
Howard’s Policy Iteration is Subexponential for Deterministic Markov Decision
Problems with Rewards of Fixed Bit-size and Arbitrary Discount Factor

Dibyangshu Mukherjee, Shivaram Kalyanakrishnan
Department of Computer Science and Engineering, IIT Bombay, Mumbai, India

{dbnshu, shivaram}@cse.iitb.ac.in

Abstract

Howard’s Policy Iteration (HPI) is a classic algorithm for
solving Markov Decision Problems (MDPs). HPI uses a
“greedy” switching rule to update from any non-optimal pol-
icy to a dominating one, iterating until an optimal policy is
found. Despite its introduction over 60 years ago, the best-
known upper bounds on HPI’s running time remain exponen-
tial in the number of states—indeed even on the restricted
class of MDPs with only deterministic transitions (DMDPs).
Meanwhile, the tightest lower bound for HPI for MDPs with
a constant number of actions per state is only linear. In this
paper, we report a significant improvement: a subexponential
upper bound for HPI on DMDPs, which is parameterised by
the bit-size of the rewards, while independent of the discount
factor. The same upper bound also applies to DMDPs with
only two possible rewards (which may be of arbitrary size).

1 Introduction
Markov Decision Problems (MDPs) (Bellman 1967; Puter-
man 1994) are a well-studied abstraction of sequential de-
cision making, which are widely used as a formal basis
for automated control (Bertsekas 2007), planning (Mausam
and Kolobov 2012) and reinforcement learning (Sutton and
Barto 1998). An MDP models an environment, which com-
prises a set of states S and a set of actions A. When action
a ∈ A is executed from state s ∈ S, the MDP transitions
to a next state s′ ∈ S, while also emitting a numeric reward
r ∈ R. Transitions are in general stochastic: the probabil-
ity of reaching s′ by taking action a from state s is given
by T (s, a, s′), where T : S × A × S → [0, 1] (satisfying∑

s′∈S T (s, a, s′) = 1 for s ∈ S, a ∈ A) is called the tran-
sition function of the MDP. Similarly, r = R(s, a), where
R : S ×A→ R is the reward function of the MDP.

An agent that interacts with an MDP goes through a se-
quence (st, at, rt)∞t=0, starting with initial state s0 ∈ S. The
choice of which action at ∈ A to execute at each time step
t ≥ 0 lies with the agent. This choice influences both the
immediate reward rt = R(st, at) and the next state st+1 ∼
T (st, at, ·). Hence, to maximise its long-term reward, the
agent’s action choices must appropriately balance immedi-
ate and future rewards. Suppose that the agent fixes an action
for each state—that is, it executes a policy π : S → A. In

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

other words, the agent takes action at = π(st) for t ≥ 0.
For tasks with infinite horizons, there are two common defi-
nitions of long-term reward.

Under discounted reward, future rewards are discounted
geometrically by a factor γ ∈ [0, 1): the long-term reward
(also called “value”) of each state s ∈ S under π is

V π
γ (s) = Eπ

[∞∑
t=0

γtR(st, at)

∣∣∣∣ s0 = s

]
. (1)

Observe that the value depends on the discount factor γ,
which is specified as a part of the MDP.

An agent that follows policy π also has a well-defined
average reward, depending on its starting state s ∈ S. This
long-term reward, called the gain of π from s, is given by

V π
g (s) = lim

T→∞
Eπ

[
1

T

T−1∑
t=0

R(st, at)

∣∣∣∣s0 = s

]
. (2)

Accompanying its gain is π’s bias, defined for s ∈ S as

V π
b (s) = Eπ

[∞∑
t=0

(
R(st, at)− V π

g (s)
) ∣∣∣∣s0 = s

]
, (3)

which is the cumulative difference over time between the
reward and the average reward, starting from s.

For any given MDP, then, the natural problem is that
of computing an optimal policy. In the discounted re-
ward setting, it is established that for each input MDP
(S,A, T,R, γ), there exists an optimal policy π⋆ : S → A,
which satisfies V π⋆

γ (s) ≥ V π
γ (s) for s ∈ S and all π :

S → A. Similarly, under average reward, each input MDP
(S,A, T,R) has an optimal policy π⋆ : S → A, which sat-
isfies V π⋆

g (s) ≥ V π
g (s) for s ∈ S and all π : S → A, and

which additionally satisfies certain “optimality” equations
(provided in Appendix A)

There are multiple algorithmic approaches to solve
MDPs, including value iteration, linear programming, and
policy iteration (Littman, Dean, and Kaelbling 1995). In
this paper, we restrict our attention to Policy Iteration
(PI) (Howard 1960; Puterman 1994), which is widely used.
PI is also conceptually simple: initialised at some arbitrary
policy, at each iteration PI switches to a dominating policy,
unless none exists. The running time of PI depends on the

Extended version of paper published in Proc. ICAPS 2025, pages 84--92, AAAI Press, 2025.

switching rule used for updating the policy. At one end of a
spectrum are “Simplex” variants of PI that change the action
at a single state, while the canonical greedy variant, called
“Howard’s PI” (Howard 1960) (HPI), switches actions at
all “improvable” states. Yet other variants of PI (Mansour
and Singh 1999; Kalyanakrishnan, Mall, and Goyal 2016)
switch some subset of improvable states. It is natural to won-
der which variant is the “most efficient”—and this question
exposes a gap in our current theoretical understanding.

On the one hand, experiments have invariably shown HPI
to significantly outperform other PI variants (Kalyanakr-
ishnan, Mall, and Goyal 2016; Taraviya and Kalyanakrish-
nan 2020). However, theoretical upper bounds on the iter-
ations taken by HPI are still much looser than those for
other variants. Consider finite MDPs with |S| = n ≥ 2
states and |A| = k ≥ 2 actions. Whereas upper bounds of
(O(log k))n (Kalyanakrishnan, Misra, and Gopalan 2016)
and O(k0.7207n) (Gupta and Kalyanakrishnan 2017) have
been shown for other variants, the tightest known upper
bounds for HPI are O(k

n

n) (Mansour and Singh 1999)—
only a linear improvement over the trivial bound of kn. A
similar trend plays out on Deterministic MDPs (DMDPs),
the restricted class of MDPs in which every transition has
a fixed next state: in other words, all transition probabilities
are either 0 or 1. Whereas DMDPs can be solved in strongly
polynomial time (Karp 1978; Madani 2002b), and are in fact
done so even by a Simplex variant of PI (Post and Ye 2013),
the best upper bound for HPI on DMDPs remains exponen-
tial (Goenka et al. 2025).

Over the years, multiple researchers have explicitly ear-
marked improving the upper bound for HPI as an impor-
tant target for theoretical research (Schmitz 1985; Scherrer
2013; Post and Ye 2013). This paper presents a significant
step in this direction: a subexponential upper bound for HPI
on DMDPs, parameterised by the “bit-size” of the rewards.

