic Simplex Computation Model

We introduce a new coordinate-free combinatorial model of computation for solving
MDPs, called Algebraic Simplex (AS). AS differs from standard PI algorithms in two
key aspects: its algebraic property and its utilisation of a polynomial-sized memory.

Starting from an initial policy 𝜋0, at each iteration 𝑖 of a standard PI algorithm,
a mapping is proposed from the action values of the policy to a subset of improving
pairs. This mapping can be expressed as: 𝑄 𝜋𝑖 ↦→ 𝑈 ∈ 𝐽 𝜋𝑖 where 𝑈 is the set of
state-action pairs the algorithm chooses to switch to get to 𝜋𝑖+1. In contrast an AS
algorithm implements a mapping (𝐽 𝜋𝑖 ,M𝑖) ↦→ ( 𝑗 ∈ 𝐽 𝜋𝑖 ,M𝑖+1) where 𝑗 is a (single)
state-action pair selected for switching, andM𝑖 ,M𝑖+1 are bit vectors of polynomial size.
Additionally, the computational complexity of each step is polynomially bounded in 𝑛

and 𝑘 . For randomised PI/AS algorithms, the mapping is stochastic (we can equivalently
assume that the input includes a random seed). A significant aspect of AS is that its
memory set lacks access to any geometric information of the policies. The policy
evaluation step is replaced by a query which returns the set of improving state-action
pairs available from the current policy. Figure 2 illustrates the AS model. We review the
literature on LPs along the key dimensions that distinguish AS.



8 Mukherjee and Kalyanakrishnan

Policy
Iteration

𝑄𝜋𝑖 𝑈 ⊆ 𝐽 𝜋𝑖
Algebraic
Simplex

𝐽 𝜋𝑖 𝑗 ∈ 𝐽 𝜋𝑖

M𝑖 M𝑖+1

Fig. 2: An illustration of the AS model along with the standard PI model. The incoming/outgoing
edges represent input/output to the algorithm.

3.1 Usage of geometry, randomness, memory, and jumping to solve LPs

There has been a longstanding pursuit for a strongly polynomial algorithm for linear
programming. While polynomial-time algorithms such as the ellipsoid method [22] and
Karmarkar’s algorithm [21] exist, their running time depends on the bit representation
of the input. Notably, strongly polynomial bounds for linear programming have been
attainable when the geometry of the feasible region is favourable.

Consider the Geometric Random-Edge algorithm [11], a variant of the Random-
Edge pivot rule [13] for the simplex method. This algorithm applies when the constraint
matrix 𝐴 satisfies a geometric property introduced by Brunsch and Röglin [5]: the sine
of the angle of a row of 𝐴 to a hyperplane spanned by 𝑛 − 1 other rows of 𝐴 is at least
𝛿. Under this condition, the expected running time is poly(𝑛, 𝑚, 1/𝛿).

Policy iteration (PI) algorithms can leverage geometry, memory, and jump opera-
tions. An example is Geometric Policy Iteration (GPI), which follows its own distinct
value function update scheme. The Line Theorem [8] states that policies differing in a
single state correspond to the same line segment in the value function polytope. GPI
exploits this structure by preventing updates along the same line segment, achieving
performance that matches the best-known bounds for solving MDPs (see Table 1).

Another example that uses memory and jump operations is the Fibonacci-Seesaw
algorithm [36], which recursively solves acyclic unique sink orientations (AUSOs) by
exploring antipodal vertices. This approach extends to solving 𝑘-action MDPs using
recursive AUSOs [15], a generalisation of AUSOs, in poly(𝑛, 𝑘) · 𝑘0.68𝑛 iterations.

Randomisation indeed plays a crucial role in complementing geometric approaches.
For instance, consider Megiddo’s multidimensional search algorithm for LPs [29], which
uses geometry to achieve a deterministic algorithm with a bound linear in 𝑚 but dou-
bly exponential in 𝑛. Clarkson’s algorithm can also be derandomised [6] to obtain a
deterministic algorithm that uses epsilon nets, a geometric property. Without geometry,
deterministic algorithms for MDPs currently only achieve bounds exponential in 𝑛.

