
In Proc. ICC 2021, pp. 75--80, IEEE, 2021.

Optimising a Real-time Scheduler for Indian Railway Lines by Policy Search

Rohit Prasad, Harshad Khadilkar, and Shivaram Kalyanakrishnan

Abstract— The Indian railway network carries the largest
number of passengers in the world, with over 8.4 billion trans-
ported in 2018, in addition to 1.2 billion tonnes of freight [1].
Nonetheless, the network has only about a tenth the “track-
length per passenger” of the U.S., and half that of China [2].
This severe limitation of infrastructure, coupled with variability
and heterogeneity in operations, raises significant challenges in
scheduling. In this paper, we describe a policy search approach
to decide arrival/departure times and track allocations for
trains such that the resource and operating constraints of the
railway line are satisfied, while the priority-weighted departure
delay (PWDD) is minimised. We evaluate our approach on
three large railway lines from the Indian network. We observe
significant reductions of PWDD over traditional heuristics and
a solution based on reinforcement learning.

I. INTRODUCTION

The Indian railway network has been vital to the growth of
the Indian economy, transporting many billions of passengers
and tonnes of freight every year [1]. Yet, the operations of
the network remain confounded by many factors. Foremost
is the significant shortage of infrastructure—only about half
the length of track per passenger as China’s and a tenth that
of the U.S. [2]. With such a high density of trains, delays can
have severe cascading effects. The long distances of travel,
the prevalence of non-periodic trains and multiple priority
classes, discordant decision-making within sub-networks, all
create the need for real-time replanning of schedules [3].
Static fixes such as “allowances” to particular trains often
have unintended effects on the rest of the network [4].

Delay in a railway context is typically defined as the
difference between actual and scheduled arrival/departure
times for a train at a halting station. Delays have potentially
large economic costs [5]. To some extent, primary delays
(caused by equipment failures) are unavoidable. However,
one can aim to reduce the secondary delays caused by knock-
on effects following an instance of primary delay [3].

Most railway systems operate with reference to a
timetable, which is a conflict-free, ideal operating schedule
for all trains in the system. Dispatchers observe operations in
real-time, and are tasked with rescheduling trains whenever
deviations from the timetable render the planned operations
infeasible. Each dispatcher is typically responsible for a
unique portion of the network (a string of stations on a
single railway line, or a smaller number of stations around
an intersection) [6]. Given the short time available and
limited human cognitive ability, dispatchers usually make
rescheduling decisions based on thumb rules or heuristics.

RP was with the Indian Institute of Technology Bombay while carrying
out this work. HK is with TCS Research. SK (corresponding author, e-mail:
shivaram@cse.iitb.ac.in) is with the Indian Institute of Technology Bombay.

This approach leaves significant room for improvement when
the performance of the entire network is taken into account.

In principle, the railway scheduling problem can be for-
mulated as a mixed-integer linear program, which one can
imagine solving using exact techniques. However, short
reaction times for replanning, coupled with the NP-hardness
of the problem [7] render this option infeasible in practice.
On-line search techniques face a similar challenge since the
search spaces are large and planning time is short [8], [9].
Computationally intensive methods might be suitable for
timetable generation, but are not for real-time application.

Recent approaches using Reinforcement Learning
(RL) [10] have produced better solutions than traditional
heuristics. RL is a feasible approach because the
computational effort of training is expended off-line,
while the on-line effort is lightweight. RL algorithms such
as Q-learning are designed assuming Markovian dynamics
over the state variables used for decision making. For
an application such as railway scheduling, with hundreds
of trains and resources, it is virtually impossible to
represent full state information in a form that is amenable to
generalisation and learning. Instead, it is typical for designers
to construct “compact, yet useful” representations—whose
efficacy is ultimately validated empirically.

In this paper, we propose a policy search (PS) approach
to railway scheduling. PS may be viewed as a form of black
box optimisation, wherein a search is performed over the
parameters of a policy to maximise a specified objective
function. In our solution, a key element of the scheduler is
represented as a neural network, whose weights are treated
as policy parameters. Several factors motivate the use of PS
for railway scheduling.

