
In Conitzer, Winikoff, van der Hoek, Padgham, editors, Proceedings of the Eleventh International Conference on Autonomous Agents and Multiagent Systems,

pp. 129--136, IFAAMAS, 2012.

UT Austin Villa 2011: A Champion Agent in the RoboCup
3D Soccer Simulation Competition

Patrick MacAlpine, Daniel Urieli, Samuel Barrett, Shivaram Kalyanakrishnan∗,
Francisco Barrera, Adrian Lopez-Mobilia, Nicolae Ştiurcă†, Victor Vu, and Peter Stone

Department of Computer Science, The University of Texas at Austin, Austin, TX 78701, USA
{patmac, urieli, sbarrett, shivaram,

tank225, alomo01, nstiurca, diragjie, pstone}@cs.utexas.edu

ABSTRACT

This paper presents the architecture and key components of
a simulated humanoid robot soccer team, UT Austin Villa,
which was designed to compete in the RoboCup 3D simu-
lation competition. These key components include (1) an
omnidirectional walk engine and associated walk parame-
ter optimization framework, (2) an inverse kinematics based
kicking architecture, and (3) a dynamic role assignment and
positioning system. UT Austin Villa won the RoboCup 2011
3D simulation competition in convincing fashion by winning
all 24 games it played. During the course of the competition
the team scored 136 goals while conceding none. We analyze
the effect of each component in isolation and show through
extensive experiments that the complete team significantly
outperforms all the other teams from the competition.

Categories and Subject Descriptors

I.2.9 [Computing Methodologies]: Artificial Intelli-
gence—Robotics

General Terms

Algorithms, Design, Experimentation

Keywords

Humanoid robotics, Robot soccer, Machine learning

1. INTRODUCTION
Robot Soccer [3] has served as an excellent research do-

main for autonomous agents and multi-agent systems over
the past decade and a half. In this domain, teams of au-
tonomous robots compete with each other in a complex,
real-time, noisy and dynamic environment, in a setting that
is both collaborative and adversarial. Robot soccer has
spread over several popular platforms, each having its own
advantages. For example, the real robot competitions, in-
cluding the humanoid robot league, have typically empha-
sized low-level robot control challenges. On the other hand,

∗S. Kalyanakrishnan is currently at Yahoo! Labs.
†N. Ştiurcă is currently at the University of Pennsylvania.

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

the RoboCup 2D simulation platform has emphasized high-
level team strategy challenges. In this paper, we focus on
the RoboCup 3D simulation platform, which integrates both
these low-level and high-level challenges under one umbrella.

In the 3D simulation league teams of nine simulated hu-
manoids play in a simulation environment with realistic
physics, state-noise, multidimensional actions and real-time
control. One advantage of the 3D simulation domain over
real robots is avoiding the high cost of errors, and the rel-
atively slow feedback loop, that happens when testing new
skills in the real world. An advantage over the 2D simu-
lator is the ability to test high-level team strategies under
the constraints of humanoid locomotion. Due to the com-
plexity of the environment, parts of the agent are hard to
design by hand. For instance, it is a significant challenge to
design a walk that is both fast and stable. The 3D simula-
tion platform allows for designing and investigating general
methodologies for skill and strategy acquisition in a com-
plex, challenging domain, using machine learning.

In this paper, we present UT Austin Villa, the winning
agent of the 3D simulation league in RoboCup 2011. Each
of UT Austin Villa’s field players is controlled by (a sepa-
rate instance of) the same program. The players continu-
ally estimate the world state from noisy observations, reason
about position assignments, and then quickly and robustly
move on the field using a learned walk. In this paper, we
describe the complete agent, but focus particularly on the
most novel components that were key contributors to our
success. Specifically, we focus on (1) an omnidirectional
walk agent and an associated walk parameter optimization
framework, (2) an automatically optimized inverse kinemat-
ics based kicking architecture, and (3) a dynamic role as-
signment and positioning system. We analyze the individual
components and the complete team’s performance both in
competition and in controlled experiments.1

The rest of the paper is structured as follows. Section 2
gives a domain description. Section 3 describes our agent’s
architecture. Section 4, 5 and 6 describe the three key com-
ponents of our agent, respectively. Results are given in Sec-
tion 7, and Section 8 summarizes.

2. DOMAIN DESCRIPTION
Robot soccer has served as an excellent platform for test-

ing learning scenarios in which multiple skills, decisions, and

1Videos of these components in action can be found
online at http://www.cs.utexas.edu/~AustinVilla/sim/
3dsimulation/AustinVilla3DSimulationFiles/2011/
html/components.html

controls have to be learned by a single agent, and agents
themselves have to cooperate or compete. There is a rich
literature based on this domain addressing a wide spectrum
of topics from low-level concerns, such as perception and
motor control [6, 12], to high-level decision-making prob-
lems [10, 13].

The RoboCup 3D simulation environment is based on
SimSpark [4], a generic physical multiagent system simula-
tor. SimSpark uses the Open Dynamics Engine [2] (ODE) li-
brary for its realistic simulation of rigid body dynamics with
collision detection and friction. ODE also provides support
for the modeling of advanced motorized hinge joints used in
the humanoid agents.

