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Abstract
We consider the problem of identifying any k
out of the best m arms in an n-armed stochastic
multi-armed bandit; framed in the PAC setting,
this particular problem generalises both the prob-
lem of “best subset selection” (Kalyanakrishnan &
Stone, 2010) and that of selecting “one out of the
best m” arms (Roy Chaudhuri & Kalyanakrishnan,
2017). We present a lower bound on the worst-
case sample complexity for general k, and a fully
sequential PAC algorithm, LUCB-k-m, which is
more sample-efficient on easy instances. Also,
extending our analysis to infinite-armed bandits,
we present a PAC algorithm that is independent
of n, which identifies an arm from the best ρ frac-
tion of arms using at most an additive poly-log
number of samples than compared to the lower
bound, thereby improving over Roy Chaudhuri
& Kalyanakrishnan (2017) and Aziz et al. (2018).
The problem of identifying k > 1 distinct arms
from the best ρ fraction is not always well-defined;
for a special class of this problem, we present
lower and upper bounds. Finally, through a re-
duction, we establish a relation between upper
bounds for the “one out of the best ρ” problem
for infinite instances and the “one out of the best
m” problem for finite instances. We conjecture
that it is more efficient to solve “small” finite in-
stances using the latter formulation, rather than
going through the former.

1. Introduction
The stochastic multi-armed bandit (Robbins, 1952; Berry
& Fristedt, 1985) is a well-studied abstraction of decision
making under uncertainty. Each arm of a bandit represents
a decision. A pull of an arm represents taking the associated
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decision, which produces a real-valued reward. The reward
is drawn i.i.d. from a distribution corresponding to the arm,
independent of the pulls of other arms. At each round, the
experimenter may consult the preceding history of pulls and
rewards to decide which arm to pull.

The traditional objective of the experimenter is to maximise
the expected cumulative reward over a horizon of pulls, or
equivalently, to minimise the regret with respect to always
pulling an optimal arm. Achieving this objective requires
a careful balance between exploring (to reduce uncertainty
about the arms’ expected rewards) and exploiting (accru-
ing high rewards). Regret-minimisation algorithms have
been used in a variety of applications, including clinical
trials (Robbins, 1952), adaptive routing (Awerbuch & Klein-
berg, 2008), and recommender systems (Li et al., 2010).

Of separate interest is the problem of identifying an arm
with the highest mean reward (Bechhofer, 1958; Paulson,
1964; Even-Dar et al., 2002), under what is called the “pure
exploration” regime. For applications such as product test-
ing (Audibert et al., 2010) and strategy selection (Goschin
et al., 2012), there is a dedicated phase in the experiment
in which the rewards obtained are inconsequential. Rather,
the objective is to identify the best arm either (1) in the
minimum number of trials, for a given confidence thresh-
old (Even-Dar et al., 2002; Kalyanakrishnan & Stone, 2010),
or alternatively, (2) with minimum error, after a given num-
ber of trials (Audibert et al., 2010; Carpentier & Valko,
2015). Our investigation falls into the first category, which
is termed the “fixed confidence” setting. Conceived by
Bechhofer (1958), best-arm-identification in the fixed con-
fidence setting has received a significant amount of atten-
tion over the years (Even-Dar et al., 2002; Gabillon et al.,
2011; Karnin et al., 2013; Jamieson et al., 2014). The prob-
lem has also been generalised to identify the best subset of
arms (Kalyanakrishnan et al., 2012).

More recently, Roy Chaudhuri & Kalyanakrishnan (2017)
have introduced the problem of identifying a single arm
from among the best m in an n-armed bandit. This formula-
tion is particularly useful when the number of arms is large,
and in fact is a viable alternative even when the number of
arms is infinite. In many practical scenarios, however, it
is required to identify more than a single good arm. For
example, imagine that a company needs to complete a task
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that is too large to be accomplished by a single worker, but
which can be broken into 5 subtasks, each capable of being
completed by one worker. Suppose there are a total of 1000
workers, and an indepdendent pilot survey has revealed that
at least 15% of them have the skills to complete the subtask.
To address the company’s need, surely it would suffice to
identify the best 5 workers for the subtask. However, if
workers are to be identified based on a skill test that has
stochastic outcomes, it would be unnecessarily expensive to
indeed identify the “best subset”. Rather, it would be enough
to merely identify any 5 workers from among the best 150.
This is precisely the problem we consider in our paper: iden-
tifying any k out of the best m arms in an n-armed bandit.
In addition to distributed crowdsourcing (Tran-Thanh et al.,
2014), applications of this problem include the management
of large sensor networks (Mousavi et al., 2016), wherein
multiple reliable sensors must be identified using minimal
testing, and in drug design (Will et al., 2016, Chapter 43).