1) PS methods directly optimise the objective function
(priority-weighted departure delay in our case). In con-
trast, value-based RL methods such as Q-learning [10]
approximate long-term utilities; even small errors can
degrade performance on tasks with long horizons.

2) Since the number of states in a railway network
grows exponentially with the number of trains, realistic
schedulers are constrained to make decisions based on
only a small amount of “local” information. It is well-
known that PS can outperform value-based RL when
the environment is non-Markovian [11].

3) PS methods allow for encoding various forms of do-
main knowledge in a natural way. We open up only a
small number of parameters (≈ 300) for optimisation,
thereby ensuring efficient search.

4) Like RL, the output of PS is also an associative map-
ping from state to action, which can be used on-line in



real-time, taking only few milliseconds to generate a
revised timetable. The bulk of the computational effort
is in off-line training, where, too, PS can enjoy the
benefit of parallelisation. Our largest real-world test
case (see Section VI) requires about two hours of
training, when run on 50 machines.

5) Most importantly, we obtain significantly better so-
lutions (lower delays) using PS; Figure 1 shows a
comparison with RL on three Indian railway lines.
These gains are our strongest reason for proposing PS
as the method of choice for railway scheduling.

As the RL approach of Khadilkar [10] represents the state-
of-the-art (our own experiments demonstrate that it outper-
forms several preceding approaches), we present our solution
specifically as a comparison with RL. We use the same
state and action space definitions [10]. However, instead of
indirectly deriving a policy from an action value function, we
directly search the policy space using the “covariance matrix
adaptation evolution strategy” (CMA-ES) [12], a popular
algorithm for black box optimisation.

We review related work on railway scheduling (Section II)
before formalising the task in Section III. In Section IV we
describe our contribution based on domain knowledge to
avoid deadlocks and to encode an effective policy template.
We describe our PS solution in Section V, and present results
in Section VI. We conclude with a discussion in Section VII.

II. RELATED WORK

A review of literature on railway scheduling shows four
broad approaches [13]. First, there are studies that map
the problem to job shop scheduling [7], and propose a
mixed-integer linear programming (MILP) solution. They
model arrival and departure times as continuous decision
variables, and use binary indicator variables for resource al-
location [14]. While MILP solvers are feasible for developing
reference timetables (a one-time exercise), they are not useful
for real-time application because of their high computational
complexity and slow response.

A second popular approach is that of Alternative Graphs
(AG), originally used for the no-store (or blocking) job shop
scheduling problem [15], [16]. However, the solutions using

0 20 40 60 80 100

PS

0

20

40

60

80

100

R
L

KRCL

Ajmer

Kanpur

Fig. 1: Scatterplot of normalised priority-weighted departure
delay obtained by PS and RL on 100 “perturbed” timetables
for three railway lines: KRCL, Ajmer, and Kanpur. Detailed
results and explanations are given in Section VI.

AG have the same challenges with mathematical complexity
as exact techniques.

Third, many practical implementations use heuristics
specifically designed for railway scheduling and reschedul-
ing. The “travel advance heuristic” (TAH) [17] solves the
problem of scheduling by moving one train at a time, and
backtracking in case of conflicts. To reduce the amount of
backtracking, Khadilkar [18] proposes a conflict-free logic
for choosing the order of train movements. If the initial
state satisfies certain conditions, it is shown that scheduling
can be completed without encountering any deadlock or
backtracking. While feasible for use in real-time applications,
TAH is not able to adapt to the nuances of specific problem
instances (see Section VI).

Finally, recent studies have proposed the use of reinforce-
ment learning (RL) for the real-time scheduling problem.
Šemrov et al. [19] use Q-learning to learn a policy for railway
scheduling. However, the state space becomes unmanageably
large for realistic networks. To circumvent this combinatorial
growth, Khadilkar [10] defines the state space of a train in
terms of its local resources: a fixed number of resources
behind and in front of the train. In this representation,
the number of states is independent of the actual size of
the railway network—convenient to scale up and transfer.
Whereas Khadilkar [10] implements the tabular version of
Q-learning, we apply PS with the same state representation.