The robot agents in the simulation are homogeneous and
are modeled after the Aldebaran Nao robot [1], which has
a height of about 57 cm, and a mass of 4.5 kg. The agents
interact with the simulator by sending torque commands
and receiving perceptual information. Each robot has 22
degrees of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge
joints, an agent is equipped with joint perceptors and ef-
fectors. Joint perceptors provide the agent with noise-free
angular measurements every simulation cycle (20ms), while
joint effectors allow the agent to specify the torque and di-
rection in which to move a joint. Although there is no in-
tentional noise in actuation, there is slight actuation noise
that results from approximations in the physics engine and
the need to constrain computations to be performed in real-
time. Visual information about the environment is given to
an agent every third simulation cycle (60ms) through noisy
measurements of the distance and angle to objects within
a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well
as force resistance perceptors on the sole of each foot. Ad-
ditionally, agents can communicate with each other every
other simulation cycle (40ms) by sending messages limited
to 20 bytes. Figure 1 shows a visualization of the Nao robot
and the soccer field during a game.

3. AGENT ARCHITECTURE
The UT Austin Villa agent receives visual sensory in-

formation from the environment which provides distances
and angles to different objects on the field. It is relatively
straightforward to build a world model by converting this
information about the objects into Cartesian coordinates.
This of course requires the robot to be able to localize itself
for which the agent uses a particle filter. In addition to the

Figure 1: A screenshot of the Nao humanoid robot
(left), and a view of the soccer field during a 9 versus
9 game (right).

vision perceptor, the agent also uses its accelerometer read-
ings to determine if it has fallen and employs its auditory
channels for communication.

Once a world model is built, the agent’s control module is
invoked. At the lowest level, the humanoid is controlled by
specifying torques to each of its joints. This is implemented
through PID controllers for each joint, which take as input
the desired angle of the joint and compute the appropriate
torque. Further, the agent uses routines describing inverse
kinematics for the arms and legs. Given a target position
and pose for the hand or the foot, the inverse kinematics
routine uses trigonometry to calculate the target angles for
the different joints along the arm or the leg to achieve the
specified target, if possible.

The PID control and inverse kinematics routines are used
as primitives to describe the agent’s skills. In order to deter-
mine the appropriate joint angle sequences for walking and
turning, the agent utilizes an omnidirectional walk engine
which is described in Section 4. When invoking the kicking
skill, the agent uses inverse kinematics to control the tra-
jectory of the kicking foot as discussed in Section 5. Two
other useful skills for the robot are falling (for instance, by
the goalie to block a ball) and rising from a fallen position.

It is worth mentioning that some of the agent’s skills, like
diving, rising from a fall, and kicking, are defined using a
flexible text-file-based skill description language, which was
used by our team in RoboCup 2010 [15], and which allows
to quickly create new skills, while leaving some of the skills’
parameters opened for optimization using machine learning.

Because the team’s emphasis was mainly on learning ro-
bust and stable low-level skills, the high-level team strategy
is relatively straightforward. The player closest to the ball
is instructed to go to it while other field player agents dy-
namically choose target positions on the field as explained
in Section 6. The goalie is instructed to stand a little in
front of its goal and, using a Kalman filter to track the ball,
attempts to dive and stop the ball if it comes near.

4. OMNIDIRECTIONAL WALK ENGINE

AND OPTIMIZATION
The primary key to UT Austin Villa’s success in the 2011

RoboCup 3D simulation competition was its development
and optimization of a stable and robust fully omnidirectional
walk. The team used an omnidirectional walk engine based
on the research performed by Graf et al. [8]. The main
advantage of an omnidirectional walk is that it allows the
robot to request continuous velocities in the forward, side,
and turn directions, permitting it to approach its destina-
tion more quickly. In addition, the robustness of this engine
allowed the robots to quickly change directions, adapting to
the changing situations encountered during soccer games.

4.1 Walk Engine Implementation
The walk engine uses a simple set of sinusoidal functions

to create the motions of the limbs with limited feedback
control. It processes desired walk velocities given as input,
chooses destinations for the feet and torso, and then in-
verse kinematics are used to determine the joint positions re-
quired. Finally, PID controllers for each joint convert these
positions into torque commands that are sent to the joints.

The walk engine first selects a trajectory for the torso to
follow, and then determines where the feet should be with

respect to the torso location. The trajectory is chosen using
a double linear inverted pendulum, where the center of mass
is swinging over the stance foot. In addition, as in Graf
et al.’s work [8], the simplifying assumption that there is
no double support phase is used, so that the velocities and
positions of the center of mass must match when switching
between the inverted pendulums formed by the respective
stance feet. Further details of the walk can be found in [11].

The walk engine is parameterized using more than 40 pa-
rameters, ranging from intuitive quantities, like the step size
and height, to less intuitive quantities like the maximum
acceptable center of mass error. These parameters are ini-
tialized based on an understanding of the system and also
testing them out on an actual Nao robot. This initialization
resulted in a stable walk. However, the walk was extremely
slow compared to speeds required during a competition. We
refer to the agent that uses this walk as the Initial agent.