The problem assumes equal significance from a theoreti-
cal standpoint, since it generalises both the “best subset
selection” problem (Kalyanakrishnan & Stone, 2010) (tak-
ing k = m) and that of selecting a “single arm from the
best subset” (Roy Chaudhuri & Kalyanakrishnan, 2017)
(taking k = 1). Unlike best subset selection, the problem
remains feasible to solve even when n is large or infinite,
as long as m/n is some constant ρ > 0. Traditionally,
infinite-armed bandits have been tackled by resorting to
side information such as distances between arms (Agrawal,
1995; Kleinberg, 2005) or the structure of their distribution
of rewards (Wang et al., 2008). This approach introduces
additional parameters, which might not be easy to tune in
practice. Alternatively, good arms can be reached merely
by selecting arms at random and testing them by pulling.
This latter approach has been applied successfully both in
the regret-minimisation setting (Herschkorn et al., 1996)
and in the fixed-confidence setting (Goschin et al., 2012;
Roy Chaudhuri & Kalyanakrishnan, 2017). Our formulation
paves the way for identifying “many” (k) “good” (in the top
m among n) arms in this manner.

The interested reader may refer to Table 1 right away for
a summary of our theoretical results, which are explained
in detail after formally specifying the (k,m, n) and (k, ρ)
problems in Section 2. In Section 3 we present our algo-
rithms and analysis for the finite setting, and in Section 4
for the infinite setting. We present experimental results in
Section 5, and conclude with a discussion in Section 6.

2. Problem Definition and Contributions
Let A be the set of arms in our given bandit instance. With
each arm a ∈ A, there is an associated reward distribution
supported on a subset of [0, 1], with mean µa. When pulled,
arm a ∈ A produces a reward drawn i.i.d. from the corre-

sponding distribution, and independent of the pulls of other
arms. At each round, based on the preceding sequence of
pulls and rewards, an algorithm either decides which arm to
pull, or stops and returns a set of arms.

For a finite bandit instance with n arms, we take A =
{a1, a2, . . . , an}, and assume, without loss of generality,
that for arms ai, aj ∈ A, µai ≥ µaj whenever i ≤ j. Given
a tolerance ε ∈ [0, 1] and m ∈ {1, 2, . . . , n}, we call an arm
a ∈ A (ε,m)-optimal if µa ≥ µam − ε. We denote the set
of all the (ε,m)-optimal arms as T OPm(ε)

def
= {a : µa ≥

µam − ε}. For brevity we denote T OPm(0) as T OPm.
Now, we introduce (k,m, n) problem.

(k,m, n) Problem. An instance of the (k,m, n) problem
is of the form (A, n,m, k, ε, δ), where A is a set of arms
with |A| = n ≥ 2; m ∈ {1, 2, . . . , n−1}; k ∈ {1, . . . ,m};
tolerance ε ∈ (0, 1]; and mistake probability δ ∈ (0, 1]. An
algorithm L is said to solve (k,m, n) if for every instance
of (k,m, n), it terminates with probability 1, and returns k
distinct (ε,m)-optimal arms with probability at least 1− δ.

The (k,m, n) problem is interesting from a theoretical
standpoint because it covers an entire range of problems,
with single-arm identification (m = 1) at one extreme and
subset selection (k = m) at the other. We note that the
Q-F (Roy Chaudhuri & Kalyanakrishnan, 2017) problem
is identical to (1,m, n), and SUBSET (Roy Chaudhuri &
Kalyanakrishnan, 2017) is identical to (m,m, n). Thus, any
bounds on the sample complexity of (k,m, n) also apply
to Q-F (Roy Chaudhuri & Kalyanakrishnan, 2017) and to
SUBSET (Kalyanakrishnan & Stone, 2010). In this paper,
we show that any algorithm that solves (k,m, n) must in-

cur Ω

(
n

(m−k+1)ε2 log

(
( m
k−1)
δ

))
pulls for some instance

of the problem. We are unaware of bounds in the fixed-
confidence setting that involve such a combinatorial term
inside the logarithm.

Table 1 places our bounds in the context of previous re-
sults. The bounds shown in the table consider the worst-
case across problem instances; in practice one can hope
to do better on easier problem instances by adopting a
fully sequential sampling strategy. Indeed we adapt the
LUCB1 algorithm (Kalyanakrishnan et al., 2012) to solve
(k,m, n), denoting the new algorithm LUCB-k-m. Our
analysis shows that for k = 1, and k = m, the upper bound
on the sample complexity of this algorithm matches with
those of F2 (Roy Chaudhuri & Kalyanakrishnan, 2017) and
LUCB1 (Kalyanakrishnan et al., 2012), respectively, up
to a multiplicative constant. Empirically, LUCB-k-m with
k = 1 appears to be more efficient than F2 for solving Q-F.

