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Abstract. Markov Decision Problems (MDPs) provide a founda-
tional framework for modelling sequential decision-making across
diverse domains, guided by optimality criteria such as discounted
and average rewards. However, these criteria have inherent limi-
tations: discounted optimality may overly prioritise short-term re-
wards, while average optimality relies on strong structural assump-
tions. Blackwell optimality addresses these challenges, offering a ro-
bust and comprehensive criterion that ensures optimality under both
discounted and average reward frameworks. Despite its theoretical
appeal, existing algorithms for computing Blackwell Optimal (BO)
policies are computationally expensive or hard to implement.

In this paper we describe procedures for computing BO policies
using an ordering of rational functions in the vicinity of 1. We adapt
state-of-the-art algorithms for deterministic and general MDPs, re-
placing numerical evaluations with symbolic operations on rational
functions to derive bounds independent of bit complexity. For de-
terministic MDPs, we give the first strongly polynomial-time algo-
rithms for computing BO policies, and for general MDPs we obtain
the first subexponential-time algorithm. We further generalise several
policy iteration algorithms, extending the best known upper bounds
from the discounted to the Blackwell criterion.

1 Introduction

Markov Decision Problems (MDPs) are a widely used mathemat-
ical framework for modelling sequential decision-making prob-
lems. They form the backbone of reinforcement learning where
agents learn to take decisions by interacting with an environment.
Applications span diverse fields, including treatment planning in
healthcare [2], automated control systems [8], robotics [25], game-
solving [42], and financial portfolio management [44]. Their flexibil-
ity and rigorous foundation make MDPs a central tool in operations
research, artificial intelligence, and economics.

An MDP is characterised by a tuple (S, A, T, R), where S is the
set of states and A is the set of actions. In this paper we assume S
and A are finite with sizes n and k respectively. When an agent takes
an action a € A from state s € S, it transitions to a new state s’
with a probability T'(s, a, s") and receives a mean reward R(s, a).
The key feature of MDPs is the Markov Property, which asserts that
the transition dynamics depend only on the current state and action
and not on the sequence of past states.

The objective in an MDP is to determine a policy: a rule that spec-
ifies the action to take in each state. Starting from an initial state so,
if the agent follows a policy m : § — A, it encounters a sequence

(s',m(s"),7") -, The long-term reward of the agent for a state s is
determined by the chosen optimality criterion.

Under the discounted reward criterion, a policy is evaluated using
a value function that quantifies the cumulative discounted sum of
rewards obtained by following the policy from state s, expressed as:
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where the discount factor v € [0, 1) is specified as part of the MDP.
The discounted framework is widely favoured [45, 26] for its

mathematical simplicity, notably due to the contraction property.

However, it is also subject to limitations, which we discuss later.
Under the average reward criterion, the value of a policy 7 for a

state s is characterised by two components: the gain and the bias. The

gain, denoted by V" (s), represents the long-term average reward per

time step under the policy 7 from state s. It is defined as:
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The bias, denoted by Vi (s), reflects the transient behaviour of the
system, capturing how the reward dynamics evolve before the steady-
state is reached. It is defined for each state s as:
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Gain and bias optimality are specific instances of a broader opti-
mality criterion known as sensitive discount optimality [49], which
focuses on the cumulative sum of rewards as the discount factor ap-
proaches 1. Each of these criteria defines an optimal policy, 7*, such
that V™" dominates (as a vector) V™ for all policies 7. Here, V™
serves as a placeholder for the value corresponding to the given opti-
mality criterion, such as V" or V.

MDPs can be solved, or an optimal policy found, using value iter-
ation, policy iteration, or linear programming under both optimality
criteria. These algorithms are straightforward and effective in the dis-
counted case. However, in the average-reward case, the structure of
the Markov chains induced by stationary policies plays a significant
role, making it harder to design a general, simple algorithm.

Blackwell [5] introduced a refined notion of optimality, known as
Blackwell optimality. A policy 7 is Blackwell Optimal (BO) if there
exists a threshold 7 € (0,1) such that 7 remains optimal under
the discounted reward criterion for all discount factors v € (7,1).



By definition, any BO policy is discount-optimal for all sufficiently
large discount factors, and is also average-optimal. Thus Blackwell
optimality serves as a conceptual bridge between average and dis-
counted optimality. While a BO policy is guaranteed to exist for ev-
ery finite MDP [5], existing methods for computing BO policies are
either inefficient or overly intricate (see sections 2 and 3). This paper
proposes simple and efficient techniques for computing BO policies.

We develop a symbolic method for ordering rational functions near
the point x = 1. This idea originates from the work of Hordijk
etal. [18], who applied such orderings within the linear programming
framework as part of a simplex-based method for solving MDPs
over an entire range of discount factors. In contrast, we incorporate
symbolic ordering directly into the dynamic programming frame-
work. By treating the discount factor as a symbolic variable, we
express value and action-value functions as rational functions and
use their relative orderings to guide policy improvement. This en-
ables us to reinterpret and extend classical algorithms—such as pol-
icy iteration—for computing BO policies. Crucially, our approach
yields algorithms with provable efficiency and establishes the tight-
est known bounds to date for computing BO policies, independent of
the input’s bit representation.

1.1 Contributions

We use our ordering of rational functions to simulate the trajectory
of various algorithms on an MDP with a sufficiently large discount
factor. This methodology enables the following contributions:

e Post and Ye [39] showed that the Max-Gain simplex algorithm
converges to the optimal policy in strongly polynomial time for
deterministic MDPs, with a bound of O(n°k? log? n) iterations.