PS approaches such as genetic algorithms have been ap-
plied to many problems in transportation, such as minimising
transfer time in bus transit [20] and conflict resolution during
re-scheduling [21]. Some formulations simultaneously opti-
mise multiple objectives, such as energy and travel time [22].

III. TASK SPECIFICATION

Like Khadilkar [10], we focus on the problem of
scheduling in railway lines, implying there are no junctions
or branches in the train routes. However, trains can begin
and end their journeys at any station, as long as they move
in a single direction (either left-to-right or right-to-left as
shown in Figure 2). The initial state can be an empty line (no
trains pre-existing) or a predefined state (current locations
and directions of trains). The input to our simulation is a
specification of the infrastructure and schedule constraints.

Infrastructure. The physical infrastructure of a railway line
consists of two types of resources: stations, where trains can
halt, and sections, on which trains move from one station
to the next. Each station or section (resource) contains one
or more parallel tracks, each of which can be occupied by

Fig. 2: Illustrative railway line [10] with 8 trains and 5
stations. Explanations are in the text.



at most one train at any time. For simplicity, we assume
that any train is allowed to occupy any track in a resource.
Manually operated lines typically designate separate tracks
for the two directions of movement; however, this limits the
solution space and could lead to suboptimal solutions. The
number of tracks in a resource (hence the number of trains
that the resource can hold simultaneously) is its capacity.
The example in Figure 2 has 5 stations and 4 sections.
There are 8 trains shown, 4 at each of the terminal stations.
Trains starting at Alpha move towards the right, and those
at Echo towards the left. Each station on the line contains
four parallel tracks, while sections have a single track each.

Schedule constraints. Each simulation episode begins
with a predefined initial state. For each train, we assume
there exists an ideal timetable giving its desired arrival and
departure times for each station on its journey (departure
time from a station is equal to the arrival time at the next
section). Additionally, we assume that for each train, we
are given the minimum traversal time on each section,
the minimum halt time at each station, and a “priority
level”. The two former quantities define constraints on the
schedule, while priority feeds into the objective function.

Running the simulator. The overall flow of control in our
simulator is shown in Figure 3. The simulator retains a list of
upcoming events, one for each train. Each event corresponds
to the time at which the next decision for the train will be
needed. If the train has yet to start its journey, this time will
be the desired arrival time at its first station; if the train is
at a station, it is the earliest feasible departure time from
that station; and if the train is running in a section, it is the
earliest feasible arrival time at the next station. The “earliest
feasible” time is the maximum of the ideal (timetable) time
and the value computed by adding the minimum halt (or
traversal) duration to the last known arrival (or departure).
This definition ensures that minimum halt time and section
traversal time constraints are respected, and that trains do
not arrive or depart earlier than their scheduled times.

The simulation clock is set to the earliest time in the list
of events. At each step, the set of trains with events at the
current clock time is retrieved. If there is more than one train

List of 
train 

events

Set time to
earliest

event time

Sort trains by 
resource occupancy 

& priority

Pick next train

Compute decision 
& update event list

Yes No

Yes

No
More 
events 
at this 
time?

Empty 
or 

Time 
out?

Start

Stop

Fig. 3: Flowchart of simulation logic. The shaded box is
explained in Section IV.

in the set, the trains are first sorted according to the residual
capacities (free tracks) in their current resources, followed
by their priorities. The sorting order is based on a deadlock-
avoidance criterion proposed by Khadilkar [18]. Then the
trains are processed sequentially as per the shaded box in
Figure 3 (described in Section IV). For trains that choose to
wait in the current resource, the event time is incremented by
1 unit. For trains that choose to move to the next resource,
updates are as per the minimum halt/traversal durations.