We summarise the features and upper bounds of various algorithms in Table 1. In the
following sections, we introduce algorithms based on our AS model. These algorithms
begin with an arbitrary policy 𝜋0 and a suitably initialised memoryM. At each iteration,
they compute the next policy and memory state using the function 𝑛𝑒𝑥𝑡 until the optimal
policy is reached.

4 L1: Random-Facet

The Random-Facet (R-F) [27] algorithm for solving LPs proceeds as follows. Given a
set 𝐻 of 𝑚 constraints, the algorithm selects a constraint ℎ uniformly at random from
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Algorithm Running-time Upper Bound Geometry Randomness Memory Jump
Geometric RE [11] 𝑝𝑜𝑙𝑦 (𝑛, 𝑚, 1/𝛿 ) ✓ ✓ × ×
HPI [38] 𝑝𝑜𝑙𝑦 (𝑛, 𝑘, 1/1 − 𝛾) ✓ × × ✓

Simplex [38] 𝑝𝑜𝑙𝑦 (𝑛, 𝑘, 1/1 − 𝛾) ✓ × × ×
GPI [37] 𝑝𝑜𝑙𝑦 (𝑛, 𝑘, 1/1 − 𝛾) ✓ × ✓ ✓

Megiddo [29] 𝑝𝑜𝑙𝑦 (𝑚) · 𝑒𝑥𝑝 (𝑒𝑥𝑝 ( (𝑛) ) ✓ × ✓ ✓

D-Clarkson [6] 𝑝𝑜𝑙𝑦 (𝑚) · 𝑒𝑥𝑝 (𝑛) ✓ × ✓ ×
RSPI [20] 𝑝𝑜𝑙𝑦 (𝑛, 𝑘 ) · 𝑒𝑥𝑝 (𝑛) ✓ ✓ × ×
FS [36] [15] 𝑝𝑜𝑙𝑦 (𝑛, 𝑘 ) · 𝑒𝑥𝑝 (𝑛) × × ✓ ✓

L1 [27] 𝑝𝑜𝑙𝑦 (𝑛, 𝑘 ) · 𝑒𝑥𝑝 (
√︁
𝑛 log 𝑛𝑘 ) × ✓ ✓ ×

L2 [27] [7] 𝑝𝑜𝑙𝑦 (𝑛, 𝑘 ) · 𝑒𝑥𝑝 (
√︁
𝑛 log 𝑛) × ✓ ✓ ×

L3 [31] 𝑝𝑜𝑙𝑦 (𝑛, 𝑘 ) ✓ × × ×

L′1 (this paper) 𝑝𝑜𝑙𝑦 (𝑛, 𝑘 ) · 𝑒𝑥𝑝 (
√︁
𝑛 log 𝑛𝑘 ) × ✓ ✓ ×

L′2 (this paper) 𝑝𝑜𝑙𝑦 (𝑛, 𝑘 ) · 𝑒𝑥𝑝 (
√︁
𝑛 log 𝑛) × ✓ ✓ ×

L′3 (this paper) 𝑝𝑜𝑙𝑦 (𝑛, 𝑘 ) × × ✓ ×

Table 1: Algorithms and their key component features across four primary categories. It is not
apparent from their original descriptions that L1 [27] and L2 [7] do not need geometry and
jumping. By proposing L′1 and L′2 as replacements, we bring out this aspect explicitly.

𝐻 \ 𝐶, where 𝐶 is a given input basis, initially arbitrary. Subsequently, it computes a
basis 𝐵 for 𝐻 \ ℎ recursively. If ℎ is not violated by 𝐵, then 𝐵 serves as a basis for 𝐻,
marking the completion of the algorithm. However, if ℎ is violated by 𝐵, then ℎ is added
to 𝐵 and the recursion continues. Pseudocode is given in Algorithm 1. The algorithm
simplifies in the case of combinatorial cubes [12].