Madani et al. [27] extended the classical algorithm of Karp [24] to
the discounted setting and achieved a bound of O(n?k) for solv-
ing deterministic MDPs.

We generalise both of these algorithms to the Blackwell set-
ting, preserving their respective bounds up to a polynomial factor.
This yields the first strongly polynomial guarantees for computing
Blackwell-optimal policies in deterministic MDPs.

e We obtain the first direct policy improvement procedure for com-
puting BO policies that does not rely on Laurent series expansions.
When combined with the Random-Facet algorithm [21, 34], this
approach yields a subexponential expected bound of poly(n, k) -
exp(O(yv/nlogn)) for general MDPs—the tightest known bound
to date that is independent of the bit-size of the input.

e The switching rule used in policy iteration plays a crucial role in
determining the algorithm’s complexity. We analyse three switch-
ing rules that achieve the tightest known upper bounds for dis-
counted MDPs, and generalise each to the Blackwell setting while
preserving their bounds up to polynomial factors.

e For every MDP, there exists a threshold discount factor beyond
which all discount-optimal policies are also Blackwell-optimal.
A tight upper bound on this threshold facilitates the computation
of BO policies, while a large lower bound highlights the inherent
complexity of the problem and the limitations of certain algorith-
mic approaches discussed in section 6.

We construct an MDP whose threshold discount factor is exponen-
tially close to 1, thereby establishing the best-known lower bound
on this threshold.

The next section introduces Blackwell optimality, providing back-
ground, motivation, and outlining the key challenges in comput-
ing BO policies. Section 3 reviews the relevant literature. Section 4
presents our rational function ordering framework, which forms the
basis for the algorithms developed in Section 5. Finally, Section 6
concludes with a discussion and summary of our contributions.

2 Blackwell Optimality

The value function of a policy 7, defined in (1), satisfies the recursive
Bellman equations, which for s € S take the form:

VT(s) = R(s,m(s)) +v > _T(s,7(s), s )V*(s). (2

Similarly, for s € S, a € A, the action-value function is defined as:

Q" (s,a) = R(s,a) + 'yZT(s,a, sSHVT(s). 3)
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Notation. We write V' and Q7 to make the dependence on +y ex-
plicit, particularly in contexts where v may not be fixed.

For any policy 7, let P™ denote the n X n stochastic matrix with
entries P™ (s, s") = T'(s, m(s),s). Similarly, let r™ denote the n x 1
reward vector with components R(s, 7(s)). The Bellman equation
for the value vector can be expressed as:

vi=r" +4P"Vv". 4)

Solving this system using Cramer’s rule, the value of a state s un-
der policy 7 is given by:

n;

vi = i, &)
where: d. = |I — vP7”| is the determinant of I — vP™, and nj is
the determinant of the matrix formed by replacing the s-th column of
I —~vP7™ with r™. Similarly, the action-value function can be written
in vectorised form using the reward vector r, and transition matrix

P, for action a, with v substituted from Equation (5):

™
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2.1 BO Policies and Threshold Discount Factor

Definition 1. A policy 7 is /Blackwell—optimal if there exists v €
[0,1) such that V] (s) > VI (s), Vs € S,¥r’ € Ilandy € [y, 1).

A BO policy is both discounted (as v — 1) and average-optimal,
but the converse need not hold. See Figure 1a for an example.

Theorem 1 (Blackwell [5]). Every finite MDP has at least one BO
policy.

The proof of this result becomes evident through the developments
presented in this paper. See section 4.3.

Threshold discount factors play an important role in computation
of BO policies. We define two existing threshold discount factors be-
low. Let IT5,, denote the set of BO policies and IT7 the set of discount-
optimal policies with discount factor . The Blackwell discount fac-
tor Ypw, introduced by Grand-Clément and Petrik [16], is defined as:

e i {7 €0,1) \ Vo € (7, 1), 1T = n;w}.



That is, ybw is the smallest discount factor beyond which the set of
discount-optimal policies coincides with the set of BO policies. It is
guaranteed to exist in every finite MDP [16].

Mukherjee and Kalyanakrishnan [36] define a stronger threshold
condition, requiring that the ordering of Q-values for every policy
remains invariant beyond the threshold. Formally:

ef ‘
Q= sup
T€l;s€S5a,a’ €A

(@2 (s5,0) > Q7 (s,0) = Q(s,a) > Q7(s,a)) }}

{inf{fy €[0,1) ’vr € (v,1),

It can be shown that yq exists for every MDP, and that vyw < g [36].