A constraint known as headway (minimum time gap
between the departure of one train from a resource and
the arrival of the next train into the same resource) is
implemented by assuming that each train occupies one
track on both resources (current and new) for 1 time unit (a
user-defined parameter). In reality, the headway constraint
is imposed by the fact that trains move carriage-by-carriage
onto the next track. When a train completes its journey
(departure from last station on its route), it is removed from
the event list. The episode ends when the event list is empty,
or, should two or more trains get deadlocked (no further
moves possible), a predefined time threshold is crossed.

Objective function. For a given scheduling task, the objec-
tive to be minimised is the average of the priority-weighted
delay of departure time for each train at each station in
its journey—“PWDD” in short. This definition has been
previously used in the literature [10], [21]. A delay is defined
as the difference between the scheduled departure time by
the algorithm and the desired departure time in the initial
timetable, with a lower bound of 0. Formally,

PWDD =
1

Ndep

∑
r,t

δr,t
pt
, (1)

where Ndep is the total number of departures in the timetable,
δr,t is the delay for train t at resource (or station) r, and
pt ∈ {1, 2, . . . , P} is the priority of train t (note that pt = 1
contributes the most, and has the greatest priority).

IV. LOGIC FOR INDIVIDUAL TRAIN DECISIONS

The simulation logic described in the previous section is
identical for all the algorithms evaluated in this study: what
distinguishes the algorithms is the shaded box in Figure 3.
This module computes a binary decision for any given input
train (as mentioned earlier, trains are chosen according to
the logic of Khadilkar [18]): whether to move it to the next
resource, or to wait in the current resource. In our proposed
solution, the first step is a novel preprocessing scheme
to minimise the incidence of deadlocks. This carefully-
designed scheme is a helping hand based on our domain
knowledge to ease the subsequent step of optimisation. We
reuse the definition of state by Khadilkar [10] in the second
step, but thereafter apply PS, rather than RL (see Section V).

Step 1: Preprocessing for deadlock avoidance. Since trains
cannot move backwards except in very rare instances, a
significant risk in railway lines is the possibility of deadlock
[18], [23]. This condition occurs when trains heading in



opposite directions occupy tracks on neighbouring resources
in such a way that none of the trains can move forward. Since
station capacities are invariably higher than section capaci-
ties, sections usually form the bottlenecks. We introduce a
simple heuristic to ensure that any train moving into a section
has a feasible future move (into the next station). We look
at the next station on a train’s journey, which is assumed to
contain Nr tracks. If the next station (1) already holds Nr

trains, or (2) holds more than (Nr− 2) trains heading in the
same direction, a decision of wait is forced. Figure 4 shows
four illustrative scenarios related to deadlocks.

Our logic is based on the concept of “legal states”,
which ensure that two sets of trains heading in opposite
directions have a feasible set of moves to completely pass
each other [23]. Our look-ahead of only one station does not
guarantee deadlock avoidance, but it ensures that deadlocks
are sufficiently rare, so PS will mostly encounter useful
policies. It can be shown that a stronger assumption (such
as reserving one track for left-to-right traffic and another
one for right-to-left at each station) will always result in
legal states, thereby guaranteeing deadlock-free operation.
However, this approach results in more conservative
schedules, implying larger values of PWDD. We include
this logic in our comparisons in Section VI.

Step 2: Computing move/wait decisions. If the preprocess-
ing logic in Step 1 is cleared, we refer to an optimised
policy (Section V) to decide whether the train should move
to the next resource or wait in the current resource for one
time step. Our policy is represented by a neural network,
with the input (states) and output (actions) as defined by
Khadilkar [10]. For each train, the state is formed by
concatenating its given priority code and a vector indicating
the occupancy of a fixed number of resources in the local
neighbourhood. We assume that a total of lb resources
behind the train (opposite to its direction of movement)
and lf resources in front (in direction of movement) are
included, along with the currently occupied resource (see
Figure 5). This formulation results in a state vector consisting
of lb+ lf +1 elements for resources and one for the priority.
We use lb = 2 and lf = 6, as does Khadilkar [10], finding
no significant improvement by varying these parameters.