4.2 Walk Engine Parameter Optimization
The slow speed of the Initial agent calls for using machine

learning to obtain better walk parameter values. Parameters
are optimized using the CMA-ES algorithm [9], which has
been successfully applied in [15]. CMA-ES is a policy search
algorithm that successively generates and evaluates sets of
candidates. Once CMA-ES generates a group of candidates,
each candidate is evaluated with respect to a fitness mea-
sure. When all the candidates in the group are evaluated,
the next set of candidates is generated by sampling with
probability that is biased towards directions of previously
successful search steps.

As optimizing 40 real-valued parameters, can be impracti-
cal, a carefully chosen subset of 14 parameters was selected
for optimization while keeping all the other parameters fixed.
The chosen parameters are those that have the highest po-
tential impact on the speed and stability of the robot, and
are mainly: rotation and height; the robot’s center of mass
height, shift amount, and default position; the fraction of
time a leg is on the ground and the time allocated for one
step phase; the step size PID controller; center of mass nor-
mal error and maximum acceptable errors; and the robot’s
forward offset.

Similarly to a conclusion from [15], we have found that
optimization works better when the robot’s fitness measure
is its performance on tasks that are executed during a real
game. This stands in contrast to evaluating it on a general
task such as the speed of walking straight. Therefore, the
robot’s in-game behavior is broken down into a set of smaller
tasks, and the parameters for each one of these tasks is se-
quentially optimized. When optimizing for a specific task,
the performance of the robot on the task is used as CMA-
ES’s fitness value for the current candidate parameter set
values.

In order to simulate common situations encountered in
gameplay, the walk engine parameters are optimized for a
goToTarget subtask. This consists of an obstacle course in
which the agent tries to navigate to a variety of target po-
sitions on the field. The goToTarget optimization2 includes
quick changes of target/direction for focusing on the reac-
tion speed of the agent as well as holding targets for longer

2Note that we use three types of notation for each of go-
ToTarget, GoToTarget, goToTarget, to distinguish between
an optimization task, an agent created by this optimization
task and a parameter set. Similarly for“sprint”and“initial”.

durations to improve the straight line speed of the agent.
Additionally the agent is instructed to stop at different times
during the optimization to ensure that it is stable and does
not fall over when doing so. In order to encourage the agent
to learn both quick turning behavior and a fast forward walk,
the agent always walks and turns toward its designated tar-
get at the same time. This allows for the agent to swiftly
adjust and switch its orientation to face its target, thereby
emphasizing the amount of time during the optimization
that it is walking forward. Optimizing the walk engine pa-
rameters in this way resulted in a significant improvement
in performance with the GoToTarget agent able to quickly
turn and walk in any direction without falling over. This
improvement also showed itself in actual game performance
as when the GoToTarget agent played 100 games against the
Initial agent, the GoToTarget agent won on average by 8.82
goals with a standard error of .11.

To further improve the forward speed of the agent, a
second walk engine parameter set is optimized for walking
straight forward. This is accomplished by running the go-

ToTarget subtask optimization again, but this time the go-
ToTarget parameter set is held fixed while a new parameter
set, called the sprint parameter set, is learned. The sprint
parameter set is used when the agent’s orientation is within
15◦ of its target. By learning the sprint parameter set in con-
junction with the goToTarget parameter set, the new Sprint
agent remains stable while switching between the two walk
parameter sets, and the agent’s speed increases from .64 m/s
to .71 m/s as timed when walking forward for ten seconds
after starting from a stand still.

Figure 2: UT Austin Villa’s walk parameter opti-
mization progression. Circles represent the set(s) of
parameters used by each agent during the optimiza-
tion progression while the arrows and associated la-
bels above them indicate the optimization tasks used
in learning. Parameter sets are the following: I =
initial, T = goToTarget, S = sprint, P = positioning.

In the next step we further optimize the agent to quickly
position near the ball. While the goToTarget optimization
emphasizes quick turns and forward walking speed, position-
ing around the ball involves more side-stepping to circle the
ball. To account for this discrepancy, the agent learns a third
parameter set called the positioning parameter set. To learn
this new parameter set a driveBallToGoal23 optimization task
is created, in which the agent is evaluated on how far it is
able to dribble the ball over 15 seconds when starting from
a variety of positions and orientations from the ball. When-
ever the agent enters a radius of .8 meters from the ball, it
transitions to using the positioning parameter set. During
the optimization, both the goToTarget and sprint parameter
sets are held fixed. As the optimization naturally includes

3The ’2’ at the end of the name driveBallToGoal2 is used to
differentiate it from a driveBallToGoal optimization that was
used in [15].

transitions between all three parameter sets, this constrains
all parameter sets to be compatible with each other. Adding
both the positioning and sprint parameter sets further im-
proves the agent’s performance such that the resulting Final
agent, is able to beat the GoToTarget agent by an average
of .24 goals with a standard error of .08 across 100 games. A
summary of the progression in optimizing the three different
walk parameter sets can be seen in Figure 2.