Along the same lines that Roy Chaudhuri & Kalyanakrish-
nan (2017) define the Q-P problem for infinite instances, we
define a generalisation of Q-P for selecting many good arms,
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Table 1. Lower and upper bounds on the expected sample complexity (worst case over problem instances). The bounds for (k, ρ), k > 1
are for the special class of “at most k-equiprobable” instances.

Problem Lower Bound Previous Upper Bound Current Upper Bound
(1, 1, n)
Best-Arm

Ω
(
n
ε2 log 1

δ

)
O
(
n
ε2 log 1

δ

)
Same as previous

(Mannor & Tsitsiklis, 2004) (Even-Dar et al., 2002)
(m,m, n)
SUBSET

Ω
(
n
ε2 log m

δ

)
O
(
n
ε2 log m

δ

)
Same as previous

(Kalyanakrishnan et al., 2012) (Kalyanakrishnan & Stone, 2010)
(1,m, n)
Q-F

Ω
(
n
mε2 log 1

δ

)
O
(
n
mε2 log2 1

δ

)
O
(

1
ε2

(
n
m log 1

δ + log2 1
δ

))
(Roy Chaudhuri & Kalyanakrishnan, 2017) This paper

(k,m, n)
Q-Fk

Ω

(
n

(m−k+1)ε2 log
( m
k−1)
δ

)
- O

(
k
ε2

(
n log k
m log k

δ + log2 k
δ

))∗
This paper This paper (*for k ≥ 2)

(1, ρ) (|A| =∞)
Q-P

Ω
(

1
ρε2 log 1

δ

)
O
(

1
ρε2 log2 1

δ

)
O
(

1
ε2

(
1
ρ log 1

δ + log2 1
δ

))
(Roy Chaudhuri & Kalyanakrishnan, 2017) This paper

(k, ρ) (|A| =∞)
Q-Pk

Ω
(

k
ρε2 log k

δ

)
- O

(
k
ε2

(
log k
ρ log k

δ + log2 k
δ

))∗
This paper This paper (*for a special class with k ≥ 2)

which we denote (k, ρ). Given a set of arms A, a sampling
distribution PA, ε ∈ (0, 1], and ρ ∈ [0, 1], an arm a ∈ A is
called [ε, ρ]-optimal if Pa′∼PA{µa ≥ µa′− ε} ≥ 1−ρ. For
ρ, ε ∈ [0, 1], we define the set of all [ε, ρ]-optimal arms as
T OPρ(ε), and we denote T OPρ(0) as T OPρ. We recall
the definition of Q-P from Roy Chaudhuri & Kalyanakrish-
nan (2017), and then generalise it to (k, ρ).

Q-P Problem (Roy Chaudhuri & Kalyanakrishnan, 2017).
An instance of Q-P is fixed by a bandit instance with a set
of arms A; a probability distribution PA over A; ρ ∈ (0, 1];
ε ∈ (0, 1]; and δ ∈ (0, 1]. An algorithm L is said to solve
Q-P if and only if for every instance (A, PA, ρ, ε, δ), L
terminates with probability 1, and returns an [ε, ρ]-optimal
arm with probability at least 1− δ.

(k, ρ) Problem. An instance of (k, ρ) problem is of the
form (A, PA, k, ρ, ε, δ), where A is a set of arms; PA is
a probability distribution over A; quantile fraction ρ ∈
(0, 1]; tolerance ε ∈ (0, 1]; and mistake probability δ ∈
(0, 1]. Such an instance is valid if |T OPρ| ≥ k, and invalid
otherwise. An algorithm L is said to solve (k, ρ), if for
every valid instance of (k, ρ), L terminates with probability
1, and returns k distinct [ε, ρ]-optimal arms with probability
at least 1− δ.