2.2 The Case for BO Policies

Most Reinforcement Learning problems aim to maximise the cumu-
lative sum of rewards for an agent. In infinite-horizon tasks without
absorbing goal states, this sum may diverge unless rewards are dis-
counted. Discounted optimality, therefore, is widely adopted and ap-
plied in domains such as obstacle avoidance for robots [30] and rout-
ing automated guided vehicles to serve multiple queues [46]. Despite
its appeal, discounted optimality can yield suboptimal behaviour,
favouring short-term mediocre rewards over more valuable long-term
outcomes. For such continuing tasks, average reward is often a more
suitable objective. However, algorithms for average optimality and
their convergence guarantees usually rely on strong structural as-
sumptions about the underlying Markov chain, such as unichain or
ergodicity, which can be restrictive and hard to verify [47].
Consider the deterministic MDP in Fig. 1a, which admits three
policies: 71, 72, and 3. All three are gain-optimal, 72 and 73 are
also bias-optimal, but only 73 is Blackwell-optimal. This example
shows that Blackwell optimality is strictly stronger than either gain
or bias optimality—it selects policies that remain optimal for all suf-
ficiently high discount factors, rather than only at a particular value
or in the average-reward limit. Consequently, it provides a more ro-
bust and stable decision rule, especially when the discount factor is
unknown, ill-defined, or subject to change. Moreover, in transient
states, BO policies prioritise early reward collection, making them
particularly effective when such states yield large immediate returns.
By unifying the strengths of the discounted and average-reward
criteria, Blackwell optimality offers a versatile framework for
decision-making. Computing a BO policy automatically yields an
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Figure 1: a) Example of a DMDP with 3 states and 3 actions: action 1 (solid),
action 2 (dashed), and action 3 (dotted). From states s2 and s3, all actions
produce the same effect. Consider policies 71 = (1,1,1), m2 = (2,1, 1),
and w3 = (3, 1,1). All three policies yield the same gain, Vy * (s1) = 0. Yet,
their biases differ: V"2 (s1) = V{3 (s1) = 10, while V! (s1) = 5. Their
discounted values are: V! (s1) = 57, Vo2 (s1) = 5457, V2 (s1) = 10.
Since 0 < v < 1, it follows that V! (s1) < V42(s1) < Vy3(s1).
Note that only 3 is BO. b) Example of an DMDP with S = {s;}{_, and
A = {a1 (solid), a2 (dashed)}. Transitions are deterministic; rewards are
shown on edges. While the actual Blackwell discount factor is vy, = 0.8541,
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the upper bound of Grand-Clément and Petrik [16] is: U = 1 — 319%1055 -

average-optimal policy, which has a wide range of real-world ap-
plications, including queuing networks [1], scheduling [3], inven-
tory management [10], and transfer lines [31]. Accordingly, Dewanto
et al. [15] identify advancing our understanding of Blackwell opti-
mality as one of the pressing questions in reinforcement learning.

2.3 Challenges in Computing BO Policies

Algorithms for computing BO policies are either computationally
expensive [49] or intricate and difficult to implement [38]. To ad-
dress this, Grand-Clément and Petrik [16] derive an upper bound
U on the threshold discount factor 7y, guaranteeing that for any
v > U > ~w, every discount-optimal policy is also BO. Their
bound has the form U =1 — m, where m is the bit-size
of the MDP instance and 75, the maximum absolute reward.

While this gives a direct recipe for computing BO policies for
MDPs with rational data of finite precision, the bound is so conserva-
tive as to be impractical. For example, in Fig. 1b, the true threshold
is Yow ~ 0.85, but the bound yields U ~ 1 — O(1075%), a vast gap
that limits its applicability.

In practice, the absence of tight bounds leads practitioners to use
very large discount factors to approximate BO policies. To be safe,
they may choose an extremely high v and solve the problem via
policy iteration, value iteration, or linear programming. However, as
v — 1, convergence slows dramatically [29], the Bellman matrix be-
comes nearly singular, and solving the resulting system of equations
becomes numerically unstable. For large MDPs, the combination of
high ~ and sparse transitions further exacerbates instability, increas-
ing the risk of computational errors.

Our experiments show that value iteration slows markedly as the
discount factor ~y approaches 1, with runtime scaling roughly as ﬁ
In contrast, both policy iteration and linear programming fail to con-
verge beyond certain threshold values of «v. We implemented VI and
PI using the Python package MDPtoolbox [9] with default param-
eters, and formulated the LP approach using the cvxpy library. Fig-
ure 2 presents results for a simple 2-state MDP with deterministic
transitions, indicating the ~ ranges where each method either slows
dramatically or fails. The table summarises these failures, showing
that none of the algorithms can compute the discount-optimal policy
for v > ~pi. Consequently, when ybw > 7ril, these methods cannot
produce the BO policy. In our implementations, vy ~ 1 — 1077
for all three algorithms. Our code and data are available at [37].

To illustrate the impact of this limitation, we examine two families
of MDP instances with Ypw > “rii: one with a provable exponential
lower bound on 7w (Theorem 2), and another derived from prac-
tical applications (Example 1). These cases demonstrate that high-
threshold instances occur both theoretically and in practice, where
standard methods are guaranteed to fail. In contrast, our approach
successfully computes the BO policy even in these challenging set-
tings, underscoring its robustness and practical utility.

Theorem 2. There exists an MDP M with n states such that the
threshold discount factor satisfies v > 1 — 02~/ ).

Proof. See Appendix A for a construction. O

Example 1 (Healthcare). We examine a simplified model of an MDP
used in healthcare [4, 17], originally developed to simulate clini-
cal decision-making using real patient data. The objective is to min-
imise patient mortality while also limiting the invasiveness of the pre-
scribed drug dosage—low, medium, or high. The model consists of n



states: the first n — 1 represent progressively worsening health con-
ditions, and the final state is an absorbing mortality state. The action
set {low, medium, high} corresponds to dosage levels. As shown in
Figure 3, higher dosages increase the likelihood of recovery (i.e.,
transitions to earlier, healthier states). Rewards penalise more ag-
gressive treatments: in states 1 through n — 1, the rewards are 10, 8,
and 6 for low, medium, and high actions, respectively.

Figure 3 illustrates the family of MDPs we consider, and the ac-
companying table lists six representative instances with increasing
state counts and their corresponding threshold discount factors ~p.
Notably, once the state count exceeds 25, the values of pyw surpass
1 — 1077, highlighting the numerical extremity of the problem.