5. KICK ENGINE
While the learned walk described in Section 4 is by far

the aspect of UT Austin Villa that is most responsible for
its success, as is affirmed in Section 7, robust and accurate
kicking is another skill that is essential for playing soccer at
a high level.

To motivate some of the design decisions in our kick en-
gine which we discuss in depth later in this section, we first
present the desired qualities of the engine. For a kick to be
broadly applicable, it needs to be agile, robust, versatile, and
easily and concisely parameterizable. Agility refers to tak-
ing shots quickly. Robustness entails taking accurate and
powerful shots in spite of positioning errors (e.g., without
the agent being perfectly lined up with the ball). Versatility
refers to being able to kick in multiple directions from mul-
tiple ball starting locations. The parameterization criterion
serves to facilitate learning optimized kicks.

5.1 Kick Engine Implementation
To achieve these criteria, our kick engine employs a sys-

tem of defining and dynamically computing smooth curves
which guide the foot’s trajectory through the ball at high
speed and in the desired direction. We use Cubic Hermite
Splines to define the foot trajectories. Agility and robust-
ness are achieved by defining the kick trajectory relative to
the ball in Cartesian space. Unlike our previous year’s team
which used fixed joint angle skills exclusively, the current
agents do not have to tip-toe eg., directly behind the ball at
a set distance in order to kick the ball eg., forward. Instead,
the kick engine dynamically computes the trajectory of the
foot once the agent is close enough to the ball, regardless of
whether the agent finished positioning or whether the agent
was able to position itself precisely relative to the ball. Ver-
satility is achieved because multiple directional kicks can be
defined and used at will. Learning and optimization of kicks
is facilitated by the parameterization of the foot trajectories
in terms of a sparse set of control (way-) points. The flow
of the kick engine follows.

First, a kick is selected, and the agent approaches the
ball (Section 5.1.1). Once close enough to the ball, it shifts
its weight onto the support foot and computes the kicking
foot trajectory necessary to perform the desired kick (Sec-
tion 5.1.2). At each time step during the kick, the kick
engine interpolates the control (way-) points defined in the
kick skill file (Section 5.1.5) to produce a target pose for
the foot in Cartesian space (Section 5.1.3). Finally, an IK
solver computes the necessary joint angles of the kicking leg,
and these angles are fed to the joint PID controllers (Sec-
tion 5.1.4). Figure 3 illustrates the program flow of the kick
engine.

5.1.1 Kick Choice and Ball Approach

As the agent approaches the ball, it must decide which
type of kick to attempt (Section 5.1.6 describes the options)

Figure 3: The flow of the agent deciding when to
kick the ball and how to interpolate the curve cre-
ated relative to the ball.

and whether to use the left or right foot. Each kick skill
definition includes a target offset of the agent relative to the
ball. Choosing a kick reduces to choosing the target with the
lowest cost for the agent to move to. We calculate the cost
of each target through the following variables and formula:

distCost = |agentPosition − targetOffsetPosition| /m

turnCost =
|agentOrientation − targetOrientation|

360◦

ballPenalty =

.5 if ball is in path to target offset
0 otherwise

kickCost = distCost + turnCost + ballPenalty

The chosen target is approached using the walk engine. Dur-
ing approach, the kick engine continuously checks if the
agent is close enough to kick by using the IK solver to deter-
mine if the foot can reach most (> 90%) of the points along
the trajectory for the chosen kick.

5.1.2 Dynamically Compute Kick Trajectory

Once the agent has shifted its weight in preparation for a
kick, it notes the ball’s position with respect to itself (specif-
ically its torso, the root of the leg kinematic chains). This
offset is added to the control points in the kick skill file to dy-
namically compute the exact curve of the foot with respect
to the agent’s torso.

5.1.3 Interpolate Kick Trajectory

The control points defined in the kick skill files are used
to compute a smooth 3D curve. We use the Cubic Hermite
Spline formulation to interpolate the control points because
Hermite Splines yield curves with C1 continuity which pass
through all control points [5]. The time offset from the start
of the kick is normalized to the range [0 − 1] (0 is the start
of the kick; 1 is the end), and the normalized offset is used
to sample the Hermite Spline. The kick skill files also define
the Euler angles (roll, pitch, and yaw) of the foot at each
control point. These angles are linearly interpolated.

5.1.4 Kick Inverse Kinematics

For the inverse kinematics calculations, we used Open-

RAVE’s [7] analytic inverse kinematics solver. The Open-
RAVE IK solver can process arbitrary forward kinematic
chains defined in XML and produce fast C++ source code
that solves the inverse kinematics. Note that the time-
consuming analytic processing is done offline, and the fast
C++ code can be queried hundreds of times at each time
step without a significant computational cost.

5.1.5 Kick Skill Definition

Extending the skill definition files to allow Cartesian co-
ordinate plus Euler angle waypoints for each foot, we prede-
fine all six degree of freedom positions of the foot for a given
curve at any linear time through the curve.