4.1 Algorithm: L′
1

Recall that in MDPs, each policy corresponds to a basis in the dual LP. We implement
R-F on an MDP 𝑀 as follows. Starting from a policy 𝜋, the algorithm selects a state-
action pair (𝑠, 𝑎) uniformly at random that is not used by 𝜋. It then recursively solves
the MDP without (𝑠, 𝑎) (denoted 𝑀 ′) to obtain an optimal policy 𝜋′ for 𝑀 ′. If (𝑠, 𝑎) is
not an improving pair for 𝜋′ in 𝑀 , then 𝜋′ is necessarily optimal for 𝑀 . Otherwise, the
algorithm switches state 𝑠 with action 𝑎 in 𝜋′, yielding a new policy 𝜋′′, and repeats the
procedure from 𝜋′′.

Algorithm 2 shows pseudocode for an implementation of R-F as an AS algorithm.
Memory is implemented as a stack of state-action pairs, initialised as empty. Let 𝑃 denote
the set of all state-action pairs in the MDP, and let 𝑃𝜋 represent the state-action pairs
associated with a policy 𝜋, formally defined as 𝑃𝜋 = {(𝑠, 𝜋(𝑠)) | 𝑠 ∈ 𝑆}. Starting from
an arbitrary policy, the algorithm iterates. At each step, the stack, of size at most 𝑚−𝑛, is
populated with state-action pairs uniformly sampled from a subset of 𝑃. These pairs are
then removed from the stack sequentially until an improving pair is found. When such
a pair is identified, the algorithm switches to a new policy using the improving pair and
restarts with the updated policy and memory stack. The operation switch(𝜋, (𝑠, 𝑎))
modifies policy 𝜋 by assigning action 𝑎 to state 𝑠.
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4.2 Analysis

We revisit the analysis of L1 [27] to establish the complexity of L′1.

Theorem 2. Starting from an arbitrary policy 𝜋0, the expected number of calls to

next-L′1 is upper-bounded by: poly(𝑛, 𝑚) · 𝑒𝑂
(√

𝑛 log𝑚
)
.

Proof. Within a call to 𝑛𝑒𝑥𝑡, a state-action pair 𝑝 is popped from the stack, and the
process continues until 𝑝 is improving for the current policy 𝜋. Let 𝑣𝑝 denote the
optimal value of the MDP without the state-action pair 𝑝, i.e., 𝑣𝑝 = 𝑣𝑃\𝑝 . Then, 𝑝 is
improving for 𝜋 if and only if 𝑣𝑝 > 𝑣𝑃𝜋 . Clearly, if 𝑝 ∈ 𝑃𝜋★ , then 𝑣𝑝 ≥ 𝑣𝑃𝜋 for all
𝜋 ∈ Π.

Consider an ordering of state-action pairs 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑚) such that

𝑣𝑝1 ≤ 𝑣𝑝2 ≤ · · · ≤ 𝑣𝑝𝑛−𝜃 < 𝑣𝑝𝑛−𝜃+1 ≤ · · · ≤ 𝑣𝑝𝑚 .

Define a state-action pair 𝑝 as fixed for 𝜋 if 𝑣𝑝 < 𝑣𝑃𝜋 . Under this ordering, if 𝑣𝑝𝑛−𝜃 <

𝑣𝑃𝜋 , then exactly 𝑛− 𝜃 pairs are fixed in 𝜋. Consequently, after transitioning from policy
𝜋 to 𝜋′, only 𝜃 state-action pairs from {𝑝𝑛−𝜃+1, . . . , 𝑝𝑚} can lead to further switches.

Since the algorithm selects pairs uniformly at random from 𝑃 \ 𝑃𝜋 , each has a
probability of 1

𝑚−𝑛 of being chosen. Let 𝑇𝜃 (𝑚) denote the expected number of switches
performed by algorithm L′1 with 𝑚 state-action pairs, 𝑛 − 𝜃 of which are fixed.

The recurrence relation for 𝑇𝜃 (𝑚) is given by:

𝑇𝜃 (0) = 0, 0 ≤ 𝜃 ≤ 𝑛;

𝑇𝜃 (𝑚) ≤ 𝑇𝜃 (𝑚 − 1) + 1 + 1
𝑚 − 𝑛

min{𝑚−𝑛,𝜃 }∑︁
𝑖=1

𝑇𝜃−𝑖 (𝑚).