1.1 Bit-size of rewards
Consider DMDP M = (S,A, T,R, γ) under discounted
reward, or M = (S,A, T,R) under average reward.
Let b′(R) denote the smallest positive integer such that
for each (s, a) ∈ S × A, R(s, a) belongs to the set
{0, 1, 2, . . . , 2b′(R) − 1} (with the convention that b′(R) =
∞ if no finite integer satisfies this requirement for R). Thus,
if the only rewards in R are 2, 3, and 5, we would have
b′(R) = 3. We note that the sequence of policies visited
by HPI on M remains identical if the rewards in M are pos-
itively scaled and/or shifted. Define, for α > 0, β ∈ R, and
(s, a) ∈ S × A: Rα,β(s, a)

def
=αR(s, a) + β. We define the

bit-size of R by

b(R)
def
= min

α>0,β∈R
b′(Rα,β). (4)

By this definition, b(R) is 3 not only for the set of re-
wards {2, 3, 5}, but among others, also for {0.2, 0.3, 0.5},
{2
√
3, 3
√
3, 5
√
3}, and {−0.8,−0.7,−0.5}. Note as a spe-

cial case that b(R) = 1 for any reward function that takes
exactly two values, since those values can be scaled and
shifted to {0, 1}. In theory, b(R) could be infinite (an exam-

ple is when 1,
√
2, and

√
3 are rewards). However, in appli-

cations of MDPs, rewards are invariably encoded in float
or double variables, which are of fixed bit-size (say 32 or
64). In games such as Chess and Go, and tasks where the
only rewards are from success and failure, the reward set
is typically {0, 1} or {−1, 0, 1} (Silver et al. 2016, 2018).
In yet other tasks, reward is based on the number of time
steps elapsed or energy expended, usually discretised to take
a few tens or hundreds of contiguous integer values (Crites
and Barto 1995). It is therefore reasonable to consider b(R)
a constant for tasks encountered in practice. Henceforth we
shall drop “(R)” from “b(R)” when the context is clear.

1.2 Upper bounds and proof sketches
The effect of b on the complexity of Policy Iteration is
relatively straightforward to characterise under average re-
ward. In this case, the gain-bias pair of every state, under
every policy, is observed to belong to a finite set of size
poly(n, 4b). Regardless of which Policy Iteration variant is
used, the strict monotonicity of the algorithm yields the fol-
lowing upper bound.

Proposition 1.1. Let M = (S,A, T,R) be a DMDP using
average reward, with |S| = n and |A| = k. On M , any Pol-
icy Iteration algorithm can visit at most O

(
n5 ·4b

)
policies.

A proof of the proposition is given in Appendix A.
The pseudopolynomial dependence on the rewards is a

novel result for HPI. However, the simple argument behind
this upper bound for average reward does not carry over to
discounted reward. With discounted reward, the number of
possible values a state could have (under different policies)
scales exponentially, rather than polynomially, in n. See sec-
tion 2.4. Our main result is that the number of iterations
taken by HPI still only scales subexponentially in n if b is
a constant, or even if b = o(n1−ϵ) for some ϵ > 0.

Theorem 1.2. Let M = (S,A, T,R, γ) be a DMDP us-
ing discounted reward, with |S| = n and |A| = k. On
M , HPI can visit at most nk · u exp(u) policies, where

u = O
(√

nb log n
b + b

)
.

The trajectory followed by HPI on the input MDP de-
pends on the discount factor γ. First, we show that there ex-
ists a threshold discount factor, denoted γQ, beyond which
the trajectory of HPI is invariant. In other words, for two
MDPs Mγ and Mγ′ that differ only in their discount fac-
tors γ and γ′, HPI will follow the same trajectory as long
as γ, γ′ ∈ (γQ, 1). An upper bound parameterised by γ, of

O
(

nk
1−γ log 1

1−γ

)
iterations, is already known for HPI (Ye

2011; Scherrer 2013). For γ > γQ, the invariance of the
algorithm’s trajectory therefore implies an upper bound of
O
(

nk
1−γQ

log 1
1−γQ

)
iterations. Our second innovation is to

obtain the subexponential-in-n upper bound on 1
1−γQ

. This is
achieved by showing that γQ is the largest root to the left of 1
of a certain polynomial with integer coefficients with mag-
nitude O(2b). We combine some existing results on root-
separation in such polynomials to obtain our upper bound.

The average reward setting provides useful intuitions to
reason about discounted rewards. We draw connections be-
tween these settings where appropriate, but defer the de-
tailed analysis under average reward to Appendix A. The
main text remains focused on discounted rewards; the proof
of Theorem 1.2 is given in Section 4. We proceed to for-
mal definitions of PI and DMDPs (Section 2), followed by a
survey of related work (Section 3).

2 Background
In this section, we provide the necessary background on Pol-
icy Iteration under discounted reward, and also on DMDPs,
thus laying the foundation for our main result in Section 4.

2.1 Policy Iteration
Policy Iteration (PI) builds upon the idea that if a policy
π : S → A is non-optimal, then it is possible to efficiently
identify a set of policies that are guaranteed to improve upon
π (in terms of long-term reward). Any policy π′ : S → A
from this improving set is then made the current policy, and
the process continued. Since there are only a finite number
of policies (kn), and no policy can repeat due to the mono-
tonic improvement, the process is guaranteed to terminate at
an optimal policy after a finite number of iterations.

Policy evaluation The first step in each iteration of PI is
policy evaluation: that is, to compute the value of π. State
values as defined in (1) can be computed as the solution
of a system of linear equations called the Bellman equa-
tions (Bellman 1967): for s ∈ S,

V π
γ (s) = R(s, π(s)) + γ

∑
s′∈S

T (s, π(s), s′)V π
γ (s′). (5)

Policy improvement The basis for policy improvement is
to consider the effect of taking an alternative action a ∈ A
from s only for the first time step, and thereafter acting ac-
cording to π (at time steps 2, 3, 4, . . .). These long-term re-
wards are called Q-values, and are defined as follows for
each (s, a) ∈ S ×A:

Qπ
γ (s, a) = R(s, a) + γ

∑
s′∈S

T (s, a, s′)V π
γ (s′). (6)

The intuition behind policy improvement is that if it is
more rewarding to take action a from state s just once and
then follow π (the long-term reward for this is precisely the
Q-value), then it must also be beneficial to take a from s all
the time—that is, whenever the agent finds itself in s. The
latter would amount to following a new policy that takes a
from s, but which mimics π at all other states. Continuing
with the same intuition, one could similarly switch to actions
with higher Q-values simultaneously in any number of states
where such actions are available. The “policy improvement
theorem”, given below, formalises this intuition.

Theorem 2.1 (Policy Improvement). Consider MDP M =
(S,A, T,R, γ) using discounted reward.

1. Suppose policy π : S → A satisfies Qπ
γ (s, a) ≤ V π

γ (s)
for all s ∈ S, a ∈ A. Then π is an optimal policy.

2. Suppose policies π : S → A and π′ : S → A sat-
isfy Qπ

γ (s, π
′(s)) ≥ V π

γ (s) for all s ∈ S, and moreover,
there exists s ∈ S such that Qπ

γ (s, π
′(s)) > V π

γ (s). Then
V π′

γ (s) ≥ V π
γ (s) for all s ∈ S, and there exists s ∈ S

such that V π′

γ (s) > V π
γ (s).

The proof of Theorem 2.1 relies on defining an operator
that becomes a contraction mapping in a Banach space, on
account of the discount factor γ being smaller than 1 (Bert-
sekas 2007; Szepesvári 2010).