2.4 Key Idea

We take policy iteration as our motivating method. At each step,
given a current policy 7, we consider whether changing the action
at some state s to an alternate action a would improve the policy.
The standard approach evaluates this by comparing the value V'™ (s)
under the current policy with the Q-value Q™ (s, a), of taking action
a and following 7 thereafter. Specifically, we check the sign of the
difference: Q™ (s, a) — V™ (s).

Our main idea is that we can determine the sign of this
difference—i.e., whether switching to action a is beneficial—without
computing the exact values of V™ (s) or Q7 (s, a). Instead, we treat
both quantities as rational functions in the discount factor -, and fo-
cus on the sign of their difference as a function of .

Let P(y) = Q7 (s,a) — V7 (s). This is a rational function, and
our goal is to determine the sign of P(vy) at a specific value of -,
typically very close to 1 (e.g., v = 0.999).

The key observation is that if we identify the last root of P(vy)
before 1—say at v = 0.9—then the sign of P(+y) remains constant
in (0.9, 1), since there are no sign changes beyond that point. Thus,
we can infer the sign of P(0.999) by simply computing the sign of
P(1), bypassing exact evaluations of V" (s) or Q™ (s, a).

This insight enables a symbolic approach to policy improvement,
replacing numerical evaluation of value function with algebraic com-
parisons yielding efficient algorithms even as v — 1.

3 Literature Review

Blackwell [5] first demonstrated the existence of a Blackwell-
optimal policy non-constructively. Building on this, Miller and
Veinott [35] developed a policy iteration algorithm for finding the
Blackwell-optimal policy, using the Laurent series expansion of V.|
around v = 1. Such expansions connect the gain and bias to the ex-
pected total discounted reward and are a standard tool for analysing
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Figure 2: Figure shows a deterministic MDP with two states: two actions
(solid and dashed) are available from state 1, and a single action from state
2. Edge labels indicate the corresponding rewards. The accompanying table
reports the performance of VI, LP, and PI as the discount factory = 1—-10~%
increases. VI becomes impractically slow for v > 8, LP produces incorrect
results, and PI fails due to matrix singularities for v > 17.

finite-state undiscounted models. However, the method is computa-
tionally expensive, with only an exponential upper bound on its run-
time. In Appendix B, we show that this policy improvement pro-
cedure is equivalent to our rational function-based approach—both
yield the same set of BO policies. Our algorithm, however, incorpo-
rates an additional step based on the Random-Facet method, which
enables us to derive a subexponential bound.

Veinott [49] introduced a new family of optimality criteria, known
as N-discount optimality. For N = —1,0,1,.. ., a policy 7* is con-
sidered N-discount-optimal [49] if: lim, 1 (1 — )™ [V;’* (s) —
V7 (s)] > 0, ¥, Vs € S. This criterion captures the sensitivity of
a policy’s optimality with respect to the parameter IN. Specifically,
for N = —1, the condition corresponds to gain optimality, and for
N = 0, it represents bias optimality. As N increases, the optimality
condition becomes increasingly stringent, with Blackwell optimality
being the most restrictive case. Veinott [49] showed that Blackwell
optimality is equivalent to | S|-discount optimality.

As the sensitivity of the optimality criterion increases, designing
efficient algorithms becomes more challenging. For N = —1 (gain
optimality), the problem is efficiently solvable via policy improve-
ment methods [19] or linear programming [32, 13, 11]. The case
N = 0 (bias optimality) was tackled by Veinott [48] using policy
improvement and by Denardo [12] through linear programming.

The fastest known algorithm for finding an N-optimal policy
was developed by O’Sullivan and Veinott Jr [38]. Their method de-
composes the problem into a linear sequence of subproblems. Each
subproblem is either a Maximum Transient Value (MTV) problem,
which optimises short-term rewards, or a Maximum Reward Rate
(MRR) problem, which maximises long-term average rewards. The
input to each subproblem is determined by the solution of the pre-
vious one. Although each subproblem admits a linear programming
formulation of size poly(n, k) and can be solved in weakly polyno-
mial time, the overall method is highly intricate and has no known
implementations. In contrast, our algorithms are simple and yield
strong complexity bounds—independent of the bit-size of rewards.

Building on the work of Jeroslow [20], Hordijk et al. [18] devel-
oped a method for comparing rational functions near zero, which
they applied to discounted MDPs. They constructed a simplex
tableau in which the entries are expressed as rational functions of
the parameter p = 177” Using this symbolic representation, they ap-
plied Sturm’s Theorem to identify a threshold pg such that the current
tableau remains optimal for all p > po. This threshold determines the
next set of basic variables, allowing the tableau to be updated accord-
ingly. The process is then repeated, successively identifying intervals

ts ta

SULN P
te
s}
n 15 20 25 30 35 40
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Figure 3: Family of healthcare-inspired MDPs [17] along with their cor-
responding Blackwell threshold discount factors. The model uses seven
distinct transition probabilities {ti}zzl, across all states specified sep-
arately for each action: Low: {0.7,0.3,0.3,0.4,0.3,0.3,0.3}; Medium:
{0.8,0.2,0.4,0.4,0.2,0.4,0.2}; High: {0.9,0.1,0.5,0.4,0.1,0.5,0.1}.
For example, taking the medium action from state s3 results in a transition to
s2, 53, and s4 with probabilities 0.4, 0.4, and 0.2, respectively. The table re-
ports values of w such that the Blackwell threshold satisfies yy, = 1 —107%,
shown for increasing numbers of states n.