As stated in the theorem, this recurrence satisfies [27]:

𝑇𝑛 (𝑚) ≤ poly(𝑛, 𝑚) · 𝑒𝑂
(√

𝑛 log𝑚
)

Algorithm 1 Random Facet (L1) [27]
1: procedure Φ𝑅(𝐻,𝐶)
2: if 𝐻 = 𝐶 then
3: return 𝐶

4: else
5: Pick ℎ ∈ 𝐻 \ 𝐶 uniformly at
6: random
7: 𝐵← Φ𝑅 (𝐻 \ ℎ, 𝐶) ⊲ 1st call
8: if ℎ is violated by 𝐵 then
9: return Φ𝑅 (𝐻, 𝑏𝑎𝑠𝑖𝑠(𝐵, ℎ))

⊲ 2nd call
10: else
11: return 𝐵

Algorithm 2 “Next” Function underL′1
1: procedure 𝑛𝑒𝑥𝑡_L′1(𝜋,M)
2: 𝑈 ← 𝑃 \M ∪ 𝑃𝜋

3: while 𝑈 ≠ ∅ do
4: Pick 𝑢 = (𝑠, 𝑎) ∈ 𝑈 uniformly

at random
5: Push (𝑢,M)
6: 𝑈 ← 𝑈 \ {𝑢}
7: repeat
8: 𝑞 ← Pop(M)
9: until 𝑞 ∈ 𝐽 𝜋

10: 𝜋′ ← switch (𝜋, 𝑞)
11: return (𝜋′,M)
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5 L2: Las Vegas

In this section, we study the scenario where the MDP possesses a large set of actions
as compared to the set of states. We devise our AS algorithm, denoted L′2, drawing
inspiration from a “Las Vegas” algorithm (denoted L2) proposed by Clarkson [7].

Consider an LP with many more constraints than variables. The key idea of L2 is
to exclude redundant constraints from the LP and find the optimal basis quickly. The
algorithm does this by building a set of constraints 𝑊★ that will eventually contain the
optimal basis. It proceeds recursively in phases, adding a constraint set 𝑊 to 𝑊★ at
each phase. The set 𝑊 satisfies two properties: its size remains below a threshold, and it
includes at least one constraint from the optimal basis. The recursion base case is solved
using the Simplex method. The pseudocode for L2 is given in Algorithm 3.

5.1 Algorithm: L′
2

Our algorithm L′2 adapts the procedure L2 for solving MDPs, albeit with a few key
modifications. At each stage, it solves a sub-MDP defined by a set of state-action pairs,
storing them in memory until the size of the MDP drops below a threshold. It then solves
the reduced MDP usingL′1. UnlikeL2,L′2 follows a simplex procedure. It initialises the
set 𝑊★ with 𝑃𝜋0 , where 𝜋0 is the initial policy. At every iteration, it adds an improving
state-action pair to 𝑊★. This ensures that the algorithm follows a sequence of policies
𝜋0, 𝜋1, . . . , 𝜋𝑖 , such that 𝜋𝑖+1 ≻ 𝜋𝑖 .

Pseudocode for L′2 is given in Algorithm 4. Note that the memory operates on sets,
so the Push and Pop operations are performed with sets of pairs rather than individual
elements. The memory has two components: M0, which stores the state-action pairs
representing the sub-mdp andM1, which contains the set 𝑊★. Initially,M0 holds all
state-action pairs of the MDP, whileM1 starts with pairs representing the initial policy.

5.2 Analysis

We extend Clarkson’s analysis to L′2 as follows.

Theorem 3. Starting from an arbitrary policy 𝜋0, the expected number of calls to

next-L′2 is upper-bounded by: 𝑂
(
𝑛2𝑚 + 𝑒𝑂

(√
𝑛 log 𝑛

) )
.