2.2 Howard’s PI
Notice from Theorem 2.1 that once π is evaluated, in gen-
eral there could be multiple choices of improving policies
π′. Any action a ∈ A that has a higher Q-value for state
s ∈ S is called an “improving action”, and s itself is an
“improvable state”. As long as we switch to some improv-
ing action in one or more states, and we retain the actions
of π at the other states, the resulting policy π′ is guaran-
teed to strictly dominate π. HPI is a greedy variant of PI
in which every state that has some improving action is nec-
essarily switched. If there are multiple improving actions,
any one with the highest Q-value is selected. Below is a full
specification of HPI.

HPI starting from policy π under discounted reward

1. For s ∈ S: set π′(s) ← argmaxa∈A Qπ
γ (s, a),

breaking ties in favour of π(s) if possible, else
arbitrarily.
2. If π′ ̸= π, set π ← π′ and go to 1.
3. Declare π to be optimal and terminate.

If each reward in R is scaled by α > 0 and shifted by
β ∈ R, then each Q-value is scaled by α and shifted by
β

1−γ . From the code above, it is clear that positive-scaling
and shifting have no effect on the trajectory taken by HPI
(except possibly for tie-breaking). This invariance validates
our definition of b(R).

2.3 DMDPs
In a DMDP M = (S,A, T,R, γ), transition probabilities
are all 0 or 1. Hence for s ∈ S, a ∈ A, it becomes con-
venient to denote as T (s, a) the single next state s′ for
which T (s, a, s′) = 1. DMDP M induces the multi-graph
GM = (V, E , w), which encodes the states of M as its
vertices, the transitions as edges, and the rewards as edge
weights. Formally, (1) V = S; (2) for v1, v2 ∈ V and a ∈ A,
(v1, v2, a) ∈ E iff T (v1, a) = v2; and (3) w : E → R is such
that for v1, v2 ∈ V and a ∈ A, w((v1, v2, a)) = R(v1, a).
Figure 1a shows an example of the induced graph.

Paths and cycles induced by DMDPs. To study any fixed
policy π : S → A, we may consider the subgraph GM,π ob-
tained by dropping from GM all the edges not corresponding
to actions taken by π. Thus, GM,π has exactly one edge—
(s, T (s, π(s)), π(s))—for each state s ∈ S. For each s ∈ S,
observe that starting from s and repeatedly taking actions
according to π yields a (possibly empty) path, which is fol-
lowed by a cycle. Let Cπ

s be the sequence of state-action

3 0

12

5

2

6

0

1

92

2

-1
1 √

2

2

(a) GM

3 0

12

6

2

-1
1

(b) GM,π

0

1

2

3

4

5

0

0

0 0

0

0

1

1

1

1

1

1

(c) GM2

0

1

2

3

4

5

0

0 0

0

1

1

(d) GM2,π1

Figure 1: In (a) we see graph GM induced by DMDP M with S = {0, 1, 2, 3}, A = {0 (solid), 1 (dashed), 2 (dotted)}.
Each transition is annotated with the reward. Subfigure (b) shows the subgraph GM,π obtained by fixing policy π such that
π(0) = 0, π(1) = 1, π(2) = 0, π(3) = 2. Starting from each state s in GM,π is a (possibly null) path Pπ

s and a cycle Cπ
s

(defined in Section 2.3 as a sequence of state-action pairs). For example: Pπ
1 = ∅, Cπ

1 = ⟨(1, 1)⟩; Pπ
2 = ∅, Cπ

2 = ⟨(2, 0), (0, 0)⟩;
and Pπ

3 = ⟨(3, 2)⟩, Cπ
3 = ⟨(2, 0), (0, 0)⟩. In (c) we see GMm

for m = 2, containing 6 states and 2 actions. The family Mm is
described in Section 2.4. Subfigure (d) shows the subgraph of GM induced by some fixed policy π1. Notice that state 0 is on a
cycle with 4 edges, exactly 2 of which have a reward of 1.

pairs in the cycle that is reached from s by following π,
beginning with the first state in the cycle that is thereby
reached. Let cπs be the length of Cπ

s . Let Pπ
s be the sequence

of state-action pairs in the path emanating from s under π,
with its final element being the state-action pair that reaches
the starting state of Cπ

s . Let pπs be the length of Pπ
s . Fig-

ure 1a provides some examples of Pπ
s and Cπ

s along with
the DMDP shown for illustration. Observe that in general,
0 ≤ pπs ≤ n − 1 and 1 ≤ cπs ≤ n for all π : S → A and
s ∈ S. For 1 ≤ i ≤ pπs , we denote by Pπ

s [i] the i-th element
of Pπ

s . Similarly, for 1 ≤ i ≤ cπs , we denote by Cπ
s [i] the

i-th element of Cπ
s . If, say, this element is (s̄, ā) ∈ S × A,

then R(Cπ
s [i]) shall denote R(s̄, ā).

With this notation, we obtain for DMDP (S,A, T,R, γ)
using discounted reward, that for s ∈ S,

V π
γ (s) =

pπ
s∑

i=1

γi−1R(Pπ
s [i])+

γpπ
s

1− γcπs

cπs∑
i=1

γi−1R(Cπ
s [i]). (7)

Also, simplifying (6) for DMDPs yields for s ∈ S, a ∈ A:

Qπ
γ (s, a) = R(s, a) + γV π

γ (T (s, a)). (8)

2.4 Average reward versus discounted reward
Before proceeding, we describe a technical difference be-
tween the average reward and discounted reward settings,
which illustrates why the latter is more challenging for PI.

Consider the family of DMDPs Mm, where for m ≥
1, we have n = 3m and k = 2. For each state s ∈
S

def
={0, 1, . . . , n−1}, action 0 earns a reward of 0 and action

1 a reward of 1. Also, for s ∈ S, T (s, 0) = (s+1) mod n,
while T (s, 1) = (s+2) mod n. Figure 1c shows the graph
induced by M2.

Now, let S2m denote the set of bit-strings of length 2m
that contain an equal number of 0’s and 1’s. Clearly, |S2m| =(
2m
m

)
=
(
2n/3
n/3

)
= exp(Ω(n)). We observe that each bit-

string in S2m can be mapped to a cycle of length 2m in Mm,
which passes through state 0, and with a sequence of rewards
the same as in the bit-string. For example, Figure 1d shows
a cycle corresponding to bit-string 0101. In the average re-
ward setting, all such cycles will have the same gain, of 1

2 .
However, the (discounted) value of state 0 in the cycle from
Figure 1d is γ+γ3

1−γ4 . For appropriate choices of γ, each of the
|S2m| cycles can yield a different value for state 0, hence
resulting in exponentially many values. Roughly speaking,
this disparity means that a single iteration of PI under aver-
age reward could potentially require an exponential number
of iterations to cover under discounted reward. In Section 4
we show that HPI, however, can visit at most a subexponen-
tial number of cycles (and policies) as a function of n.

3 Related Work
Mansour and Singh (1999) established that any run of HPI
can take at most O

(
kn

n

)
iterations, providing the first non-

trivial upper bound for the algorithm. Hollanders, Delvenne,
and Jungers (2012) later improved this bound by a constant
factor. To date, the bound of O

(
kn

n

)
iterations—only a lin-

ear improvement over the trivial bound of kn iterations—
remains the tightest known bound for HPI on general MDPs
(among those depending solely on n and k).