[p1, po], until pg = 0, at which point the algorithm terminates with
the optimal policy for the entire range of discount factors. Moreover,
by setting p = 0 directly and adjusting the pivot selection rule, the
method can be adapted to compute the Blackwell-optimal policy. In
contrast, our approach is simpler and integrates directly into the pol-
icy improvement framework, enabling generalisation to a broad class
of efficient algorithms with provable upper bounds.

Smallwood [43] first introduced the concept of a threshold dis-
count factor beyond which a discount-optimal policy becomes
Blackwell-optimal. Grand-Clément and Petrik [16] demonstrated the
existence of such a threshold for finite MDPs and provided an up-
per bound on 1/(1 — 4w), which is exponential in the number of
states. However, no lower bound on this parameter was known. In
this work, we provide the first exponential lower bound, showing
that such thresholds can, in fact, be exponentially close to 1.

In a learning context, Mahadevan [28] introduced the first tabular
Q-learning algorithm designed to achieve bias-optimal policies by
optimising over the family of n-discount optimality criteria. Dewanto
and Gallagher [14] presented a policy-gradient method for learning
bias-optimal policies in unichain MDPs. Additionally, Schnecken-
reither [41] proposed a model-free tabular algorithm for computing
bias-optimal policies in unichain MDPs.

Boone and Gaujal [6] studied the problem of identifying BO
policies in deterministic MDPs within a fixed-confidence PAC-RL
framework. They proved that this is impossible in general, unless
the MDP satisfies uniqueness conditions on both the optimal cycle
and the bias-optimal policy. For this maximal identifiable class, they
proposed a sample-efficient algorithm based on generalised Bellman
coefficients and structured confidence sets, achieving near-optimal
bounds on the number of reward queries required.

4 Method of Rational Functions

In this section, we present the mathematical basis of our method for
computing BO policies. We begin by defining an ordering of ratio-
nal functions in the vicinity of 1. Using this ordering, we derive BO
policies for both Deterministic MDPs (DMDPs) and general MDPs.

4.1 Ordering of rational functions

Consider two rational functions, r1(z) = Zig;, ro(x) = 558’

where pi1,p2,q1,q2 are polynomials with real coefficients and
qi,q2 Z 0. Let 7(z) = ri(z) — r2(x), we define 7 = 0 if and
only if p1(z)g2(x) = p2(z)g1(x). Suppose:

_ @) _ A=z)" -i(x)
T(z) = 5= 1205 5(a

S @) (1-x)e - d(x)

where c1,c2 € Zx( denote the multiplicitie§ of the root x = 1 in
n(z) and 6(x), respectively, and 77(1) # 0,0(1) # 0. We define a
total order = on the set of rational functions, such that:

Ty > Te & 77(1) . 5(1) > 0.
We refer to this ordering as p-ordering.

Lemma 3. For finite rational functions r1 and r2, 11 > 12 <
Jdo € (0,1) such that r1(z) > r2(x) Vz € (0,1).

Proof. Since n) and § are finite polynomials they have a finite number
of roots. Let 01 and o2 be the largest roots of 7 and J respectively
in (0,1) and let max{o1, 02} = o. It is clear that 7 cannot change
sign in (0, 1). Since 7j(1) # 0 and §(1) # 0, the ratio 7 = % must

be finite and non-zero. As 7 is continuous we have: 7(cg) > 0 <~—
7(1) > 0, Yoo € (o,1). Since (1 —0¢) > 0, 7 and 7 have the same
sign at og for all op € (o, 1) and the result follows. O

Example 2. Let r1 = ufzi(fsffw) and ro = %. Then

S (171)@5;72:241—15) and ﬁ(l)g(l) =4. (,3) <0=1ry >
r1. (see Figure 4).

- n@)
ro(x)

Figure 4: Plot of the functions 71 and ro. Note that r1 (1) = r2(1) = 0,
while 71 (1 —€) < ra(1 —€) forall0 < e < i.

4.2  Complexity

The complexity of comparing two rational functions depends on two
primary operations:

e Computing the difference 7: This involves subtracting one ratio-
nal function from the other. Assume that the polynomials involved
have a degree of O(d), the calculation of 7, which includes poly-
nomial multiplication, can be performed in O(d log d) steps using
efficient polynomial multiplication algorithms.

e Determining the multiplicity of 1 for 7: This requires evaluating
the polynomial at 1 at most upto its d-th derivative. Using Horner’s
method, each evaluation at 1 takes O(d) operations resulting in
O(d?) complexity to determine the multiplicity.

Therefore, the overall complexity of comparing two rational func-
tions is O(d?) operations.

Given a sequence having ¢ elements, finding a maximal/minimal
element requires at most ¢ comparisons. Since each comparison
between rational functions has a complexity of O(d?) under u-
ordering, the overall complexity of computing the maximal or mini-
mal rational function from the sequence is O (td”). We use max, min
to denote such max and min operations respectively.

4.3 Application

In the following sections, we consider four existing algorithmic fam-
ilies {£;i}1<i<4, each generating a sequence of policies converging
to an optimal policy 7* for a discounted MDP M.,. The trajectory
(w9, m}, ..., m%) depends on both the MDP and . For each L;, we
define a corresponding ~y-independent algorithm £ that produces the
same sequence for all sufficiently large discount factors. The follow-
ing theorem establishes the existence of such a sequence.

Theorem 4. There exists a 7 € [0,1) such that L; follows the tra-
jectory: (71'2, T w3) forall v € [r,1).

Proof. Let the discount factor v be treated as a symbolic variable.
Then, equation (5) defines a value vector v, whose components
(one per state) are rational functions of .