The occupancy values in the state vector, as provided
to the decision-making policy, indicate the availability (or

(a) (b) (c) (d)

Fig. 4: Preprocessing for avoiding deadlocks. Two stations
with a single track section in between are shown. A solid
black triangle indicates the train for which a decision is to
be taken, and the tapering portion of the triangles indicate
direction of movement. Moving in scenario (d) is not allowed
because no track is available in the next resource.

otherwise) of free tracks in corresponding resources. For
each resource r, status Sr takes one of R values from
{0, 1, 2, . . . , R − 1}, indicating the number of free tracks.
Let the number of tracks in a resource r be Nr, the number
of tracks occupied by trains converging with the current train
(moving in the opposite direction) be Tr,c, and the number
of tracks occupied by trains diverging from the current train
(moving in the same direction) be Tr,d. As stated earlier, we
assume only one train can occupy a track at a time, implying
Tr,c + Tr,d ≤ Nr. The status Sr is defined as

Sr = R− 1−min(R− 1, bNr − wcTr,c − wdTr,dc),

where wc and wd are externally-defined weights. Note that R
and Sr together define a status variable which takes only R
unique integer values, resulting in a state space of fixed size.
The value of R can be chosen based on the largest number
of tracks that occurs commonly among the resources; any
resources with an exceptionally large number of tracks are
unlikely to be bottlenecks. Khadilkar [10], who uses tabular
values, chooses R based on the acceptable number of unique
states. If each resource takes R unique status values and
there are (lb + lf + 1) resources in the state vector, then
the number of unique resource states is Rlb+lf+1, a finite
and invariant number regardless of the size of railway line.
Figure 5 shows an example of mapping occupancy to status
value of local resources, keeping wc = wd = 1 for simplicity
of illustration. Our implementation uses wc = 0.9, wd = 1,
R = 3, the same values used by Khadilkar [10]. The de-
emphasis on converging trains prompts algorithms to prefer
passing trains traveling in the opposite direction (required
for schedule completion) as compared to trains moving in
the same direction (which may lead to deadlock [23]).

As mentioned earlier, the action corresponding to any
given state is binary: one of {wait, move}. Once a train de-
cides to move, the actual track assignment is made according
to a first-feasible logic. For example, for trains heading right
in Figure 5, we assign the first free track looking from the
top down. For trains heading left, we assign the first free
track when searched from the bottom up.

Fairly Empty

Nearly Full

Totally Full

Horizon considered for state formation

Current
resource

0 0 0 0112 2 21

Current
train

Priority of 
current train

State vector: 
(1,0,2,0,1,0,1,0,2,2)

Fig. 5: State vector formation for a train using local re-
sources, with lb = 2, lf = 6, wc = wd = 1, R = 3. Values
increase with occupancy, with 0 being ‘fairly empty’ and 2
being ‘totally full’.



V. TRAINING WITH POLICY SEARCH

In this section, we describe our main innovation: the policy
representation used for making move/wait decisions for each
train, and its optimisation using PS. With the aim of realising
a non-linear, yet compact mapping from states to action
probabilities, we represent our policy as a neural network
(see Figure 6). With parameter values lb = 2 and lf = 6
as described earlier, the input size is lb + lf + 2 = 10.
Thereafter follow three fully connected hidden layers of 10
neurons each, with tanh activation. The output is a softmax
distribution over the two actions. This architecture results in
a total of 352 parameters to optimise.

In principle, we can use any form of local search (such
as hill-climbing and simulated annealing) for optimising
our policy weights. Rather than systematically assess the
many available options, we go with the covariance matrix
adaptation evolution strategy (CMA-ES) [12], which has
yielded impressive results on tasks as diverse as hydro-
engineering [24] and robot soccer [25]. Moreover, CMA-ES
has ready implementations and effective default parameters
(such as selection ratios and step sizes, which we leave
unchanged). CMA-ES is an evolutionary algorithm that ran-
domly generates a population of solutions around an initial
seed, then moves the generating distribution in a direction
maximising fitness. We initialise it with the zero vector and
a standard deviation of 0.5 along each dimension.