Experiments suggest that HPI may be much more ef-
ficient on MDPs than the current upper bound indicates.
Currently-known lower bounds do not rule out this possi-
bility. In an important breakthrough, Fearnley (2010) con-
structed an MDP with a path of length exp(Ω(n)) for HPI.
More recently, Christ and Yannakakis (2023) have shown
that a form of smoothed complexity (Spielman and Teng
2004) for HPI (with an appropriate perturbation model) is

super-polynomial, of the form exp(Ω(n
1
3)). However, these

results do not settle the complexity of HPI. Notably, in both
constructions, k, which is the number of actions per state
in the MDP, is not a free parameter. Rather, k is set to be
Θ(n), where n is the number of states. As yet, the tight-
est lower bound for HPI on MDPs with constant k is only
Ω(n) (Hansen and Zwick 2010). MDPs with k = 2 ac-
tions induce abstract cubes called acyclic unique sink ori-
entations (AUSOs) (Szabó and Welzl 2001). The vertices of
the AUSO correspond to policies of the MDP, and oriented
edges encode the direction of improvement between neigh-
bours. HPI does have a lower bound of exp(Ω(n)) iterations
when run on AUSOs (Schurr and Szabó 2005). However,
not all AUSOs are induced by MDPs; it remains unknown if
exponentially-long chains are possible for HPI on 2-action
MDPs.

Ye (2011) provides an upper bound of poly
(
n, k, 1

1−γ

)
iterations for HPI on MDPs; this result was later refined by
Hansen, Miltersen, and Zwick (2013) and Scherrer (2013).
Our analysis, which ultimately yields a γ-independent
bound, relies on the following result of Scherrer (2013).

Theorem 3.1. Let M = (S,A, T,R, γ) be an MDP using
discounted reward, with |S| = n and |A| = k. On M , HPI

can visit at most O
(

nk
1−γ log 1

1−γ

)
policies.

Although DMDPs are simpler than MDPs, they have
themselves challenged theoretical research for many years
now (Karp 1978; Papadimitriou and Tsitsiklis 1987; Madani
2002b) While Papadimitriou and Tsitsiklis (1987), and also
Madani, Thorup, and Zwick (2010), have shown strongly-
polynomial algorithms for DMDPs, there is still a gap be-
tween upper and lower bounds. Post and Ye (2013) anal-
yse max-gain Simplex specifically on DMDPs, and show a
strongly-polynomial upper bound, which was later improved
by Hansen, Kaplan, and Zwick (2014).

HPI, typically faster in practice than Simplex, is conspicu-
ous by its absence from the results above. Post and Ye (2013)
specifically earmark extending their techniques to HPI as “a
difficult but natural next step”. To the best of our knowl-
edge, the only advance that has subsequently been made is
by Goenka et al. (2025), who have shown an upper bound
of roughly poly(n, k) ·

(
k
e

)n
iterations (when k is large) for

HPI on DMDPs. Constraints arising from rewards have not
been sufficiently utilised in preceding analyses. It is also to
note that lower bound constructions for HPI (Hansen and
Zwick 2010; Fearnley 2010; Christ and Yannakakis 2023)
invariably require rewards whose magnitude increases expo-
nentially in n—as is seldom the case in practice. Setting out
specifically to examine the role of rewards, our work takes a
first step by assuming finite bit-sizes. In practice rewards are
set by designers; our assumption is somewhat more natural
than assumptions made on the transitions (“ADAG” struc-
ture by Madani (2002a); partitioned state space by Scherrer
(2013)) to obtain tighter bounds for HPI.

The technical core of our analysis is similar to the method
used by Grand-Clément and Petrik (2023), though with a
different objective. While these authors aim to establish an
upper bound on γbw, the so-called “Blackwell” discount fac-

tor of an MDP, we focus on tracking the trajectory of a clas-
sical algorithm to demonstrate that γQ (unknown to the al-
gorithm) constrains its running time nonetheless.

The reader might be curious if an explicit lower bound
can be shown for HPI in terms of b. Recall that with no con-
straint on b (effectively, b→∞), the tightest lower bound is
currently only Ω(n) (Hansen and Zwick 2010). This lower
bound can be achieved up to a constant factor even with
b = 1 on a DMDP, as shown in Figure 2. Unless a superlin-
ear lower bound is achieved for unrestricted rewards, pursu-
ing a b-dependent lower bound does not appear worthwhile.

4 Pseudosubexponential Upper Bound for
Discounted Reward

In this section, we derive our subexponential-in-n upper
bound for HPI under discounted reward. To begin, in Sec-
tion 4.1, we define a “threshold” discount factor γQ. In Sec-
tion 4.2, we consider and establish the properties of the “Q-
difference sign polynomial”, which is central to our analysis.
In Section 4.3, we provide a standalone mathematical result,
which we obtain by adapting existing analyses of the roots
of polynomials with integer coefficients. This completes the
list of ingredients required for our final proof, which we fur-
nish in Section 4.4.

4.1 Threshold discount factor
Consider DMDP M = (S,A, T,R, γ). For policy π : S →
A; s ∈ S; a, a′ ∈ A, we define

γπ
s,a,a′

def
= inf

{
γ ∈ [0, 1)

∣∣∣∣ ∀τ ∈ (γ, 1),

(
Qπ

γ (s, a) > Qπ
γ (s, a

′) =⇒ Qπ
τ (s, a) > Qπ

τ (s, a
′)
)}

.

In other words, γπ
s,a,a′ is the greatest lower bound on γ ∈

[0, 1) such that if a has a larger Q-value than a′ under
γ-discounting, then it also has a larger Q-value under τ -
discounting for all τ ∈ (γ, 1). Although it may not be ap-
parent from the definition, our upcoming working will show

0 1 2 n− 3 n− 2 n− 1

0 0 0 0

0 0 0 0 0 0
1

. . .

Figure 2: Induced graph of a DMDP with states S =
{0, 1, . . . , n − 1} and actions 0 (dashed) and 1 (solid). An-
notations show the reward on each transition. Discount fac-
tor γ is any element of (0, 1). Policies are encoded as n-bit
strings: bit i specifies the action taken at state i−1. For start-
ing policy 0n, the only improving action is at state n − 1.
Hence every PI algorithm must proceed from 0n to 0n−11.
Now, for policy 0n−11, the only improving action is at state
n − 2. Hence every PI algorithm must proceed from 0n−11
to 0n−212. The same pattern continues until, after n total it-
erations, the optimal policy 1n is reached.

that γπ
s,a,a′ always exists in [0, 1). Consequently, our thresh-

old discount factor

γQ
def
= max

π:S→A;s∈S;a,a′∈A
γπ
s,a,a′ (9)

is also well-defined and guaranteed to lie in [0, 1).
It is insightful to compare γQ with the “Blackwell dis-

count factor” γbw that is defined by Grand-Clément and
Petrik (2023). “Blackwell-optimality” (Blackwell 1962) is
an alternative to discounted reward and average reward for
defining optimal policies. Like average reward, Blackwell
optimality does not require the specification of a discount
factor, and may hence be defined for any MDP M =
(S,A, T,R). A policy π : S → A is said to be Blackwell-
optimal for M if there exists γ ∈ [0, 1) such that π is
discount-optimal for every discount factor γ′ ∈ (γ, 1). De-
note the set of discount-optimal policies for M with discount
factor γ by Π⋆

γ , and the set of Blackwell-optimal policies
for M by Π⋆

bw. Grand-Clément and Petrik (2023) define the
Blackwell discount factor for M as

γbw
def
= inf

{
γ ∈ [0, 1)