5.1.6 Directional Kicks

We defined five kicks that assume that the ball is in front
of the agent such that it can kick directly forward and at
45◦ and 90◦ angles either outward or inward, depending on
which leg is used. We also created directional kicks which
assume that the ball is to the side of or behind one of the
legs. See Figure 4.

Figure 4: The agent can dynamically kick the ball
in varied directions with respect to the placement of
the ball at a, b, and c.

5.2 Kick Optimization
We can then optimize the waypoints (three to five per

kick) for kicked distance and speed through CMA-ES. This
then allows us to have multiple directional kicks defined
through simple curves as we do not have to dedicate large
amounts of time tweaking each one and can create rough
paths to guide the initial seed of the agent’s kick.

In order to learn the parameters for a kick we set up an
optimization task where the agent approaches the ball from
ten different angles along a half circle arc around the ball
and attempts to kick the ball toward a specific target. The
parameters being optimized are the XYZ and RPY values of
the waypoints that define the curve of the kick, how quickly
the kicking foot moves through the curve, and also the target
offset from the ball to move toward during the kick approach.
The fitness of an agent is measured by the average distance
the ball travels toward the target across all kick attempts.
The agent is given a penalty fitness of -1 for every kick during
which it falls over, runs into the ball, or isn’t able to kick
the ball after ten seconds have passed. Penalizing the agent
for taking too long to kick encourages kicking agility while
having the agent approach the ball from multiple angles and
penalizing for falling promote kicking robustness.

5.3 Kick Performance
While our kicking system shows a lot of promise, we found

out after the competition that our agent does slightly better
without kicking turned on during self play. A version of
our agent with the kicking system turned off was able to
beat our agent that does kick by an average of .15 goals per
game across 100 games with a standard error of .07. This
resulted in a tally of 27 wins for the agent that does not
kick, 12 wins for that agent that does kick, and 61 ties. We
believe the reason for this slight degradation in performance
when kicking is due to our kicking agent needing to slow
down a little when approaching the ball to kick it, instead
of maintaining a full speed walk while dribbling the ball,
so as to not accidentally run into the ball. Additionally we
have yet to implement a strategy for passing and only kick
in the direction we want to dribble if an opponent agent
is approaching to take the ball away. We therefore include
a description of the kick in this paper as a key component
of the overall agent, even though it was not necessary for
winning this year’s competition.

With better tuning such that the agent can approach the
ball without needing to slow down, and the addition of a
strategy to take full advantage of the ability for kicking to
quickly move the ball, we expect our kick system to provide
a substantial gain in the performance of the agent. The
kicking system has already shown some promise when used
with walks that are not as effective at dribbling as our cur-
rent walk. When playing kicking and non-kicking versions
of our agent with slow initial walk parameters, as described
in Section 4.1, against each other the kicking agent scored 8
goals while the non-kicking agent failed to score.

6. DYNAMIC ROLE ASSIGNMENT AND

POSITIONING SYSTEM
While low level skills such as walking and kicking are vi-

tally important for having a successful soccer playing agent,
the agents must work together as a team in order to maxi-
mize their game performance. One often thinks of the soccer
teamwork challenge as being about where the player with
the ball should pass or dribble, but at least as important
is where the agents position themselves when they do not
have the ball [10]. Positioning the players in a formation
requires the agents to coordinate with each other and deter-
mine where each agent should position itself on the field. In
our team, players’ roles are determined in three steps. First,
a full team formation is computed; second, each player com-
putes the best assignment of players to roles in this forma-
tion according to its own view of the world; and third, a
coordination mechanism is used to communicate and choose
among all players’ suggestions. In this section, we use the
terms (player) position and (player) role interchangeably.

6.1 Formation
In general, the team formation is determined by the ball

position on the field. As an example, Figure 5 depicts the
different role positions of the formation and their relative
offsets when the ball is at the center of the field. As can be
seen in the figure, the formation can be broken up into two
separate groups, an offensive and a defensive group. Within
the offensive group, the role positions on the field are deter-
mined by adding a specific offset to the ball’s coordinates.
The onBall role, assigned to the player closest to the ball,

Figure 5: Formation role positions.

is always based on where the ball is and is therefore never
given an offset. On either side of the ball we have two for-
ward roles, forwardRight and forwardLeft. Directly behind
the ball we have a stopper role as well as two additional
roles, wingLeft and wingRight, located behind and to either
side of the ball. When the ball is near the edge of the field
we adjust some of the roles’ offsets from the ball so as to
prevent them from moving outside the field of play.

Within the defensive group there are two roles, backLeft
and backRight. To determine their position on the field a
line is calculated between the center of our goal and the ball.
Both backs are placed along that line at specific offsets from
the end line. The goalie positions itself independently of its
teammates in order to always be in the best position to dive
and stop a shot on goal. If the goalie assumes the onBall
role, however, a third role is included within the defensive
group, the goalie role. A field player assigned to the goalie
role is told to stand in front of the center of the goal to cover
for the goalie going to the ball.