At most k-equiprobable instances. Observe that (k, ρ)
is well-defined only if the given instance has at least k dis-
tinct arms in T OPρ; we term such an instance valid. It is
worth noting that even valid instances can require an arbi-
trary amount of computation to solve. For example, consider
an instance with k > 1 arms in T OPρ, one among which
has a probability γ of being picked by PA, and the rest
each a probability of (ρ− γ)/(k − 1). Since the arms have
to be identified by sampling from PA, the probability of
identifying the latter k − 1 arms diminishes to 0 as γ → ρ,

calling for an infinite number of guesses. To avoid this
scenario, we restrict our analysis to a special class of valid
instances in which PA allocates no more than ρ/k proba-
bility to any arm in T OPρ. We refer to such instances as
“at most k-equiprobable” instances. Formally, a (k, ρ) prob-
lem instance given by (A, PA, k, ρ, ε, δ) is called “at most
k-equiprobable” if ∀a ∈ T OPρ, Pra′∼PA{a′ = a} ≤ ρ

k .1

Note that any instance of the (1, ρ) or Q-P (Roy Chaudhuri
& Kalyanakrishnan, 2017) problem is necessarily valid and
at most 1-equiprobable. Interestingly, we improve upon the
existing upper bound for this problem, so it matches the
lower bound up to an additive O

(
1
ε2 log2 1

δ

)
term. Below

we summarise our contributions.

We generalise two previous problems—Q-F and SUB-
SET (Roy Chaudhuri & Kalyanakrishnan, 2017)—via
(k,m, n). In Section 3 we derive a lower bound on the
worst case sample complexity to solve (k,m, n), which
generalises existing lower bounds for Q-F and SUBSET.
Further, we In Section 3.2 we present a fully-sequential
algorithm—LUCB for k out of m and establish an upper-
bound on the sample complexity. In Section 4 we present
algorithm P3 to solve Q-P with a sample complexity that is
an additive O((1/ε2) log2(1/δ)) term away from the lower
bound. We extend it to an algorithm KQP-1 for solving at
most k-equiprobable (k, ρ) instances. Also, P3 and KQP-1
can solve Q-F and (k,m, n) respectively, and their sample
complexities are the tightest instance-independent upper
bounds as yet. In Section 4.3 we present a general relation
between the upper bound on the sample complexities for
solving Q-F and Q-P. This helps in effectively transferring

1In a recent paper, Ren et al. (2018) claim to solve the (k, ρ)
problem. However, they do not notice that the problem can be ill-
posed. Also, even with an at most k-equiprobable instance as input,
their algorithm fails to escape the (1/ρ) log2(1/δ) dependence.
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any improvement in the upper bound on the former to the
latter. Also, we conjecture the existence of a class of Q-
F instances that can be solved more efficiently than their
“corresponding” Q-P instances.

3. Algorithms for Finite Instances
We begin our technical presentation by furnishing a lower
bound on the sample complexity of algorithms for (k,m, n).

3.1. Lower Bound on the Sample-Complexity

Theorem 3.1. [Lower Bound for (k,m, n) ] Let L be an
algorithm that solves (k,m, n). Then, there exists an in-
stance (A, n,m, k, ε, δ), with 0 < ε ≤ 1√

32
, 0 < δ ≤ e−1

4 ,
and n ≥ 2m, 1 ≤ k ≤ m, on which the expected number of

pulls performed by L is at least 1
18375 .

1
ε2 .

n
m−k+1 ln

( m
k−1)
4δ .

The proof, given in Appendix A, generalises the lower
bound proofs for both (m,m, n) (Kalyanakrishnan et al.,
2012, Theorem 8) and (1,m, n) (Roy Chaudhuri &
Kalyanakrishnan, 2017, Theorem 3.3). The core idea in
these proofs is to consider two sets of bandit instances, I
and I ′, such that over “short” trajectories, an instance from
I will yield the same reward sequences as a corresponding
instance from I ′, with high probability. Thus, any algorithm
will return the same set of arms for both instances, with high
probability. However, by construction, no set of arms can
be simultaneously correct for both instances—implying that
a correct algorithm must encounter sufficiently “long” tra-
jectories. Our main contribution is in the design of I and I ′
when k ∈ {1, 2, . . . ,m} (rather than exactly 1 or m) arms
have to be returned.

Our algorithms to achieve improved upper bounds for Q-F
and (k,m, n) (across bandit instances) follow directly from
methods we design for the infinite-armed setting in Section 4
(see Corollary 4.2 and Corollary 4.5). In the remainder of
this section, we present a fully-sequential algorithm for
(k,m, n) whose expected sample complexity varies with
the “hardness” of the input instance.

3.2. An Adaptive Algorithm for Solving (k,m, n)

Algorithm 1 describes LUCB-k-m, a fully sequential al-
gorithm that generalises LUCB1 (Kalyanakrishnan et al.,
2012), which solves (m,m, n). For k = 1 LUCB-k-m
has the same guarantee on sample-complexity as F2 (Roy
Chaudhuri & Kalyanakrishnan, 2017), but empirically ap-
pears to be more economical.