Proof. The algorithm involves populating the memory M =
(
M0,M1) with sets of

state-action pairs. It can be shown that if the set 𝑊 is non-empty, it must contain a
state-action pair belonging to the optimal policy 𝜋★ [7]. Consequently, the size ofM1

is augmented at most 𝑛 + 1 times.
A key result is that the expected size of 𝑊 cannot exceed 𝑚𝑛

|𝑅 | [7]. Given that
|𝑅 | = 𝑛

√
𝑚, we have 𝐸 [|𝑊 |] ≤

√
𝑚. By Markov’s inequality, 𝑃( |𝑊 | > 2

√
𝑚) ≤ 0.5. We

define a success at an iteration as the event |𝑊 | ≤ 2
√
𝑚 and a failure otherwise. During

a success, 2
√
𝑚 state-action pairs are added to 𝑊★, while only one pair is added during

a failure. Hence, the size ofM1 increases by at most
√
𝑚 + 1 in expectation. Given that

there are at most 𝑛 + 1 increments, the total size of M1 is bounded by 2𝑛
√
𝑚. Since
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each element ofM0 (beyond initialisation) is a union of 𝑅 andM1, the size ofM0 is
bounded by 3𝑛

√
𝑚.

Let 𝑇 (𝑚) denote the expected time to solve an MDP with 𝑛 states and 𝑚 state-action
pairs. As the algorithm requires solving at most 2(𝑛 + 1) MDPs with at most 3𝑛

√
𝑚

pairs, we obtain [7]:

𝑇 (𝑚) ≤ 2(𝑛 + 1)𝑇 (3𝑛
√
𝑚) +𝑂 (𝑛2𝑚).

For 𝑚 ≤ 9𝑛2, substituting 𝑇 (3𝑛
√
𝑚) with our L′1 bound yields the desired result:

𝑇 (𝑚) ≤ 𝑂

(
𝑛2𝑚 + 𝑒𝑂 (

√
𝑛 log 𝑛)

)
.

6 L3: Max-Gain

The Max-gain Simplex algorithm (here denotedL3) operates as follows: starting from an
initial policy, it iteratively switches to a new policy by selecting a state-action pair with
the highest gain. Specifically, at each iteration, it updates the policy 𝜋 by replacing the
action at state 𝑠𝑚 with 𝑎𝑚, where: (𝑠𝑚, 𝑎𝑚) ∈ arg max

(𝑠,𝑎)
𝐺 𝜋 (𝑠, 𝑎). This process transitions

to the next policy in the sequence. Post and Ye [31] showed thatL3 is strongly polynomial
on Deterministic MDPs (DMDPs). Below, we summarise their analysis.

Algorithm 3 Las Vegas (L2) [7]
1: procedure Ψ𝑟 (𝐻: set of constraints)
2: 𝑊★← ∅; 𝐶𝑛 ← 9𝑛2

3: if |𝐻 | ≤ 𝐶𝑛 then
4: return Ψ★

𝑠 (𝐻) ⊲ Simplex
5: repeat
6: Choose 𝑅 ⊂ 𝐻 \𝑊★ uniformly
7: at random, |𝑅 | = 𝑛

√
𝑚

8: 𝑥★← Ψ★
𝑟 (𝑅 ∪𝑊★)

9: 𝑊 ← {ℎ ∈ 𝐻 | 𝑥★ violates ℎ}
10: if |𝑊 | ≤ 2

√
𝑚 then

11: 𝑊★← 𝑊★ ∪𝑊
12: until 𝑊 = ∅
13: return 𝑥★

Algorithm 4 “Next” Function underL′2
1: procedure 𝑛𝑒𝑥𝑡_L′2(𝜋,M)
2: 𝑈 ← Pop(M0); 𝑊★← Pop(M1)
3: Push(𝑈,M0)
4: while |𝑈 | > 9𝑛2 do
5: Pick 𝑅 ⊂ 𝑈 \𝑊★ uniformly
6: at random, |𝑅 | = 𝑛

√︁
|𝑈 |

7: 𝑈 ← 𝑅 ∪𝑊★

8: Push
(
𝑈,M0

)
9: Curr← Pop(M0)

10: 𝜋′ ← L′1 (𝜋,Curr)
11: repeat
12: Prv← Pop(M0)
13: 𝑊 ← 𝐽 𝜋

′ ∩ Prv
14: until 𝑊 ≠ ∅
15: Push(Prv,M0)
16: if |𝑊 | < 2

√︁
|Prv| then

17: 𝑊★← 𝑊 ∪𝑊★

18: else
19: Pick a 𝑤 ∈ 𝑊
20: 𝑊★← 𝑤 ∪𝑊★

21: Push
(
𝑊★,M1

)
22: return (𝜋′,M)
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6.1 Analysis of L3

A DMDP can be represented as a weighted directed multigraph, where the vertices
correspond to states and the edges represent actions. A policy corresponds to a subgraph
in which each vertex has exactly one outgoing edge. As a result, every policy can be
visualised as a collection of disjoint paths that lead to corresponding disjoint cycles.
The analysis leverages the concept of flux within these paths and cycles.