Whereas Q-learning [10] performs learning updates based
on each state-to-next-state transition, our proposed PS ap-
proach considers only a single feedback signal per policy:
PWDD given in (1) aggregated at the end of each episode
across all trains. We believe that this reduces the noise in
feedback produced by tracking delays for individual trains,
since states are only partially observable with the “local”
representation. The population size is 51 for all experiments,
and the fitness of each individual (a stochastic policy) is the
average of 10 simulation runs. Training is stopped when the
population mean remains within a small neighbourhood over
several generations. The best-performing individual from
the last 50 generations is chosen winner. Training is done
on a 50-node cluster of Intel Core i5-4690/3.50GHz CPU
machines, each with 2 cores and 8 GB of RAM.

VI. RESULTS

We evaluate our PS method on the same railway lines
used by Khadilkar [10] to benchmark his RL approach.
Recall from Section III that a task specification comprises
(1) infrastructure data describing the complete topology of
the network (stations, sections, tracks), and (2) schedule
constraints on the journey of each train—stations, arrival
time, departure time, priority, minimum halt time at each
station, and minimum traversal time on each section. The
data set contains two synthetic instances—SYN-1 and SYN-
2 (denoted “HYP-2” and “HYP-3” by Khadilkar [10])—as
well as three real lines from the Indian railway network. The
latter are (1) 3 days of scheduled operations in 2014 on Roha-
Tokur in western India, referred to as KRCL, (2) 3 days of
scheduled operation in 2014 on Kanpur-Tundla in northern

Fig. 6: Policy as a 3-hidden-layer neural network.

India, referred to as Kanpur, and (3) 7 days of scheduled
operation in 2014 on Ajmer-Palanpur in northwestern India,
referred to as Ajmer. The last two instances include sections
with more than one track between stations, while the first
three instances only contain single (bidirectional) tracks.
The real-world instances are of extended duration because
disturbances in the timetable propagate for a long time in
congested lines. We wish to investigate whether the schedule
is stable (the line returns to 0-delay operation in a finite
amount of time) or unstable.

Table I summarises this data set and also provides our
results. The number of “events” includes one for each train
at each resource (stations and sections) on its route. We verify
that our PS method (based on CMA-ES) steadily decreases
the objective function (PWDD) over generations. To ensure
that the method does not “overfit” to the given timetable, we
test it on 100 “perturbed” timetables, created by adding noise
drawn uniformly at random from [−30, 30] minutes to the
original timetables. The same 100 timetables (not used for
training) are used to evaluate all the algorithms. We compare
PS with the Q-learning (RL) algorithm of Khadilkar [10], as
well as the “fixed-priority” and “criticial first” variants of the
travel advance heuristic described in Section II. We denote
these variants TAH-FP [17] and TAH-CF [18], respectively.
Table I compares the PWDD values of these algorithms. Also
included in the table are three other baselines: (1) a naı̈ve
greedy approach that moves the train whenever a track is free
in the next resource; (2) a version of the previous method
that additionally uses the preprocessing logic from Section
III, reserving one track for each direction when possible, but
always choosing to move when Step 1 is cleared; and (3)
the “path-to-destination” (PTD) strategy [23], under which a
train is moved only if there is a free track in all the resources
ahead of it until its final destination.

Foremost, we observe that PS yields the lowest PWDD
values among all algorithms and lines. All algorithms except
for PS, RL, and PTD (which is guaranteed deadlock-free)
result in deadlocks for at least a few instances (average
delays reported for these algorithms exclude the deadlocked
instances). The table also reports the number of instances on
which PS resulted in a lower delay than RL. We notice that
as the traffic density increases, PS appears to offer a greater
advantage. This trend is also visible in Figure 1.