∣∣∣∣ ∀γ′ ∈ (γ, 1)
(
Π⋆

γ′ = Π⋆
bw

)}
. (10)

By implication, for every γ ∈ (γbw, 1), any optimal policy
with γ-discounting is also Blackwell-optimal. The signifi-
cance of this observation arises from a historical context,
wherein the computation of Blackwell-optimal policies has
not been straightforward. Many procedures for computing
Blackwell-optimal policies are relatively complex to imple-
ment. In contrast, Grand-Clément and Petrik (2023) offer
a simple computational recipe when the bit-size of the in-
put MDP is bounded. They derive an explicit upper bound
on γbw, which depends on n, k, as well as the number of
bits used to represent the transition probabilities and rewards
in M . By choosing any discount factor γ that exceeds this
upper bound, one only has to compute a discount-optimal
policy with γ-discounting in order to obtain a Blackwell-
optimal policy. Although γQ is syntactically similar to γbw,
its intended purpose in this paper is different. We do not de-
sign a new algorithm based on γQ, but rather, highlight its
role in determining the running time of an existing, classical
algorithm. Correspondingly, γQ is intimately involved with
each step performed by HPI, whereas γbw is only useful to
characterise a subset of Blackwell-optimal policies. It can be
seen that γQ is lower-bounded by γbw.
Lemma 4.1. For every DMDP (S,A, T,R), γbw ≤ γQ.

Proof. Fix γ0 ∈ (γQ, 1) and an arbitrary policy π ∈ Π⋆
γ0

.
Since π is optimal with γ0-discounting, we have that for
each s ∈ S; a ∈ A,

Qπ
γ0
(s, π(s)) ≥ Qπ

γ0
(s, a). (11)

Now suppose there exist s ∈ S, a ∈ A, and γ1 ∈ (γQ, γ0)
such that Qπ

γ1
(s, a) > Qπ

γ1
(s, π(s)). Since γ1 > γQ, and

therefore γ1 > γπ
s,a,π(s), and therefore γ0 > γπ

s,a,π(s), it
follows that Qπ

γ0
(s, a) > Qπ

γ0
(s, π(s))—which contradicts

(11). We conclude that for s ∈ S, a ∈ A, γ1 ∈ (γQ, γ0),

Qπ
γ1
(s, π(s)) ≥ Qπ

γ1
(s, a). (12)

In other words, if π is optimal with γ0-discounting, it must
be optimal with γ1-discounting for all γ1 ∈ (γQ, γ0). From
(10), we observe that γbw cannot exceed γQ.

4.2 Q-difference sign polynomial
As detailed in Section 2.1, the basis for policy improvement
is the comparison of Q-values of different actions at each
state. For the working below, fix π : S → A; s ∈ S; and
a, a′ ∈ A. From (7) and (8), we have

Qπ
γ (s, a) = R(s, a) +

pπ
T (s,a)∑
i=1

γiR(Pπ
T (s,a)[i])

+
γpπ

T (s,a)

1− γ
cπ
T (s,a)

cπT (s,a)∑
i=1

γiR(Cπ
T (s,a)[i]);

Qπ
γ (s, a

′) = R(s, a′) +

pπ
T (s,a′)∑
i=1

γiR(Pπ
T (s,a′)[i])

+
γpπ

T (s,a′)

1− γ
cπ
T (s,a′)

cπ
T (s,a′)∑
i=1

γiR(Cπ
T (s,a′)[i]).

Define

fπ
s,a,a′(γ)

def
=
(
Qπ

γ (s, a)−Qπ
γ (s, a

′)
)

×
(
1− γcπT (s,a)

)
·
(
1− γcπ

T (s,a′)

)
. (13)

We observe that the sign of Qπ
γ (s, a)−Qπ

γ (s, a
′) is the same

as the sign of fπ
s,a,a′ . Hence, a has a higher Q-value than a′

at s under π if and only if fπ
s,a,a′(γ) > 0. By expanding out

fπ
s,a,a′ , we observe that

fπ
s,a,a′(γ) = f1(γ) + f2(γ) + f3(γ) + f4(γ), where

f1(γ) =

R(s, a) +

pπ
T (s,a)∑
i=1

γiR(Pπ
T (s,a)[i])


×
(
1− γcπT (s,a)

)(
1− γcπ

T (s,a′)

)
,

f2(γ) = −

R(s, a′) +

pπ
T (s,a′)∑
i=1

γiR(Pπ
T (s,a′)[i])


×
(
1− γcπT (s,a)

)(
1− γcπ

T (s,a′)

)
,

f3(γ) =

γpπ
T (s,a)

cπT (s,a)∑
i=1

γiR(Cπ
T (s,a)[i])


×
(
1− γcπ

T (s,a′)

)
, and

f4(γ) = −

γpπ
T (s,a′)

cπ
T (s,a′)∑
i=1

γiR(Cπ
T (s,a′)[i])


×
(
1− γcπT (s,a)

)
.

We draw the following observations about fπ
s,a,a′(γ).

1. When treated as a function of γ, fπ
s,a,a′(γ) is a polyno-

mial with integer coefficients.

2. The degree of fπ
s,a,a′(γ) cannot exceed the degree of any

of its constituents f1(γ), f2(γ), f3(γ), and f4(γ). The
degree of f1(γ) is max{1, pπT (s,a)} + cπT (s,a) + cπT (s,a′).
Since pπT (s,a)+ cπT (s,a) (and similarly pπT (s,a′)+ cπT (s,a′))
can at most be n, the degree of f1 is at most 2n + 1.
By a similar argument, the degree of f2(γ) is also upper-
bounded by 2n + 1. The degree of f3(γ) is pπT (s,a) +

cπT (s,a)+ cπT (s,a′), which is upper-bounded by 2n, as also
is the degree of f4(γ) by a similar argument. Thus, the
degree of fπ

s,a,a′(γ) is at most 2n+ 1.

3. Let the operator H(·) denote the “height” of a poly-
nomial, which is the largest absolute value of any co-
efficient in the polynomial. For example, the height of
2x2 − 7x+ 3 is 7. It follows that H(fπ

s,a,a′) ≤ H(f1) +

H(f2) + H(f3) + H(f4). Since each reward lies in
{0, 1, . . . , 2b−1}, we observe that H(f1) and H(f2) are
at most 4(2b − 1), while H(f3) and H(f4) are at most
2(2b − 1). Aggregating, we have H(fπ

s,a,a′) ≤ 12 · 2b.

We refer to fπ
s,a,a′ as the Q-difference sign polynomial. The

three properties established above enable us to upper-bound
the roots of fπ

s,a,a′ that are smaller than 1, and this step leads
to our final bound for HPI.

4.3 Distance of certain algebraic numbers from 1
In this self-contained subsection, we provide an upper bound
on the largest root in the interval (0, 1) for a general class
of polynomials P , of degree n ≥ 1. The notation used in
this subsection is aligned with the literature on polynomials
(“P ” for polynomial, “n” for degree, “a(·)” for coefficients,
and so on). Any symbols used in this subsection are not to
be confused with quantities defined outside it (such as n for
the number of states and a for actions). Recall that H(P)
is the height of P . Below we state our main theorem; the
remainder of the subsection provides the proof.

Theorem 4.2. Consider the polynomial:

P (x)
def
=

n∑
i=0

aix
i, ai ∈ Z.