Fix some policy 𝜋 ∈ Π. If an action of 𝜋 resides on a path, it can only be utilised
once, contributing a unit of flux per state. In contrast, if an action is part of a cycle, each
state within the cycle contributes a total flux of 1/(1−𝛾) to the cycle. Therefore, the flux
bounds can be expressed for 𝑠 ∈ 𝑆 as: 1 ≤ 𝑥 𝜋 (𝑠, 𝑎𝑝) ≤ 𝑛 and 1

1−𝛾 ≤ 𝑥 𝜋 (𝑠, 𝑎𝑐) ≤
𝑛

1−𝛾 , where 𝑎𝑝 and 𝑎𝑐 denote actions on a path and in a cycle, respectively. A key aspect
of the analysis is that an action update on a path contributes to optimising the paths
leading to their respective cycles, whereas an update on a cycle results in a significant
improvement in the overall objective. The progress is quantified as follows.

Suppose the algorithm pivots with a path update from policy 𝜋 to 𝜋′ and subsequently
to 𝜋′′, where 𝜋′′ represents a policy in which no further path updates are possible. Post
and Ye show that:∑︁

𝑠

{𝑈 (𝜋′′, 𝑠) −𝑈 (𝜋′, 𝑠)} ≤
(
1 − 1

𝑛2

)∑︁
𝑠

{𝑈 (𝜋′, 𝑠) −𝑈 (𝜋, 𝑠)}. (1)

On the other hand if 𝜋 and 𝜋′ were policies where 𝜋′ creates a new cycle we have:∑︁
𝑠

{
𝑈 (𝜋★, 𝑠) −𝑈 (𝜋′, 𝑠)

}
≤

(
1 − 1

𝑛

)∑︁
𝑠

{
𝑈 (𝜋★, 𝑠) −𝑈 (𝜋, 𝑠)

}
(2)

where 𝑈 (𝜋, 𝑠) = 𝑅(𝑠, 𝜋(𝑠)) · 𝑥 𝜋 (𝑠, 𝜋(𝑠)). We obtain the two lemmas below using (1)
and (2), respectively [31].

Lemma 1. Let 𝜋 be a policy. After 𝑂 (𝑛2 log 𝑛) iterations starting from 𝜋, either L3
finishes, a new cycle is created, a cycle is broken, or some action in 𝜋 never appears in
a policy again until a new cycle is created.

Lemma 2. Let 𝜋 be a policy. Starting from 𝜋, after 𝑂 (𝑛 log 𝑛) iterations in which a new
cycle is created, some action in 𝜋 is either eliminated from cycles for the remainder of
L3 or entirely eliminated from policies for the remainder of the algorithm.

Lemmas 1 and 2 combine to provide the required result:

Theorem 4. L3 converges in at most 𝑂 (𝑛5𝑘2 log2 𝑛) iterations on DMDPs.

6.2 Algorithm: L′
3

Since gain is a real-valued geometric quantity,L3 alone does not satisfy the AS property.
We design a strongly polynomial-time AS algorithm, L′3, using the analysis of L3.

Let 𝜋 and 𝜋 be two policies such that 𝜋 ≻ 𝜋. Starting from 𝜋, we define a procedure
Φ(𝜋, 𝜋) to identify a policy 𝜋′ satisfying 𝜋′ ⪰ 𝜋. Define 𝐷 = 𝐽 𝜋 ∩ 𝑃𝜋 . At each step,
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an element 𝑝 is arbitrarily selected from 𝐷, and 𝜋 is updated by switching 𝑝, yielding a
new policy 𝜋′. The procedure then continues with 𝜋′ replacing 𝜋.

Since this follows the simplex procedure, any selected 𝑝 cannot reappear in a sub-
sequent 𝐷, ensuring that |𝐷 | decreases by one at each step. Given that |𝐷 | ≤ 𝑛, the
process terminates in at most 𝑛 steps.