Under LUCB-k-m, at each round t, we partition A into
three subsets. We keep the k arms with the highest empirical
averages in At1, the n−m arms with the lowest empirical
averages inAt3, and the rest inAt2; ties are broken arbitrarily

Algorithm 1 LUCB-k-m: Algorithm to select k (ε,m)-
optimal arms
Input: A (such that |A| = n), k,m, ε, δ.
Output: k distinct (ε,m)-optimal arms from A.

Pull each arm a ∈ A once. Set t = n.
while ucb(lt∗, t+ 1)− lcb(ht∗, t+ 1) > ε. do
t = t+ 1.
At1

def
= Set of k arms with the highest empirical means.

At3
def
= Set of n−m arms with the lowest empirical means.

At2
def
= A \ (At1 ∪At3).

ht∗ = arg max{a∈At1} lcb(a, t).
mt
∗ = arg min{a∈At2} u

t
a.

lt∗ = arg max{a∈At3} ucb(a, t).
pull ht∗,mt

∗, l
t
∗.

end while
return At1.

(uniformly at random in our experiments). Letting uta be
the number of pulls obtained by the arm a until the horizon
t − 1, and β(a, t)

def
=
√

1
2uta

ln
(
knt4

δ

)
(with k = 5/4), we

define the upper confidence bound (UCB) and the lower
confidence bound (LCB) on the true mean of the arms as
ucb(a, t) = p̂ta + β(a, t), and lcb(a, t) = p̂ta − β(a, t),
respectively. At each round we choose a contentious arm
from each of these three sets: from At1 we choose ht∗, the
arm with the lowest LCB; from At2 the arm which is least
pulled is chosen, and called mt

∗; from At3 we choose lt∗, the
arm with the highest UCB. The algorithm stops as soon as
the difference between the LCB of ht∗, and the UCB of lt∗ is
no larger than the tolerance ε.

Let B1, B2, B3 be corresponding sets based on the true
means: that is, subsets of A such that B1

def
= {1, 2, · · · , k},

B2
def
= {k + 1, k + 2, · · · ,m} and B3

def
= {m + 1,m +

2, · · · , n}. For any two arms a, b ∈ A we define ∆ab
def
=

µa − µb, and overloading the notation, define

∆a
def
=


µa − µm+1 if a ∈ B1

µk − µm+1 if a ∈ B2

µm − µa if a ∈ B3.

(1)

We note that ∆k = ∆k+1 = · · · = ∆m = ∆m+1. Now,
we define the hardness term as Hε

def
=
∑
a∈A

1
max{∆a,ε/2}2 .

Theorem 3.2. [Expected Sample Complexity of LUCB-k-
m ] LUCB-k-m solves (k,m, n) using an expected sample
complexity upper-bounded by O

(
Hε log Hε

δ

)
.

Appendix-B gives the proof in detail. The core argument re-
sembles that of Algorithm F2 (Roy Chaudhuri & Kalyanakr-
ishnan, 2017). However, it subtly differs due to the different
strategy for choosing arms and since the output set need
not be singleton. In practice, one can use tighter confidence
bound calculations for even more efficiency; we use KL-
divergence based confidence bounds in our experiments.
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4. Algorithm for Infinite Instances
In this section, we present algorithms for infinite-armed
bandit instances. To find a single [ε, ρ]-optimal arm, the
sample complexity of existing algorithms (Roy Chaud-
huri & Kalyanakrishnan, 2017; Aziz et al., 2018) scales as
(1/ρ) log2(1/δ), for the given mistake probability δ. Here
we present an algorithm P3 whose sample complexity is
only an additive poly-log factor away from the lower bound
of Ω((1/ρε2) log 1/δ) (Roy Chaudhuri & Kalyanakrishnan,
2017, Corollary 3.4). Note that Jamieson et al. (2016) solve
a related, but different, problem in which A, even if infinite,
has only two possible values for the means of its arms.

4.1. Solving Q-P Instances

Roy Chaudhuri & Kalyanakrishnan (2017) presented an
algorithm P2 to solve Q-P instances. It consists of choosing
N(ρ, δ) arms from A, followed by identifying the best arm
with PAC guarantee. P3 is a two-phase algorithm. In the
first phase, it runs a sufficiently large number of independent
copies of P2 and chooses a large subset of arms (say of size
u), in which every arm is [ε, ρ]-optimal with probability at
least 1− δ′, where δ′ is some small constant. The value u is
chosen in a manner such that at least one of the chosen arms
is [ε/2, ρ]-optimal with probability at least δ/2. The second
phase solves the best arm identification problem (1, 1, u) by
applying MEDIAN ELIMINATION.