Define £ (v) = V57 (s) — Vi (s), the value difference at state
s between policies 7; and 7;. Since the MDP is finite, each fl) )
is a ratio of finite-degree polynomials, and therefore has only finitely

many roots. Let vgi’j ) denote the largest root of fﬁi’j ) in the interval



[0,1). For any v > 749 the sign of fsi’j)('y) remains constant,
meaning the relative ordering of V.7 (s) and V7 (s) does not change
beyond this point. Define the global threshold
_ (i.9)
T ses,n;?,);j en’ys ’
Then, for all ¥ € [r,1), the value ordering—and hence policy
preferences—remains invariant across policy pairs in II. O

Since p-ordering provides an ordering or rational functions in the
left-neighbourhood of 1, the theorem implies that £; follows the
same trajectory as when applied to M;_. with ¢ — 0. Hence, both
correctness and complexity guarantees of £; in the discounted setting
extend to the symbolic variant £}, with only a polynomial overhead
from symbolic evaluation.

5 Efficient Planning with Blackwell Optimality

In this section, we describe algorithms of type L, identify the ratio-
nal functions and corresponding thresholds that govern their policy
trajectories, and analyse their computational complexity.

5.1 Maximum Mean Weight Cycle

The algorithm of Madani et al. [27], inspired by Karp’s method for
finding the minimum mean-weight cycle in a graph [24], is the fastest
known approach for solving DMDPs under the discounted criterion.

The algorithm proceeds in two stages, both based on Bellman-
Ford-style updates. In the first stage, it computes d; (s), the maximum
discounted cost of an ¢-edge path starting from state s, for all states.
Using these d; values, it evaluates

dn(s) =" ""di(s)

wo(s) = jmin ST

0<i<n ’

for each s. In the second stage, the yo(s) values serve as initial state
values for updating y;(s), and the maximum y;(s) over all states
yields the optimal values.

The discounted costs of paths and the ratios y; are rational func-
tions of y. We apply pi-ordering replacing the max and min opera-
tors with max and min respectively. Since the original algorithm fo-
cuses solely on computing values, we introduce additional variables
@;i(s), Go(s), and @;(s) to track the actions taken during the updates
of di(s), yo(s), and y; (s), respectively. This modification enables re-
covery of the BO policy. The full procedure is given in Algorithm 1.

Let D (s,a,s") = r(s,a,s') + ydi—1(s') and Y{(s,a,s') =
(s, a, s")+yy;j—1(s") where d; and y; are as defined in Algorithm 1.
Then the threshold discount factor v, is defined as:

def .
Y= sup inf
1<i<n,1<j<n—1 7Y€[0,1)

N,

s,s’,s""€S,a,a’ €A

{vT € (7,1), V® € {D", Y7} :

D, (s,a,8) > Dy (s,a',8") = . (s,a,8) > D (s,a, 5”)}.

Theorem 5. The DetMDP2-Blackwell procedure computes a BO
policy for a DMDP with a runtime complexity of O(n*k).

Proof. As demonstrated earlier, the complexity of comparing two
rational functions is O(n?). Since the maximum is sought over the
set of k actions, the complexity for finding the maximum at each step
is O(n?k). Given that the maximum is computed at most n* times
throughout the algorithm, the runtime complexity is O(n*k). O

Algorithm 1 DetMDP2-Blackwell

1: procedure ®p(M = (S, A, T, 7))
2 for each s € S do

3 do(S) +~—0

4: fori = 1tondo
5

6
7

8

for each s € S do
di(s) + maxyes r(s,a,s") + ydi-1(s")
@i(s) + argmax, . 4 r(s,a,s) + vdi—1(s")

for each s € S do

9: yo(s) < ﬁogignw
10: To(s) < @n(s)
11: fori=1ton — 1do
12: for each s € S do
13: yi(8) + mMaxges r(s,a,s) + yyi—1(s")
14: @i(s) + argmax,c 4 7(s,a,8") + vyi-1(s")
15: for each s € S do
16: is 4 argmaxgc <, ¥i(s)
17: Tow(8) < @z, (s)
18: return 7y,
5.2 Max Gain

The Max-Gain Simplex (MGS) algorithm [39] computes the optimal
policy for DMDPs in strongly polynomial time. For a DMDP with
a discount factor +, the algorithm iteratively selects the state-action
pair with the highest gain to transition to a new policy. Specifically,
starting from a policy 7, it transitions to a new policy 7 defined as:

(s) = {7r(s)7 if s #3,

a, ifs =75,
where (3, @) is chosen to satisfy:

(5,a@) = arig m)ax (Q7(s,a) — V7 (s)).

5.2.1 Computing BO policies

Our algorithm for computing BO policies mirrors the procedure of
MGS, but with an updated max operator. From (2) and (3), it is clear
that the quantity Q7 (s, a) — V7 (s) is a rational function of +. Using
p-ordering, we redefine the max operator as:

(5,a) = argmax (Q7(s,a) — V7' (s)) .
(s,a)

Theorem 6. The described procedure computes a BO policy for a
DMDP in at most O(n" k> log® n) iterations.

Proof. The MGS algorithm completes in at most O(n’k? log? n) it-
erations [39]. Our algorithm introduces an additional O(n?k) steps
per iteration to determine the max-gain. Hence, the total computa-
tional complexity for obtaining a BO policy is O(n"k*log?n). O

Since MGS and the subsequent algorithms compute Q-values to
guide action selection, their threshold discount factor is 7.

5.3  Random-Facet

Matousek et al. [34] introduced the randomised pivot rule Random-
Facet, which gives an upper bound of 2V 1°8 ™ on the expected num-
ber of pivot steps to solve any linear program with n variables and



m constraints. Combining the algorithm with Clarkson’s method [7]
yields the tightest known bound of O (n2m + eOWnlog ")) .