Line Stations Trains Events Span PS Win/Lose/Tie RL TAH-FP TAH-CF Naı̈ve
greedy

Greedy
with preproc. PTD

SYN-1 11 60 1320 4 hours 4.28 (0) 91 / 9 / 0 4.78 (0) 4.58 (0) 5.93 (0) 11.16 (2) 4.35 (0) 714.00 (0)
SYN-2 11 120 2640 7 hours 15.50 (0) 100 / 0 / 0 18.54 (0) 61.89 (97) 140.14 (95) - (100) 16.35 (0) 2003.98 (0)
KRCL 59 85 5418 3 days 42.34 (0) 66 / 34 / 0 43.04 (0) 46.41 (8) 47.02 (0) - (100) 42.40 (0) 4714.08 (0)
Ajmer 52 444 26258 7 days 3.92 (0) 100 / 0 / 0 4.65 (0) 10.76 (3) 5.99 (0) 9.25 (76) 3.99 (3) 8304.84 (0)
Kanpur 27 190 7716 3 days 1.54 (0) 87 / 13 / 0 1.66 (0) 2.19 (0) 2.28 (0) 1.85 (0) 1.54 (0) 313.60 (0)

TABLE I: For each of five railway lines, columns 2–5 give properties of the lines; the remaining columns (except 7) show
PWDD (in minutes) averaged over 100 perturbed versions of the timetable used for training. Accompanying in parentheses
is the number of deadlocks resulting from these runs. The win/lose/tie data in column 7 is for PS vs. RL.

VII. CONCLUSION

We propose a PS approach to optimise a real-time sched-
uler for railway lines. Our founding hypothesis—that such an
approach could outperform a recent one based on RL [10],
as well as established heuristics—is validated on three large
lines in the Indian railway network. Offering significant
reductions in delay, while still being able to recompute
schedules in real time, our approach bears promise to assist
(and gradually decrease) human decision making in the
systems currently deployed on these lines. Indeed the KRCL,
Kanpur, and Ajmer data sets were sourced directly from
Indian railway authorities, so we may expect the divergence
between simulation and reality to be relatively minor. The
next step would be to pilot our approach on an actual railway
line, which must begin with instrumentation to provide state
information as a live feed.

ACKNOWLEDGMENTS

The authors are grateful to Shripad Salsingikar from TCS
for helping procure the real-world data sets used in this paper,
and to Abhiram Ranade from IIT Bombay for providing
useful insights on our algorithm. Shivaram Kalyanakrishnan
was partially supported by SERB grant ECR/2017/002479.

REFERENCES

[1] Ministry of Railways. Indian railways year book 2018–
19. Technical report, Government of India, 2019. URL
https://www.indianrailways.gov.in/railwayboard/uploads/directorate/
stat econ/Year Book/Year%20Book%202018-19-English.pdf.

[2] International Union of Railways. Railway statistics synopsis
2019. Technical report, 2019. URL https://web.archive.org/web/
20190805180138/https://uic.org/IMG/pdf/uic-statistics-synopsis-
2019.pdf.

[3] H. Khadilkar. Data-enabled stochastic modeling for evaluating
schedule robustness of railway networks. Transportation Science,
51(4):1161–1176, 2016.

[4] Narayan Rangaraj and Madhu Belur. A concept note for railway
timetabling to rationalize and improve capacity utilization. Technical
report, 2018. URL http://niti.gov.in/sites/default/files/2019-
01/Report%20on%20A%20concept%20note%20for%20railway%
20timetabling%20to%20rationalize%20and%20improve%
20capacity%20utilization 0.pdf.

[5] J. Preston, G. Wall, R. Batley, J. N. Ibañez, and J. Shires. Impact
of delays on passenger train services: Evidence from Great Britain.
Trans. Res. Record, 2117(1):14–23, 2009.

[6] E. M. Roth, N. Malsch, and J. Multer. Understanding how train dis-
patchers manage and control trains: results of a cognitive task analysis.
Technical report, United States Federal Railroad Administration, 2001.
URL https://rosap.ntl.bts.gov/view/dot/8741/dot 8741 DS1.pdf.