Algorithm 2 describes P3. It uses P2 (Roy Chaudhuri &
Kalyanakrishnan, 2017) with MEDIAN ELIMINATION as a
subroutine, to select an [ε, ρ]-optimal arm with confidence
1− δ′. We have assumed δ′ = 1/4, in practice the one can
choose any sufficiently small value for it, which will merely
affect the multiplicative constant in the upper bound.

Algorithm 2 P3: Algorithm to solve Q-P
Input: A, ε, δ.
Output: One [ε, ρ]-optimal arm.

Set δ′ = 1/4, u = d(1/δ′) log(2/δ)e = d4 log(2/δ)e.
Run u copies of P2(A, ρ, ε/2, δ′) and store outputs in set S.
Identify an (ε/2, 1)-optimal arm in S using MEDIAN ELIMI-
NATION with confidence at least 1− δ/2.

Theorem 4.1. [Correctness and Sample Complexity
of P3 ] P3 solves Q-P, with sample complexity
O(ε−2(ρ−1 log(1/δ) + log2(1/δ))).

Proof. First we prove the correctness and then upper-bound
the sample complexity.

Correctness. We notice that each copy of P2 outputs an
[ε/2, ρ]-optimal arm with probability at least 1− δ′. Now,
S ∩ T OPρ = ∅ can only happen if all the u copies of
P2 output sub-optimal arms. Therefore, Pr{S ∩ T OPρ =
∅} = (1 − δ′)u ≤ δ/2. On the other hand, the mistake

probability of MEDIAN ELIMINATION is upper bounded by
δ/2. Therefore, by taking union bound, we upper bound the
mistake probability by δ. Also, the mean of the output arm
is not less than ε

2 + ε
2 = ε from the (1− ρ)-th quantile.

Sample complexity. First we note that, for some appro-
priate constantC, the sample complexity (SC) of each of the
u copies of P2 is C

ρ(ε/2)2

(
ln 2

δ′

)2 ∈ O ( 1
ρε2

)
. Hence, SC

of all the u copies P2 together is upper bounded by C1·u
ρε2 ,

for some constant C1. Also, for some constants C2, C3,
the sample complexity of MEDIAN ELIMINATION is upper-
bounded by C2·u

(ε/2)2 ln 2
δ ≤

C3

ε2 ln2 2
δ . Adding the sample

complexities and substituting for u yields the bound.

Corollary 4.2. P3 can solve any instance of
Q-F (A, n,m, ε, δ) with sample complexity
O
(

1
ε2

(
n
m log 1

δ + log2 1
δ

))
.

Proof. Let, (A, n,m, ε, δ) be the given instance of Q-F.
We partition the setA∞ = [0, 1] in to n equal segments and
associate each with a unique arm inA, and such that no two
different subsets get associated with the same arm. Now,
defining PA∞ = Uniform[0, 1], and ρ′ = m/n, we realise
that solving the Q-P instance (A∞, PA∞ , ρ′, ε, δ) solves the
original Q-F instance, thereby proving the corollary.

At this point it is of natural interest to find an efficient
algorithm to solve (k, ρ). Next, we discuss the extension of
Q-P to (k, ρ), and present lower and upper bounds on the
sample complexity needed to solve it.

4.2. Solving “At Most k-equiprobable” (k, ρ) Instances

Now, let us focus on identifying k [ε, ρ]-optimal arms. In
Theorem 4.3 we derive the lower bound on the sample com-
plexity to solve an instance (k, ρ) by reducing it to solving
a SUBSET problem as follows.

Theorem 4.3. [Lower Bound on the Sample Complexity
for Solving (k, ρ) ] For every ε ∈ (0, 1√

32
], δ ∈ (0, 1√

32
],

and ρ ∈ (0, 1
2 ], there exists an instance of (k, ρ) given by

(A, PA, ρ, ε, δ), such that any algorithm that solves (k, ρ)
incurs at least C · k

ρε2 ln k
8δ samples, where C = 1

18375 .

Proof. We shall prove the theorem by contradiction. Let us
assume that the statement is incorrect. Therefore, there ex-
ists an algorithm ALG that can solve any instance of (k, ρ)
using no more than C · kρε2 ln k

8δ samples, for C = 1/18375.
Now, let (n,A,m, ε, δ) be an instance of SUBSET (Roy
Chaudhuri & Kalyanakrishnan, 2017) with n ≥ 2m. Let-
ting PA = Uniform{1, 2, . . . , n}, k = m, and ρ = m/n,
we create an instance of (k, ρ) as (A, PA, ρ, k, ε, δ). There-
fore, solving this (k, ρ) instance will solve the original
SUBSET instance. According our claim, ALG solves the
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original SUBSET instance using at most C · k
(k/n)ε2 ln k

8δ

= C · m
(m/n)ε2 ln m

8δ = C · nε2 ln m
8δ samples. This observa-

tion contradicts the lower bound on the sample complexity
for solving SUBSET (Kalyanakrishnan et al., 2012, Theorem
8); thereby proving the theorem.