Suppose τ < 1 is a root of P : that is, P (τ) = 0. Then

τ ≤ 1 − 1
UP

, where UP = O
(

eznz+2

zz H(P)
)

and z ≥ 0 is

the multiplicity of root 1. Further, z = O
(√

n logH(P)
)

.

If τ is a root of P (x), then 1−τ must be a root of P (1−x).
Thus to find an upper bound on the root closest to 1 (from
below) for P (x) is equivalent to finding a lower bound on
the positive roots of P (1−x). The general formula for P (1−
x) is given below.

P (1− x) = P (1) +

n∑
j=1

 n∑
i=j

(
i

j

)
ai

 (−1)jxj . (14)

Now, computing a lower bound on the absolute value of
roots of a polynomial J is equivalent to computing the re-
ciprocal of an upper bound on the “reverse polynomial”, for-
mally stated below.
Proposition 4.3. Let:

J(x) =

n∑
i=0

αix
i, αi ∈ C.

If αn ̸= 0 and U is an upper bound on the absolute value of
roots of J , then 1

U is a lower bound on the absolute values
of the roots of Jr where:

Jr(x)
def
=

n∑
i=0

αn−i · xi.

We proceed to find an upper bound on the absolute values
of the roots of Pr(1−x). We use the following result which
was originally proposed by Lagrange, but has also been at-
tributed to Zassenhaus by Knuth (Yap 2000).
Proposition 4.4. For a polynomial Jr described above, if
α0 ̸= 0, an upper bound of the absolute values of the roots
of Jr is given by:

U = 2 · n
max
s=1

(∣∣∣∣αs

α0

∣∣∣∣1/s
)
. (15)

Applying Proposition 4.4 on Pr(1−x) leads to two cases.

Case 1: Suppose P (1) ̸= 0. Since P has integer coef-
ficients, it follows that |P (1)| ≥ 1. From the proposition,
the upper bound is given by:

UP = 2 · n
max
s=1

∣∣∣∣∣
∑n

i=s

(
i
s

)
ai

P (1)

∣∣∣∣∣
1
s


≤ 2 · n

max
s=1

∣∣∣∣∣
n∑

i=s

(
i

s

)
ai

∣∣∣∣∣
1
s


≤ 2 · n

max
s=1

∣∣∣∣∣
n∑

i=s

(
i

s

)∣∣∣∣∣
1/s

(H(P))
1
s

 .

Now
∑n

i=s

(
i
s

)
=
(
n+1
s+1

)
. And since H(P) ≥ 1, the maxi-

mum occurs at s = 1, giving

UP ≤ 2 ·
(
n+ 1

2

)
H(P) = n(n+ 1)·H(P). (16)

Case 2: Suppose P (1) = 0: that is, 1 is a root of P . If the
multiplicity of the root 1 is z ≥ 1, we have

P (x) = (x− 1)zD(x), where

D(x) =

n−z∑
i=0

dix
i, di ∈ Z, D(1) ̸= 0.

We provide the formula for the i-th term of D below.

di =

n−z∑
j=i

(
n− j − 1

n− j − z

)
an−j+i.

Now, since
n−z∑
j=0

(
n− j − 1

n− j − z

)
=

(
n

z

)
,

for all i, we get

|di| ≤
(
n

z

)
H(P).

Since D(1) ̸= 0, we can use (16) (from case 1) to get a root
upper bound for D(x):

UD ≤ n(n+ 1)H(D) ≤ n(n+ 1)

(
n

z

)
H(P)

≤ n(n+ 1)
(en
z

)z
H(P) ≤ O

(
eznz+2

zz
H(P)

)
.

(17)

Note that since P (x) = (x−1)zD(x), UP = UD. Although
the bound from (16) (case 1) shows only polynomial growth
with n, the one from (17) depends on the number of roots
z that P can possibly have. The following result from Bor-
wein, Erdélyi, and Kós (1999) lets us upper-bound z.
Theorem 4.5. (Borwein, Erdélyi, and Kós 1999) There is an
absolute constant c > 0 such that every polynomial p of the
form

p(x) =

n∑
j=0

ajx
j , |aj | ≤ 1, aj ∈ C

has at most
c(n(1− log |a0|))1/2

zeros at 1.
By Theorem 4.5, an upper bound on the number of zeros

at 1 of the polynomial P (x)
H(P) and therefore P (x) is given by:

c(n(1 + logH(P)))1/2 = O
(√

n logH(P)
)
.

In summary, we have shown that for every τ < 1 that is a
root of P :

τ ≤ 1− 1

UP
, where UP ≤ O

(
eznz+2

zz
H(P)

)
, and

z ≤ O
(√

n logH(P)
)
.

This concludes the proof of Theorem 4.2.

4.4 Proof of Theorem 1.2
We are now ready with our concluding arguments for prov-
ing Theorem1.2. In Section 4.2, we showed that for every
π : S → A; s ∈ S; a, a′ ∈ A, the polynomial fπ

s,a,a′(γ)
has integer coefficients, degree at most 2n + 1 ≤ 3n, and
height at most O(2b). Since fπ

s,a,a′(γ) does not change sign
in (γπ

s,a,a′ , 1), we see that that γπ
s,a,a′ is the largest root of

fπ
s,a,a′(·) that is smaller than 1 (but clipped at 0). Applying

Theorem 4.2, we observe that:

γπ
s,a,a′ ≤ 1− 1

U
, U = O

(
ez(3n)z+2

zz
2b
)
, z = O

(√
nb
)
.

Since
(
ne
z

)z
is strictly increasing for z ≤ n, we get:

logU ≤ O
(√

nb log
n

b
+ b
)
.

Now from (9), we have

γQ ≤ 1− 1

U
, or equivalently,

1

1− γQ
≤ U.

For γ ∈ [0, γQ), our upper bound in Theorem 1.2 is triv-
ially valid due to the γ-dependent upper bound of Scherrer
(2013), which we have rephrased in Theorem 3.1. Now con-
sider γ ∈ (γQ, 1). At any iteration of HPI, with policy π
and state s, if Qπ

γ (s, a) ≥ Qπ
γ (s, a

′) for a, a′ ∈ A, then
Qπ

γ′(s, a) ≥ Qπ
γ′(s, a′) for all γ′ ∈ (γQ, 1). Since HPI al-

ways picks an action maximising the Q-value, starting from
any policy, it would visit an identical sequence of policies for
any γ′ ∈ (γQ, 1). In particular consider γ′ that is arbitrarily
close to γQ. By Theorem 3.1, the number of iterations taken

by HPI on (S,A, T,R, γ′) would be O
(

nk
1−γQ

log 1
1−γQ

)
,

which we have just shown to be

nk
(√

nb log
n

b
+ b
)
exp

(
O
(√

nb log
n

b
+ b
))

,

matching the claim in Theorem 1.2.

5 Conclusion
HPI (Howard 1960) has, over several decades, cemented its
position as a method of choice among practitioners for solv-
ing MDPs. However, known upper bounds for HPI that hold
independently of the discount factor are exponentially sep-
arated from known lower bounds—not only for MDPs, but
even for the restricted subclass of DMDPs. In this paper,
we give the first subexponential upper bound for HPI on
DMDPs with discounted reward, contingent on an assump-
tion about the bit-size of rewards. This assumption is reason-
able in practice, as reward bit-sizes are almost always con-
stant. Theoretically, our bound remains valid and significant
even when there are exactly two reward values of arbitrary
size. En route to this result, we also show a pseudopolyno-
mial upper bound for HPI on DMDPs under average reward.