6.2 Assigning Agents to Roles
Given a desired team formation, we need to map players

to roles (target positions on the field). A näıve mapping
having each player permanently mapped to one of the roles
performs poorly due to the dynamic nature of the game.
With such static roles an agent assigned to a defensive role
may end up out of position and, without being able to switch
roles with a teammate in a better position to defend, allow
for the opponent to have a clear path to the goal. In this
section, we present a dynamic role assignment algorithm.
A role assignment algorithm can be thought of as imple-
menting a role assignment function, which takes as input
the state of the world, and outputs a one-to-one mapping
of players to roles. We start by defining three properties
that a role assignment function must satisfy (Section 6.2.1).
We then construct a role assignment function that satisfies
these properties (Section 6.2.2). Finally, we present a dy-
namic programming algorithm implementing this function
(Section 6.2.3).

6.2.1 Desired Properties of a Valid Role Assignment
Function

Before listing desired properties of a role assignment func-
tion we make a couple of assumptions. The first of these is
that no two agents and no two role positions occupy the
same position on the field. Secondly we assume that all
agents move toward fixed role positions along a straight line

Figure 6: Lowest lexicographical cost (shown with
arrows) to highest cost ordering of mappings from
agents (A1,A2,A3) to role positions (P1,P2,P3).
Each row represents the cost of a single mapping.

1:
√

2 (A2→P2),
√

2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)

3:
√

5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)

6: 3 (A1→P3),
√

2 (A2→P2),
√

2 (A3→P1)

at the same constant speed. While this assumption is not
always completely accurate, the omnidirectional walk de-
scribed in Section 4 gives a fair approximation of constant
speed movement along a straight line.

We call a role assignment function valid if it satisfies the
following three properties:

1. Minimizing longest distance - it minimizes the maxi-
mum distance from a player to target, with respect to
all possible mappings.

2. Avoiding collisions - agents do not collide with each
other as they move to their assigned positions.

3. Dynamically consistent - a role assignment function f
is dynamically consistent if, given a fixed set of tar-
get positions, if f outputs a mapping m of players to
targets at time T , and the players are moving towards
these targets, f would output m for every time t > T .

Based on our two given assumptions, the first two prop-
erties guarantee that the chosen role assignment is one that
minimizes the time to its completion, and the third prop-
erty guarantees that once a role assignment is decided, it is
unchanged as long as the target positions are not changed.

6.2.2 Constructing a Valid Role Assignment
Function

Let M be the set of all one-to-one mappings between play-
ers and roles. If the number of players is n, then there are n!
possible such mappings. Given a state of the world, specif-
ically n player positions and n target positions, let the cost
of a mapping m be the n-tuple of distances from each player
to its target, sorted in decreasing order. We can then sort all
the n! possible mappings based on their costs, where com-
paring two costs is done lexicographically. Sorted costs of
mappings from agents to role positions for a small example
are shown in Figure 6.

Denote the role assignment function that always outputs
the mapping with the lexicographically smallest cost as fv.
Here we provide an informal proof sketch that fv is a valid
role assignment; we provide a longer, more thorough deriva-
tion in a technical report [11].

Theorem 1. fv is a valid role assignment function.

It is trivial to see that fv minimizes the longest distance
traveled by any agent (Property 1) as the lexicographical or-
dering of distance tuples sorted in descending order ensures

this. If two agents in a mapping are to collide (Property
2) it can be shown, through the triangle inequality, that fv

will find a lower cost mapping as switching the two agents’
targets reduces the maximum distance either must travel.
Finally, as we assume all agents move toward their targets
at the same constant rate, the distance between any agent
and target will not decrease any faster than the distance
between an agent and the target it is assigned to. This
serves to preserve the lowest cost lexicographical ordering of
the chosen mapping by fv across all timesteps thereby pro-
viding dynamic consistency (Property 3). The next section
presents an algorithm that implements fv.

6.2.3 Dynamic Programming Algorithm for Role
Assignment

Clearly fv could be calculated using a brute force method
to compare all possible mappings. As there are 8 field play-
ers, this would require creating 8! = 40, 320 mappings, then
computing the cost of each of the mappings, and finally sort-
ing them lexicographically and choosing the smallest one.
However, as our agent acts in real time, and fv needs to
be computed during a decision cycle (0.02 seconds), a brute
force method is too computationally expensive. Therefore,
we present a dynamic programming implementation shown
in Algorithm 1 that is able to compute fv within the time
constraints imposed by the decision cycle’s length.

Algorithm 1 Dynamic programming implementation

1: HashMap bestRoleMap = ∅

2: Agents = {a1, ..., an}
3: Positions = {p1, ..., pn}
4: for k = 1 to n do

5: for each a in Agents do

6: S =
`

n−1

k−1

´

sets of k − 1 agents from Agents − {a}
7: for each s in S do

8: Mapping m0 = bestRoleMap[s]
9: Mapping m = (a → pk) ∪ mo

10: bestRoleMap[a ∪ s] = mincost(m, bestRoleMap[a ∪ s])
11: return bestRoleMap[Agents]

Theorem 2. Let A and P be sets of n agents and posi-
tions respectively. Denote the mapping m := fv(A, P). Let
m0 be a subset of m that maps a subset of agents A0 ⊂ A to
a subset of positions P0 ⊂ P . Then m0 is also the mapping
returned by fv(A0, P0).