Solving at most k-equiprobable (k, ρ) instances. Let,
for any S ⊆ A, ν(S)

def
= Pra∼PA{a ∈ S}. There-

fore, ν(A) = 1. Now, we present an algorithm KQP-
1 that can solve any at most k-equiprobable instance of
(k, ρ). Algorithm 3 describes KQP-1. At each phase y,
it solves an instance of Q-P to output an arm, say a(y),
from T OPρ(ε). In the next phase, it updates the ban-
dit instance Ay+1 = Ay \ {a(y)}, the sampling distribu-
tion PAy+1 = 1

1−ν(A\Ay+1)PAy , and the target quantile

ρ −
∑y
j=1 ν(a(j)). However, as we are not given the ex-

plicit form of PA, we realise PAy+1 by rejection-sampling—
if a′ ∈ A \ Ay+1 is chosen by PA, we simply discard
a′, and continue to sample PA one more time. Because
ν({ay}) is not known explicitly, we rely on the fact that
ν({ay}) ≤ ρ/k: it is for this reason we require the instance
to be at most k-equiprobable. Therefore, in each phase
y ≥ 2, we update ρy = ρy−1 − ρ/k ≤ ρ −

∑y−1
j=1 ν{aj},

with ρ1 = ρ. Hence, at the phase y ≥ 1, KQP-1 solves an in-
stance of Q-P given by (Ay, PAy , ρ− (y − 1)ρ/k, ε, δ/k).

Algorithm 3 KQP-1: Algorithm to solve an at most k-
equiprobable (k, ρ) instances
Input: A, PA, k, ρ, ε, δ.
Output: Set of k distinct arms from T OPρ(ε).
A1 = A.
for y = 1, 2, 3, · · · , k do
ρy = ρ− (y − 1)ρ/k.
Run P3 to solve the Q-P instance given by
(Ay, PAy , ρy, ε, δk ), and let a(y) be the output.
Ay+1 = Ay \ {a(y)}.

end for

Theorem 4.4. Given any at most k-equiprobable in-
stance of (k, ρ) with k > 1, KQP-1 solves the in-
stance with expected sample-complexity upper-bounded by
O
(
k
ε2

(
log k
ρ log k

δ + log2 k
δ

))
.

Proof. We prove correctness and then establish the sample
complexity upper bound.

Correctness: Letting Ey be the event that a(y) 6∈
T OPρ(ε), the probability of mistake by KQP-1 can be up-
per bounded as Pr{Error} = Pr{∃y ∈ {1, · · · , k} Ey} ≤∑k
y=1 Pr{Ey} ≤

∑k
y=1 δ/k = δ.

Sample complexity: In phase y, the sample complexity
of P3 is upper-bounded as SC(y) ≤ Cε−2((1/ρy) log k

δ +

log2 k
δ ), for some constant C. Therefore, the sample com-

plexity of KQP-1 is
k∑
y=1

SC(y) ≤
k∑
y=1

C

ε2

(
1

ρy
log

k

δ
+ log2 k

δ

)
,

≤ C

ε2

(
log

k

δ

k∑
y=1

1

ρ− (y − 1) ρ
k

+ k log2 k

δ

)
,

=
Ck

ε2

(
1

ρ
log

k

δ

k∑
y=1

1

k − y + 1
+ log2 k

δ

)
,

≤ C′k

ε2

(
log k

ρ
log

k

δ
+ log2 k

δ

)
,

for k > 1, and some constant C ′.

Corollary 4.5. KQP-1 can solve any instance of
(k,m, n) given by (A, n,m, k, ε, δ) with k ≥ 2, using

O
(
k
ε2

(
n log k
m log k

δ + log2 k
δ

))
samples.