We employ a novel analytical technique showing that
when the discount factor is “large,” every choice made by
HPI matches the one it would make with a smaller, “thresh-
old” discount factor. We then upper-bound this threshold by
proving a result on polynomials with integer coefficients.
These steps let us piggyback on a γ-dependent upper bound
from Ye (2011) and Scherrer (2013), by plugging in the
threshold discount factor.

From the related work of Grand-Clément and Petrik
(2023), it appears unlikely that the same technique can show
a subexponential bound for HPI on general MDPs. How-
ever, it would be interesting to investigate whether interme-
diate classes of MDPs (which interpolate in some manner
between DMDPs and MDPs) can benefit from our approach.
It may also be possible to improve our subexponential up-
per bound by exploiting more properties of the Q-difference
sign polynomial. On a related note, it is worth exploring if
the dependence on b, which is currently exponential in both
our upper bounds, can be improved.

Acknowledgements
The authors thank Sundar Vishwanathan, Supratik
Chakraborty, Akash Kumar, and Rohit Gurjar for pro-
viding useful comments.

References
Bellman, R. 1967. Dynamic Programming. Princeton Uni-
versity Press.
Bertsekas, D. P. 2007. Dynamic Programming and Optimal
Control, 3rd Edition. Athena Scientific.
Blackwell, D. 1962. Discrete dynamic programming. An-
nals of Mathematical Statistics, 33(2): 719–726.
Borwein, P.; Erdélyi, T.; and Kós, G. 1999. Littlewood-Type
Problems on [0,1]. Proceedings of the London Mathematical
Society, 79(1): 22–46.
Christ, M.; and Yannakakis, M. 2023. The Smoothed Com-
plexity of Policy Iteration for Markov Decision Processes.
In Proc. STOC 2023, 1890–1903. ACM.
Crites, R. H.; and Barto, A. G. 1995. Improving Eleva-
tor Performance Using Reinforcement Learning. In Proc.
NeurIPS 1995, 1017–1023. MIT Press.
Dasdan, A. 2004. Experimental analysis of the fastest op-
timum cycle ratio and mean algorithms. ACM Transactions
on Design Automation of Electronic Systems, 9(4): 385–418.
Fearnley, J. 2010. Exponential Lower Bounds for Policy
Iteration. In Proc. ICALP 2010, 551–562. Springer.
Goenka, R.; Gupta, E.; Khyalia, S.; and Kalyanakrishnan, S.
2025. Upper Bounds for All and Max-Gain Policy Iteration
Algorithms on Deterministic MDPs. Math. of Oper. Res.
Grand-Clément, J.; and Petrik, M. 2023. Reducing Black-
well and Average Optimality to Discounted MDPs via the
Blackwell Discount Factor. In Proc. NeurIPS 2023, 52628–
52647. Curran Associates, Inc.
Gupta, A.; and Kalyanakrishnan, S. 2017. Improved strong
worst-case upper bounds for MDP planning. In Proc. IJCAI
2017, 1788–1794.
Hansen, T. D.; Kaplan, H.; and Zwick, U. 2014. Dantzig’s
pivoting rule for shortest paths, deterministic MDPs, and
minimum cost to time ratio cycles. In Proc. SODA 2014,
847–860. SIAM.
Hansen, T. D.; Miltersen, P. B.; and Zwick, U. 2013. Strat-
egy Iteration Is Strongly Polynomial for 2-Player Turn-
Based Stochastic Games with a Constant Discount Factor.
Journal of the ACM, 60(1): 1–16.
Hansen, T. D.; and Zwick, U. 2010. Lower Bounds for
Howard’s Algorithm for Finding Minimum Mean-Cost Cy-
cles. In Proc. ISAAC 2010, 415–426. Springer.
Hollanders, R.; Delvenne, J.; and Jungers, R. M. 2012. The
complexity of Policy Iteration is exponential for discounted
Markov Decision Processes. In Proc. CDC 2012, 5997–
6002. IEEE.
Howard, R. A. 1960. Dynamic Programming and Markov
Processes. MIT Press.
Kalyanakrishnan, S.; Mall, U.; and Goyal, R. 2016. Batch-
Switching Policy Iteration. In Proc. IJCAI 2016, 3147–
3153. IJCAI/AAAI Press.

Kalyanakrishnan, S.; Misra, N.; and Gopalan, A. 2016. Ran-
domised Procedures for Initialising and Switching Actions
in Policy Iteration. In Proc. AAAI 2016. AAAI Press.
Karp, R. M. 1978. A characterization of the minimum cycle
mean in a digraph. Discrete mathematics, 23(3): 309–311.
Littman, M. L.; Dean, T. L.; and Kaelbling, L. P. 1995. On
the Complexity of Solving Markov Decision Problems. In
Proc. UAI 1995, 394–402. Morgan Kaufmann.
Madani, O. 2002a. On Policy Iteration as a Newton’s
Method and Polynomial Policy Iteration Algorithms. In
Proc. AAAI/IAAI 2002, 273–278. AAAI Press / MIT Press.
Madani, O. 2002b. Polynomial Value Iteration Algorithms
for Detrerminstic MDPs. In Proc. UAI 2002, 311–318. Mor-
gan Kaufmann.
Madani, O.; Thorup, M.; and Zwick, U. 2010. Discounted
Deterministic Markov Decision Processes and Discounted
All-Pairs Shortest Paths. ACM Trans. on Alg., 6(2): 1–25.
Mansour, Y.; and Singh, S. 1999. On the Complexity of Pol-
icy Iteration. In Proc. UAI 1999, 401–408. Morgan Kauf-
mann.
Mausam; and Kolobov, A. 2012. Planning with Markov De-
cision Processes: An AI Perspective. Morgan & Claypool.
Papadimitriou, C. H.; and Tsitsiklis, J. N. 1987. The Com-
plexity of Markov Decision Processes. Math. of Oper. Res.,
12(3): 441–450.
Post, I.; and Ye, Y. 2013. The simplex method is strongly
polynomial for deterministic Markov decision processes. In
Proc. SODA 2013, 1465–1473. SIAM.
Puterman, M. L. 1994. Markov Decision Processes. Wiley.
Scherrer, B. 2013. Improved and Generalized Upper Bounds
on the Complexity of Policy Iteration. In Proc. NeurIPS
2013, 386–394. Curran Associates, Inc.
Schmitz, N. 1985. How Good is Howard’s Policy Improve-
ment Algorithm? Zeitschrift für Oper. Res., 29: 315–316.
Schurr, I.; and Szabó, T. 2005. Jumping Doesn’t Help in
Abstract Cubes. In Proc. IPCO 2005, 225–235. Springer.
Silver, D.; et al. 2016. Mastering the game of Go with deep
neural networks and tree search. Nature, 529(7587): 484–
489.
Silver, D.; et al. 2018. A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-
play. Science, 362(6419): 1140–1144.
Spielman, D. A.; and Teng, S.-H. 2004. Smoothed Analysis
of Algorithms: Why the Simplex Algorithm Usually Takes
Polynomial Time. Journal of the ACM, 51(3): 385–463.
Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press.
Szabó, T.; and Welzl, E. 2001. Unique Sink Orientations of
Cubes. In Proc. FOCS 2001, 547–555. IEEE.
Szepesvári, C. 2010. Algorithms for Reinforcement Learn-
ing. Morgan & Claypool.
Taraviya, M.; and Kalyanakrishnan, S. 2020. A tighter anal-
ysis of randomised policy iteration. In Proc. UAI 2020, 519–
529. PMLR.