[7] A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound
algorithm for scheduling trains in a railway network. European Journal
of Operational Research, 183(2):643–657, 2007.

[8] P. Tormos, A. Lova, F. Barber, L. Ingolotti, M. Abril, and M. A. Salido.
A genetic algorithm for railway scheduling problems. In Metaheuris-
tics for scheduling in industrial and manufacturing applications, pages
255–276. Springer, 2008.

[9] K. Nitisiri, M. Gen, and H. Ohwada. A parallel multi-objective
genetic algorithm with learning based mutation for railway scheduling.
Computers & Industrial Engineering, 130:381–394, 2019.

[10] H. Khadilkar. A scalable reinforcement learning algorithm for schedul-
ing railway lines. IEEE Transactions on Intelligent Transportation
Systems, 20(2):727–736, Feb 2019.

[11] S. Whiteson and P. Stone. Evolutionary function approximation
for reinforcement learning. Journal of Machine Learning Research,
7(May):877–917, 2006.

[12] Nikolaus Hansen. The CMA evolution strategy: A tutorial. CoRR,
abs/1604.00772, 2016.

[13] Wei Fang, Shengxiang Yang, and Xin Yao. A survey on problem
models and solution approaches to rescheduling in railway networks.
IEEE Transactions on Intelligent Transportation Systems, 16(6):2997–
3016, 2015.

[14] P. Pellegrini, G. Marlière, and J. Rodriguez. Real time railway traffic
management modeling track-circuits. In Proc. ATOMOS 2012, pages
23–34. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012.

[15] A. Mascis and D. Pacciarelli. Job-shop scheduling with blocking
and no-wait constraints. European Journal of Operational Research,
143(3):498–517, 2002.

[16] M. Samà, A. D’Ariano, F. Corman, and D. Pacciarelli. A variable
neighbourhood search for fast train scheduling and routing during
disturbed railway traffic situations. Computers & Operations Research,
78:480–499, 2017.

[17] S. Sinha, S. Salsingikar, and S. SenGupta. An iterative bi-level
hierarchical approach for train scheduling. Journal of Rail Transport
Planning & Management, 6(3):183–199, 2016.

[18] H. Khadilkar. Scheduling of vehicle movement in resource-constrained
transportation networks using a capacity-aware heuristic. In Proc.
American Control Conference 2017, pages 5617–5622. IEEE, 2017.

[19] D. Šemrov, R. Marsetič, M. Žura, L. Todorovski, and A. Srdic.
Reinforcement learning approach for train rescheduling on a single-
track railway. Transportation Research Part B: Methodological,
86:250–267, 2016.

[20] F. Cevallos and F. Zhao. Minimizing transfer times in public transit
network with genetic algorithm. Transportation Research Record:
Journal of the Transportation Research Board, (1971):74–79, 2006.

[21] S. Dündar and İ. Şahin. Train re-scheduling with genetic algorithms
and artificial neural networks for single-track railways. Transportation
Research Part C: Emerging Technologies, 27:1–15, 2013.

[22] Y. Huang, L. Yang, T. Tang, F. Cao, and Z. Gao. Saving energy
and improving service quality: Bicriteria train scheduling in urban
rail transit systems. IEEE Transactions on Intelligent Transportation
Systems, 17(12):3364–3379, 2016.

[23] S. Mackenzie. Train scheduling on long haul railway corridors. PhD
thesis, University of South Australia, 2010.

[24] Hassan Smaoui, Lahcen Zouhri, Sami Kaidi, and Erick Carlier. Combi-
nation of FEM and CMA-ES algorithm for transmissivity identification
in aquifer systems. Hydrological Processes, 32(2):264–277, 2018.

[25] Patrick MacAlpine, Samuel Barrett, Daniel Urieli, Victor Vu, and Peter
Stone. Design and optimization of an omnidirectional humanoid walk:
A winning approach at the RoboCup 2011 3D simulation competition.
In Proc. AAAI 2012. AAAI Press, 2012.