We define our AS algorithm based on the procedure Φ as follows: Let Θ𝜋 be the
set of policies which result after switching a state-action pair from 𝐽 𝜋 . At each step,
we select 𝜃 ∈ Θ𝜋 and apply Φ to obtain a policy 𝜋′ that dominates 𝜃. Iterating over all
elements of Θ𝜋 yields a policy 𝜋′′ that dominates every element in Θ𝜋 .

Since the policy 𝜃𝑚, obtained via a max-gain switch from 𝜋, is guaranteed to be inΘ𝜋 ,
it follows that 𝜋′′ ⪰ 𝜃𝑚. The process then restarts from 𝜋′′ and repeats until optimality
is reached. The pseudocode for the 𝑛𝑒𝑥𝑡 procedure is provided in Algorithm 5. We use
memoryM to store Θ𝜋 , initialising it as an empty set.

Algorithm 5 “Next” Function under L′3
1: procedure 𝑛𝑒𝑥𝑡_L′3(𝜋,M)
2: repeat
3: ifM = ∅ then
4: for 𝑝 ∈ 𝐽 𝜋 do
5: Push (switch(𝜋, 𝑝),M)
6: 𝜋 ← Pop (M)
7: until 𝐽 𝜋 ∩ 𝑃𝜋 ≠ ∅
8: return Φ(𝜋, 𝜋,M)

Algorithm Helper Function: Φ
1: procedure Φ(𝜋, 𝜋,M)
2: Pick 𝑝 ∈ 𝐽 𝜋 ∩ 𝑃𝜋

3: 𝜋′ ← switch(𝜋, 𝑝)
4: if 𝐽 𝜋′ ∩ 𝑃𝜋 ≠ ∅ then
5: Push(𝜋,M)
6: return (𝜋′,M)

6.3 Analysis

Starting from a policy 𝜋, we define the operator 𝜂, which returns a policy dominating
every element of Θ𝜋 . Consequently, the policies in the trajectory ofL′3 can be structured
into two layers: i) Those forming the sequence X =

(
𝜋, 𝜂(𝜋), 𝜂2 (𝜋), . . .

)
, and ii) those

appearing between successive elements of X. As established earlier, 𝜂𝑖+1 (𝜋) ⪰ 𝜃𝑚,
where 𝜃𝑚 is the policy obtained by selecting the action with the highest gain from 𝜂𝑖 (𝜋).
The following two lemmas help establish a correspondence between the trajectory of
policies in X and those visited by L3.

Lemma 3. Let 𝜋, 𝜋′, and 𝜋′′ be three adjacent elements in the sequenceX. Suppose the
switches from 𝜋 to 𝜋′ and from 𝜋′ to 𝜋′′ do not introduce any new cycles, and no further
path updates are possible from 𝜋′′. Then, 𝜋, 𝜋′, and 𝜋′′ satisfy equation (1).

Proof. Let Δ = max(𝑠,𝑎) 𝐺 𝜋 (𝑠, 𝑎) be the highest gain and let 𝐴𝑐 denote the set of
actions belonging to cycles in 𝜋. Since 𝜋′′ does not create a new cycle, 𝐺 𝜋 (𝑠, 𝑎) = 0 for
all 𝑎 ∈ 𝐴𝑐. Define the operator Ψ(𝜋′, 𝜋) = ∑

𝑠 (𝑈 (𝜋′, 𝑠) −𝑈 (𝜋, 𝑠)). Now we have:

Ψ(𝜋′′, 𝜋′) = Ψ(𝜋′′, 𝜋) − Ψ(𝜋′, 𝜋) (3)