Let p = (s,a) be a state-action pair, and define f”(s,a) =
Q7 (s,a) — V7 (s). The pair p belongs to 7 if w(s) = a, and is
improving for 7 iff f™(s,a) > 0. The Random-Facet algorithm re-
lies on determining whether a given pair p is improving for a policy
, which amounts to checking the sign of f™ (s, a) at each step.

The algorithm can be adapted to MDPs as follows: given an MDP
M and an initial policy 7, select a state-action pair p ¢ , and re-
cursively solve M without p, yielding a new policy 7. If p is not
improving for 7/, then 7" is guaranteed to be optimal. Otherwise,
update 7’ by switching p, and repeat the process.

Let fff (s,a) = Q7 (s,a) — V7 (s) denote the rational function
in . Our algorithm for identifying a BO policy adapts the Random-
Facet procedure, applying p-ordering on f to determine its sign in
the vicinity of 1. The pseudocode is given in Algorithm 2. We denote
the set of state-action pairs corresponding to M and 7 by M, and
Tp, Tespectively.

Algorithm 2 Random-Facet-Blackwell

procedure ¢ r(M,, )

if f7(p) < 0,Vp € M, then
Tow < T
return 7y,

1:
2
3
4
5: else
6 Pick p € M, \ 7, uniformly at random
7
8

7' = ®p(M, \ p, ) > 1st call
if f"/(p) > 0 then
9: 7"+ switch(p,n")
10: return ® g (M, 7'") > 2nd call
11: else
12: return 7’

Theorem 7. The Random-Facet-Blackwell algorithm computes a

BO policy for an MDP in at most poly(n, k) - €2V 1°8™) oxpecred
iterations.

Proof. The Random-Facet algorithm, when combined
with Clarkson’s algorithm, has an expected runtime of

O(n®k + ePVnleem)y [34] Qur algorithm introduces an ad-
ditional n? operations per recursive call to determine the sign of
f". Consequently, the overall runtime complexity increases by a
polynomial factor in n, resulting in the desired bound. O

5.4  Generalisation: PI improvement

The approaches in Sections 5.2 and 5.3 extend naturally to any Policy
Improvement (PI) procedure. A generic PI procedure operates as fol-
lows: given a policy , define the set of improving state-action pairs:
J™ ={(s,a) | Q" (s,a) > V™ (s)}. Ateach iteration, select a sub-
set © C J7™ containing at most one action per state, and construct
a new policy 7’ such that n’(s) = a for all (s,a) € ©. The rule
for selecting © is algorithm-specific and crucial to the procedure’s
complexity. For example, in the Max-Gain method, © consists of the
single pair (s, a) that maximises: Q™ (s,a) — V7" (s).

As before, Q7 (s,a) — V' (s) is a rational function in -y, whose
sign can be determined via p-ordering. This leads to a PI procedure
for computing BO policies in MDPs. We examine the three tightest
known variants of memoryless PI algorithms—A;, Az, and Az—
with respective bounds 81, B2, and B3, each depending only on n

and k under the discounted criterion. Applying p-ordering, we gen-
eralise each variant to achieve bounds of poly(n, k) - B; under the
Blackwell criterion. Below, we summarise A1, A2, and A3 together
with their corresponding bounds.

e A;: Batch-Switching policy iteration [22] partitions the state
space into batches with a fixed ordering and, at each step, switches
states from J™ in decreasing order of their batch index, yielding
an iteration bound of By = O(1.64™).

e As: Howard’s policy iteration [19] is a greedy procedure that, at
each iteration, switches every improvable state—i.e., it maximises
the set ©. While highly efficient in practice, its theoretical upper
bound remains exponential in n, specifically By = O(%n) [33].

e Aj: Randomised Simple policy iteration [23] assumes an index-
ing of the states. At each iteration, it considers all improving pairs
whose state has the highest index, and switches exactly one, cho-
sen uniformly at random. Its iteration bound is Bz = O((log k)™).

6 Summary and Discussion

In this paper, we used an ordering of rational functions near 1 to
develop novel and efficient algorithms for computing BO policies
in both MDPs and DMDPs. Our methods attain the tightest known
complexity bounds, advancing the state of the art through a simple,
theoretically robust framework for BO policy computation.

To illustrate the limitations of existing dynamic programming al-
gorithms, we presented two examples, one of which gives an expo-
nential lower bound on the threshold ~yw. This bound not only under-
scores the complexity of computing BO policies but also limits the
generalisability of existing proof techniques. In particular, Mukher-
jee and Kalyanakrishnan [36] prove a subexponential upper bound
for Howard’s policy iteration in DMDPs by analysing ratios of poly-
nomials derived from Q-value comparisons and bounding the roots
near 1 to control q. Our exponential lower bound on yw < g
shows that such techniques cannot extend to the stochastic case.

We also implemented and tested a basic, unoptimised version of
our symbolic policy iteration [37]. For DMDPs, the method is rea-
sonably efficient, solving instances with up to 100 states in about
three minutes on a standard desktop (AMD Ryzen 7 5700G, 16
GB RAM). For general MDPs, runtime increases more sharply with
stochasticity due to the cost of symbolic matrix inversion: problems
with up to 10-15 states solve within minutes, whereas 20-state in-
stances may require over an hour. Benchmarking against prior BO
algorithms is challenging—few exist, and those that do are rarely pre-
sented in a form amenable to straightforward implementation. This
scarcity of practical baselines underscores the need for simple, im-
plementable approaches such as ours. Although our current results
serve primarily as a proof of concept, we plan to optimise and scale
up the implementation in future work.