A key recursive property of fv that allows us to exploit dy-
namic programming is expressed in Theorem 2. This prop-
erty stems from the fact that if within any subset of a map-
ping a lower cost mapping is found, then the cost of the com-
plete mapping can be reduced by augmenting the complete
mapping with that of the subset’s lower cost mapping. The
savings from using dynamic programming comes from only
evaluating mappings whose subset mappings are returned
by fv. This is accomplished in Algorithm 1 by iteratively
building up optimal mappings for position sets from {p1}
to {p1, ..., pn}, and using optimal mappings of k − 1 agents
to positions {p1, ..., pk−1} (line 8) as a base when construct-
ing each new mapping of k agents to positions {p1, ..., pk}
(line 9), before saving the lowest cost mapping for the cur-
rent set of k agents to positions {p1, ..., pk} (line 10).

As
`

n−1

k−1

´

agent subset mapping combinations are evalu-
ated for mappings of each agent assigned to the kth position,
the total number of mappings computed for each of the n
agents is thus equivalent to the sum of the n − 1 binomial

Table 1: Full game results, averaged over 100 games.
Each row corresponds to an agent with varying for-
mation and positioning systems as described in Sec-
tion 6.3. Entries show the goal difference from 10
minute games versus our agent using the dynamic
role positioning system and formation described in
Section 6. Values in parentheses are the standard
error.

Team Goal Difference

Defense .29 (.06)
Static .32 (.07)
AllBall .43 (.09)
Boxes 1.26 (.10)

coefficients. That is,

n
X

k=1

n − 1

k − 1

!

=

n−1
X

k=0

n − 1

k

!

= 2n−1

Therefore the total number of mappings that must be eval-
uated using our dynamic programming approach is n2n−1.
For n = 8 we thus only have to evaluate 1024 mappings
which is very manageable.

6.3 Formation Evaluation
To test how our formation and role positioning system

affects the team’s performance we created a number of teams
to play against by modifying the positioning system of UT
Austin Villa that was used in the competition.

AllBall No formations and every agent except for the goalie
just goes to the ball.

Static Each role is statically assigned to an agent based on
its uniform number.

Defense Defensive formation in which only two agents are
in the offensive group (one on the ball and the other
directly behind the ball)

Boxes Field is divided into fixed boxes and each agent is
dynamically assigned to a home position in one of the
boxes. Similar to the positioning system used in [14].

Results of UT Austin Villa playing against these modified
versions of itself are shown in Table 1. We see that a very
defensive formation used by the Defense agent hurts per-
formance a little likely because the best defense is a good
offense. Dynamically assigning roles is better than statically
fixing them as is clear in the degradation in performance of
the Static agent. Having and maintaining formations is also
important which is evident by the positive goal difference
recorded when playing against the AllBall agent. The poor
performance of the Boxes agent, in which the positions on
the field are somewhat static and not calculated as rela-
tive offsets to the ball, underscores the importance of being
around the ball and adjusting positions on the field based
on the current state of the game.

7. COMPETITION RESULTS
UT Austin Villa 2011 won all 24 of its games during the

RoboCup 2011 3D simulation competition, scoring 136 goals
and conceding none. Even so, competitions of this sort do
not consist of enough games to validate that any team is
better than another by a statistically significant margin. In

Table 2: Full game results, averaged over 100
games. Each row corresponds to an agent from the
RoboCup 2011 competition, with its rank therein
achieved. Entries show the goal difference from 10
minute games versus our final optimized agent. Val-
ues in parentheses are the standard error.

Rank Team Goal Difference

3 apollo3d 1.45 (.11)
5-8 boldhearts 2.00 (0.11)
5-8 robocanes 2.40 (0.10)
2 cit3d 3.33 (0.12)

5-8 fcportugal3d 3.75 (0.11)
9-12 magmaoffenburg 4.77 (0.12)
9-12 oxblue 4.83 (0.10)

4 kylinsky 5.52 (0.14)
9-12 dreamwing3d 6.22 (0.13)
5-8 seuredsun 6.79 (0.13)

13-18 karachikoalas 6.79 (0.09)
9-12 beestanbul 7.12 (0.11)
13-18 nexus3d 7.35 (0.13)
13-18 hfutengine3d 7.37 (0.13)
13-18 futk3d 7.90 (0.10)
13-18 naoteamhumboldt 8.13 (0.12)
19-22 nomofc 10.14 (0.09)
13-18 kaveh/rail 10.25 (0.10)
19-22 bahia3d 11.01 (0.11)
19-22 l3msim 11.16 (0.11)
19-22 farzanegan 11.23 (0.12)

order to validate the results of the competition, in Table 2 we
show the performance of our team when playing 100 games
against each of the other 21 teams’ released binaries from
the competition. UT Austin Villa won by at least an av-
erage goal difference of 1.45 against every team. Further-
more, of these 2100 games played to generate the data for
Table 2, our agent won all but 21 of them which ended in
ties (no losses). The few ties were all against three of the
better teams: apollo3d, boldhearts, and robocanes. We can
therefore conclude that UT Austin Villa was the rightful
champion of the competition.