Yap, C.-K. 2000. Fundamental Problems in Algorithmic Al-
gebra. Oxford University Press.
Ye, Y. 2011. The Simplex and Policy-Iteration Methods Are
Strongly Polynomial for the Markov Decision Problem with
a Fixed Discount Rate. Math. of Oper. Res., 36(4): 593–603.

A Analysis under Average Reward

The “average cost” criterion (cost is the negative of reward) is a commonly used method for optimising stochastic dynamical
systems over an infinite time horizon. Solving DMDPs under the average cost criterion is equivalent to finding minimum
mean cost cycles (MMCC) in the induced graph. Karp (1978) provided a polynomial time algorithm to the MMCC problem.
However, the complexity of Howard’s Policy Iteration (HPI) in this context remains an open problem, even though, in practice,
HPI is typically more efficient than Karp’s algorithm (Dasdan 2004). On the other hand, Hansen and Zwick (2010) established
a lower bound of Ω(n2) for HPI when the graph has Θ(n2) edges. We provide a polynomial upper bound for all policy iteration
algorithms under the assumption that the bit-size of the rewards is constant.

In this section we describe the notion of average reward and present the proof of Proposition 1.1.

A.1 Preliminaries

The average reward values defined in equations (2) and (3) satisfy the pair of Bellman Equations given by:

V π
g (s) =

∑
s′∈S

T (s, π(s), s′)V π
g (s′), (18)

V π
b (s) = R(s, π(s))− V π

g (s) +
∑
s′∈S

T (s, π(s), s′)V π
b (s′). (19)

Note that the system of equations above is underdetermined, meaning that solutions to equations (18) and (19) are not unique.
A standard procedure for ensuring a unique bias function is to require that the long-run average bias over time is zero, known
as the canonical bias (see Puterman (1994)), which is consistent with the definition based on expectations. Another common
approach—which we adopt—is to select a state s in each recurrent class and set Vb(s) = 0. Additionally, in multichain average
reward MDPs, computing the optimal gain and identifying optimal policies require two optimality equations, given by:

max
a∈A

{
Vg(s)−

∑
s′∈S

T (s, a, s′)Vg(s
′)

}
= 0, (20)

max
a∈A′

{
−Vb(s) +R(s, a)− Vg(s) +

∑
s′∈S

T (s, a, s′)Vb(s
′)

}
= 0, (21)

where A′ =

{
a′ ∈ A : Vg(s)−

∑
s′∈S T (s, a′, s′)Vg(s

′) = 0

}
. A solution to the optimality equations always exists for finite

MDPs (Puterman 1994).

Policy iteration is analogous to the discounted case, except that it maintains and updates a pair of value functions (Vg, Vb),
in a lexicographical order. The following pseudocode outlines this process.

PI starting from policy π under average reward

Policy Evaluation:

1. Obtain V π
g and V π

b which satisfy (18), (19).

Policy Improvement:

2. Let:

Jπ
g =

{
(s, a)

∣∣∣∣ s ∈ S, a ∈ A,
∑
s′∈S

T (s, a, s′)V π
g (s′) > V π

g (s)

}
.

3. If Jπ
g ̸= ∅, pick Ig ⊆ Jπ

g (Ig ̸= ∅) and let π′(s) ← a for (s, a) ∈ Ig and π′(s) ← π(s) for
the remaining states s. Set π ← π′ and go to 1. Else go to 4.

4. Let

Jπ
b =

{
(s, a)

∣∣∣∣ s ∈ S, a ∈ A, R(s, a) +
∑
s′∈S

T (s, a, s′)V π
b (s′) > V π

b (s)

}
.

5. If Jπ
b ̸= ∅, pick Ib ⊆ Jπ

b (Ib ̸= ∅) and let π′(s) ← a for (s, a) ∈ Ib and π′(s) ← π(s) for
the remaining states s. Set π ← π′ and go to 1. Else declare π to be optimal and terminate.

A subset of states S′ ⊆ S is called a recurrent class under π if for each pair s, s′ ∈ S, there is a non-zero probability of
reaching s′ from s in fewer than n steps by following π, and moreover, no state in S \S′ is reachable from any state in S′ under
π. The system of equations (18) and (19) becomes uniquely determined if any one state in each recurrent class of π is allotted
any arbitrary bias. Assuming an indexing of states—concretely, take S = {0, 1, 2, . . . , n − 1}—we adopt the convention of
setting V π

b (s) = 0 for every state s that is in a recurrent class and has the smallest index in that class (Hansen, Miltersen, and
Zwick 2013). Since every bias function must satisfy the linear equation (19), any two valid bias functions within a recurrent
class S′ ⊆ S differ only by a constant offset—i.e., Vb1(s) = Vb2(s) + C for all s ∈ S′. As a result, the analysis we present
below holds uniformly for all such solutions.

DMDPs. For DMDP M = (S,A, T,R) using average reward and policy π : S → A, the gain of each state s ∈ S becomes
the average of the rewards on Cπ

s , which indeed constitutes a recurrent class.

V π
g (s) =

1

cπs

cπs∑
i=1

R(cπs [i]). (22)

The bias V π
b (s) distinguishes between states that reach the same recurrent class, and is given by

V π
b (s) =

{
0 if s has the smallest index in Cπ

s ,

R(s, π(s))− V π
g (s) + V π

b (T (s, π(s))) otherwise.
(23)

A.2 Pseudopolynomial Upper Bound for Average Reward
We now present a proof of Proposition 1.1 which yields the pseudopolynomial bound.

Proof of Proposition 1.1 Recall from (22) that the gain of state s ∈ S under policy π : S → A is equal to

V π
g (s) =

∑cπs
i=1 R(cπs [i])

cπs
.

The numerator is a sum of cπs rewards, each an integer in {0, 1, . . . , n · (2b − 1)}, while the denominator is an integer in
{1, 2, . . . , n}. Thus, V π

g (s) can take at most T1
def
=n2 · 2b values.

Similarly, the bias V π
b (s) is seen from (23) to be the sum of some i terms of the form R(si, π(si))− V π

g (si), where 0 ≤ i ≤
n− 1, and si is the i-th state visited after starting from s. The sum of the i reward terms has to be an integer in {0, 1, . . . , (n−
1) · (2b − 1)}. Since the states si that are visited from s by following π all have the same gain V π

g (s), the amount subtracted is

from the set {0, V π
g (s), 2V π

g (s), . . . , (n− 1)V π
g (s)}. Hence, if V π

g (s) is fixed, the number of possible values V π
b (s) can take is

at most T2
def
=n · 2b · n. Therefore, there are at most T1 ·T2 unique gain-bias pairs possible for any state s.

By the Policy Improvement Theorem (Howard 1960), in each PI improvement step: (1) the gain of each state either remains
the same or increases; (2) if gains are unchanged, the bias either remains the same or increases; and (3) at least one state’s gain
or bias strictly increases. Thus, any PI algorithm, regardless of the variant, follows a strictly monotonic trajectory starting from
the initial policy, with each iteration requiring at least one state to adopt a new gain-bias pair. Consequently, the total number
of iterations is bounded by n·T1 ·T2 = O(n5 · 4b).