Let 𝜋̄′ be the policy which results by switching the action with the highest gain from
𝜋. Since 𝜋′ ⪰ 𝜋̄′, we have: Ψ(𝜋′, 𝜋) ≥ Ψ(𝜋̄′, 𝜋). Since policy 𝜋̄′ must have at least 1 unit
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of flux on the action with gain Δ, Ψ(𝜋′, 𝜋) ≥ Ψ(𝜋̄′, 𝜋) ≥ Δ. Replacing Ψ(𝜋′, 𝜋) with Δ

in equation (3) we obtain: Ψ(𝜋′′, 𝜋′) ≤ Ψ(𝜋′′, 𝜋) −Δ. Recall 𝑥 𝜋 (𝑠, 𝑎𝑃) ≤ 𝑛 for all 𝜋 and
𝑎𝑃 therefore the total flux on paths is bounded by 𝑛2 which gives Ψ(𝜋′′, 𝜋) ≤ 𝑛2Δ. Thus
we have: Ψ(𝜋′′, 𝜋′) ≤ Ψ(𝜋′′, 𝜋) − Δ and Δ ≥ Ψ(𝜋′′, 𝜋)/𝑛2. Therefore: Ψ(𝜋′′, 𝜋′) ≤
(1 − 1/𝑛2)Ψ(𝜋′′, 𝜋).

Lemma 4. Suppose 𝜋 and 𝜋′ be adjacent policies of a sequence X such that 𝜋′ creates
a new cycle. Then 𝜋 and 𝜋′ satisfy equation (2).

Proof. We have:
Ψ(𝜋★, 𝜋′) = Ψ(𝜋★, 𝜋) − Ψ(𝜋′, 𝜋) (4)

Again let 𝜋̄′ be the policy which results by switching the action with the highest gain
from 𝜋 and let 𝑎 be an action which forms a cycle. Since 𝑥 𝜋 (𝑠, 𝑎𝐶 ) ≥ 1/(1 − 𝛾),
switching 𝑎 will result in at least 1/(1 − 𝛾) units of flux through 𝑎. Since 𝜋′ ⪰ 𝜋̄′,
we have: Ψ(𝜋′, 𝜋) ≥ Δ/(1 − 𝛾). Replacing in equation (4), we obtain: Ψ(𝜋★, 𝜋′) ≤
Ψ(𝜋★, 𝜋) − Δ/(1 − 𝛾). Since the total flux on an MDP is bounded by 𝑛

1−𝛾 , we have:
Ψ(𝜋★, 𝜋) ≤ 𝑛Δ/(1 − 𝛾). Therefore we get: Ψ(𝜋★, 𝜋′) ≤ (1 − 1/𝑛)Ψ(𝜋★, 𝜋).

Lemmas 1 and 2 hold for the policies in the sequence X as a direct consequence of
Lemmas 3 and 4, leading analogously to the following result:

Theorem 5. For a given policy 𝜋, the length of the sequence X and the number of
iterations in L3 have the same asymptotic order.

Consider a policy 𝜋 ∈ X. It is clear that: |Θ𝜋 | ≤ 𝑛(𝑘 − 1). Now, let 𝜃1 and 𝜃2 be two
consecutive policies in the trajectory of L′3 such that both 𝜃1, 𝜃2 ∈ Θ𝜋 . Between 𝜃1 and
𝜃2, there can be at most 𝑛 policies in L′3. Consequently, the total number of policies in
a trajectory of L′3 is bounded by: 𝑛2 (𝑘 − 1) · 𝑂 (𝑛5𝑘2 log2 𝑛) = 𝑂 (𝑛7𝑘3 log2 𝑛).

7 Summary

We have introduced a coordinate-free computation model to explore the role of geom-
etry in MDP planning. By analysing three algorithms renowned for their efficiency in
solving LPs and MDPs and adapting them to our algebraic and jump-free model we
have uncovered intriguing insights. These findings are striking given the substantial
advantages geometry often confers on algorithms. To the best of our knowledge, this is a
novel investigation in the MDP literature. Our results prompt an important question: do
geometry and jumping provide only a polynomial advantage in solving MDPs, or can
they lead to significantly tighter upper bounds than currently established?

Our coordinate-free AS framework has promising applications. It provides a stable
and efficient method for computing Blackwell optimal policies [4], mitigating numerical
instabilities arising from dependence on geometric properties. Furthermore, our study
suggests that the polytope structure of MDPs remains underutilised in algorithm design.
By harnessing this structure—much like LP algorithms exploit polytopes—it may be
possible to develop fundamentally more efficient MDP solvers. Additionally, extending
AS to generalisations like Stochastic Games [34] could yield new insights into computing
solutions such as Nash Equilibria.
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