While there were multiple factors and components that
contributed to the success of UT Austin Villa in winning
the competition, its omnidirectional walk was the one which
proved to be the most crucial. When switching out the om-
nidirectional walk developed for the 2011 competition with
the fixed directional walk used in the 2010 competition, and
described in [15], the team did not fare nearly as well. The
agent with the previous year’s walk had a negative aver-
age goal differential against nine of the teams from the 2011
competition, suggesting a probable tenth place finish. Also
this agent lost to our 2011 agent by an average of 6.32 goals
across 100 games with a standard error of .13

8. SUMMARY AND DISCUSSION
We have presented the architecture and key components

of the UT Austin Villa 2011 RoboCup 3D simulation league
team. These key components include an omnidirectional
walk engine and associated walk parameter optimization
framework, an inverse kinematics based kicking architecture,
and a dynamic role and formation positioning system.

Our ongoing research agenda includes applying what we
have learned in simulation to the actual Nao robots which we
use to compete in the Standard Platform league of RoboCup.

For next year’s competition we expect to better integrate
and utilize our kicking system in order to improve the per-
formance of the team. Additionally, we would like to learn
and add further parameter sets to our team’s walk engine for
important subtasks such as goalie positioning to get ready
to block a shot.

Acknowledgments
This work has taken place in the Learning Agents Research
Group (LARG) at UT Austin. Thanks especially to UT
Austin Villa 2011 team members Michael Quinlan, Nick
Collins, and Art Richards. Also thanks to Yinon Bentor
and Suyog Dutt Jain for contributions to early versions of
the optimization framework employed by the team. LARG
research is supported in part by NSF (IIS-0917122), ONR
(N00014-09-1-0658), and the FHWA (DTFH61-07-H-00030).
Patrick MacAlpine and Samuel Barrett are supported by
NDSEG fellowships.

9. REFERENCES
[1] Aldebaran Humanoid Robot Nao.

http://www.aldebaran-robotics.com/eng/.
[2] Open Dynamics Engine. http://www.ode.org/.
[3] RoboCup. http://www.robocup.org/.
[4] SimSpark. http://simspark.sourceforge.net/.
[5] E. Angel. Interactive Computer Graphics. Pearson

Education, Inc., 5th edition, 2009.
[6] S. Behnke, M. Schreiber, J. Stückler, R. Renner, and

H. Strasdat. See, walk, and kick: Humanoid robots
start to play soccer. In Proc. of the 6th IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids 2006),
pages 497–503. IEEE, 2006.

[7] R. Diankov and J. Kuffner. Openrave: A planning
architecture for autonomous robotics. Technical
Report CMU-RI-TR-08-34, Robotics Institute,
Pittsburgh, PA, July 2008.

[8] C. Graf, A. Härtl, T. Röfer, and T. Laue. A robust
closed-loop gait for the standard platform league
humanoid. In Proc. of the 4th Workshop on Humanoid
Soccer Robots in conjunction with the 2009 IEEE-RAS
Int. Conf. on Humanoid Robots, pages 30 – 37, 2009.

[9] N. Hansen. The CMA Evolution Strategy: A Tutorial,
January 2009.
http://www.lri.fr/~hansen/cmatutorial.pdf.

[10] S. Kalyanakrishnan and P. Stone. Learning
complementary multiagent behaviors: A case study. In
RoboCup 2009: Robot Soccer World Cup XIII, pages
153–165. Springer, 2010.

[11] P. MacAlpine, D. Urieli, S. Barrett,
S. Kalyanakrishnan, F. Barrera, A. Lopez-Mobilia,
N. Ştiurcă, V. Vu, and P. Stone. UT Austin Villa 2011
3D Simulation Team report. Technical Report
AI11-10, The Univ. of Texas at Austin, Dept. of
Computer Science, AI Laboratory, December 2011.

[12] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange.
Reinforcement learning for robot soccer. Autonomous
Robots, 27(1):55–73, 2009.

[13] P. Stone. Layered Learning in Multi-Agent Systems.
PhD thesis, School of Computer Science, Carnegie
Mellon Univ., Pittsburgh, PA, USA, December 1998.

[14] P. Stone and M. Veloso. Task decomposition, dynamic
role assignment, and low-bandwidth communication
for real-time strategic teamwork. Artificial
Intelligence, 110(2):241–273, June 1999.

[15] D. Urieli, P. MacAlpine, S. Kalyanakrishnan,
Y. Bentor, and P. Stone. On optimizing
interdependent skills: A case study in simulated 3D
humanoid robot soccer. In Proc. of the Tenth Int.
Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2011), pages 769–776, May 2011.