While our focus has been on planning with full model knowledge,
the structural insights and algebraic techniques developed here may
also inform learning-based approaches. In particular, model-based
reinforcement learning could leverage efficient BO policy computa-
tion once an approximate model is inferred from data. However, as
recent work has shown [6], identifying BO policies with limited sam-
ples is generally impossible without strong assumptions. A promis-
ing direction for future research is to investigate whether our alge-
braic characterisations can help delineate the class of MDPs where
reliable identification is feasible, or guide the design of robust algo-
rithms under uncertainty.
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A Yw : A Lower Bound

In this section, we construct an MDP with a threshold discount factor ~yy that is exponentially close to 1, as established in Theorem 2.

A.1 Construction

Consider the MDP shown in Figure 5, consisting of n + 7 states. From the initial state so = wu, there are two available actions: ag and a;. All
other states allow only a single action ao. There are two policies: mg = aoa6“1 and T = a1 agfl. The value of 7o from the start state is:

V™ (1) = v[(1— V™ (ao) + V™ ()]
= ey [1 +Vvm (a%“)]
.
And the Q-value of taking action a; from the same state under policy 7 is given by:

1

@™ wa) =51 5+ (5 - <) Vo )+ v )

. <%) H [1+ V™ (8341)]

+eyitt [1 + VT (5g+2)}
1\ % n
0 o

n 1
Q™ (u,a1) > V™ (u) = ey3 < 57 —|—fy—1) >0
€23

w3

=7

Therefore:

This implies that action a; is better than a in state © whenever

T>% =1~ .

Therefore 71 remains Blackwell-optimal beyond the threshold ~o. This gives a lower bound Y,y > 1 — 0(27"/ 3).

0,0

A
<

Ju—
—

—
=

—
e}
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Figure 5: MDP with states u, v, a;, 8i, d;. State u has 2 available actions a (dashed) and a; (solid) and the other states have a single action.
The edges are labelled: T'(s, a, s'), R(s,a,s’) and 0 < € < 5.



B Equivalence of PI procedures

We present the policy improvement procedure of Miller and Veinott [35] and show that its sequence of visited policies matches that of our
rational function-based approach. Our method further integrates the Random-Facet algorithm to obtain a subexponential bound. The steps for
computing the difference vector q; — v™ for a given policy 7 and action « are outlined in Algorithm 3.

Algorithm 3 Policy Improvement

1: procedure COMPUTE_Q_MINUS_V(a, 7, M)
2: Compute P™ and r™

3 P limp(pl = (P~ n)!
4 D"+ (I—-P*)(P"—(P"—1I)"
5: Define y7 as:
. [P ifj =—1,
T {(—1)1’ (D7) em, i 20

6: Define ;" as:

(Pa—1)y7, if j = -1,

YT = ra+ (Pa—1)y] —yj_., ifj=0,

(Pa =1y} —yj-1, ifj >0

7: Construct the matrix W:
W= ot T e w]

8: Identify the first non-zero column of .

Positive rows (states) in this column correspond to states s such that Q™ (a, s) > V™ (s).

Theorem 8. Ler A™ () = q (y)—v™ (7). For a fixed state s € S, write A7 (vy) = ’gg; , with polynomials A, B. Factor out the multiplicities

of therooty = 1: A(y) = (1—v)°* A1(y), B(y) = (1—=v)?B1(7), where c1,ca € Z>o and A1(1) # 0, B1(1) # 0. Define zs(y) = A1 ()

B1(v)
Then, z5(1) = 52" (s), jo = min{j | ™ (s) # 0} where )™ is defined in Algorithm 3.
Proof. The Laurent series expansion of the value function of a policy 7 and discount factor  is given by [40]:
vi=(14p) > Py, @)

j=—1

where p = 1777 and y; = y; as defined in Algorithm 3.
Now consider the term:

as —Vi=ro+ (P, —I)Vv"

Replacing v™ from (7) we get:

ai — Vv =ro+[Pa—(1+p)] Y ply;
j=—1
=rat > P [Pa—T—plly;
j=-—1
=re+ ij(Pa_I)YJ PJ+IYJ
j=—1

e}

Pil(Pa —Dy-1+4[ra+ (Po —I)yo — y-1] JFZPj [(Po —1)yj — yj-1]

j=1
2. P

j=—1

Again consider the term q); — v” using equation (6). We have:

™ ™ n
qo—V :ra—&—(fyPa—[)d—7T

™



Thus each entry of q7 — v” is a ratio of two polynomials say A and B. Write A(y) = (1 — )™ A1(v) and B(~y) = (1 —)™2 B1(y) where
m1,me are integers greater than or equal to zero such that A;(1) # 0 A Bi(1) # 0. Now consider the function:

A(v) m1—mo A1(7)
fly) = ==y
=50 =" R
Lett = mq1 — mg and z(y) = gig:g, then we have two cases:

Case 1:t >0
The Laurent series of f around v = 1 is of the form:

Ct(l — "}/)t + Ct+1(1 — ’y)t+1 + ...

It is clear that ¢; = % = z(1).
Case 2:t < 0
The Laurent series of f around v = 1 is of the form:
Ct Ct+1

=7t " G=n) -

Here we have: ¢; = lim,—1(1 — )" f(y) = 2(1).
Therefore the first non-zero term of the Laurent series expansion of q;; — v at state s is given by: w;{;"(s) = z(1), where jo is the index of
the first non-zero term of ™. O