We note that the sample complexity of KQP-1 is in-
dependent of the size of A, and every instance of
(k,m, n) given by (A, n,m,m, ε, δ), can be solved by
KQP-1 by posing it as an instance of (k, ρ) given
by (A, Uniform{A},m/n,m, ε, δ). However, for
k = m, the sample complexity of KQP-1 reduces to
O
(

1
ε2

(
n logm · log m

δ + log2 m
δ

))
, which is higher than

the sample complexity of HALVING (Kalyanakrishnan &
Stone, 2010), that needs onlyO

(
n
ε2 log m

δ

)
samples. Hence,

for the best subset selection problem in finite instances
HALVING is preferable to KQP-1. In very large instances,
where the probability of picking any given arm from T OPρ
is small, solving (k, ρ) using KQP-1 is more efficient. The
following corollary considers a common special case, for
which a slightly tighter bound applies.
Corollary 4.6. Every instance of (k, ρ) given by
(A, PA, k, ρ, ε, δ), such that |A| = ∞, and for all finite
subset S ⊂ A, Pra∼PA{a ∈ S} = 0; can be solved with
sample complexity O

(
kε−2

(
ρ−1 log(k/δ) + log2(k/δ)

))
,

by independently solving k different Q-P instances, each
given by (A, PA, k, ρ, ε, δ/k).

The correctness of Corollary 4.6 gets proved by noticing
that all the k outputs are unique with probability 1, and then
taking a union bound over mistake probabilities.

4.3. On the Hardness of Solving Q-P

Theorem 4.7 presents a general relation between the upper
bound on sample complexities for solving Q-F and Q-P.
Theorem 4.7. Let γ : Z+×Z+×[0, 1]×[0, 1] 7→ R+. If ev-
ery instance of Q-F given by (A, n,m, ε, δ), can be solved
with sample complexity O

(
n
mε2 log 1

δ + γ(n,m, ε, δ)
)
,

then, every instance of Q-P given by
(A, PA, ρ, ε, δ) can be solved with sample complexity
O
(
(1/ρε2) log(1/δ) + γ (d8 log(2/δ)e, b4 log(2/δ)c, ε/2, δ/2)

)
.
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We assume that there exists an algorithm OPTQF that
solves every instance of Q-F given by (A, n,m, ε, δ), us-
ing O

(
n
mε2 log 1

δ + γ(n,m, ε, δ)
)

samples. We establish
the upper bound on sample complexity for solving Q-P by
constructing an algorithm OPTQP that follows an approach
similar to P3. Specifically, OPTQP reduces the input Q-P
instance to an instance of Q-F usingO

(
1
ρε2 log 1

δ

)
samples.

Then, it solves that Q-F using OPTQF as the subroutine.
The detailed proof is given in Appendix-C.

Corollary 4.8. Corollary 4.2 shows that every Q-F is
solvable in O

(
1
ε2

(
n
m log 1

δ + log2 1
δ

))
samples. Hence,

γ(n,m, ε, δ) ∈ O
(

1
ε2 log2 1

δ

)
, and therefore, every Q-P

is solvable in O
(

1
ε2

(
1
ρ log 1

δ + log2 1
δ

))
samples.

On the other hand, if the lower bound for solving Q-F
provided by Roy Chaudhuri & Kalyanakrishnan (2017)
matches the upper bound up to a constant factor, then
γ(n,m, ε, δ) ∈ Θ

(
n
mε2 log 1

δ

)
. In that case, Q-P is solv-

able using Θ
(

1
ρε2 log 1

δ

)
samples.

It is interesting to find a γ(·) such that the upper bound
presented in Theorem 4.7 matches the lower bound up
to a constant factor. We notice, Theorem 4.7 guar-
antees that there exists a constant C, such that for
any given ε, δ, and m ≤ n/2, γ(n,m, ε, δ) ≤ C ·
γ
(
d8 log(2/δ)e, b4 log(2/δ)c, ε2 ,

δ
2

)
. However, for n <

d8 log(2/δ)e we believe Q-F can be solved more efficiently
than by reducing it to Q-P. Considering a set of functions,
U def

= {f : Z+ × Z+ × [0, 1]× [0, 1] 7→ R+}, we present a
related conjecture.

Definition For g ∈ U , Q-F is solvable in Θ(g(·)) if there
exists an algorithm that solves Q-F, taking O(g(n,m, ε, δ))
samples on every instance, and there is an instance
(Ā, n̄, m̄, ε̄, δ̄) on which every algorithm that solves Q-F
takes Ω(g(n̄, m̄, ε̄, δ̄)) samples.

Conjecture 4.1. There exist a constant C > 0, and func-
tions g, h ∈ U , such that for every δ ∈ (0, 1], there exists
an integer n0 < C log 2

δ , where for every n ≤ n0, Q-F
is solvable in Θ(g(n,m, ε, δ)) samples. Let for all such
instances with n ≤ n0, the equivalent Q-P instance (ob-
tained by posing the the instance of Q-F as an instance
of Q-P, as done in proving Corollary 4.2) need at least
Ω(h(n,m, ε, δ)) samples. Then, limδ↓0

g(n,m,ε,δ)
h(n,m,ε,δ) = 0.

5. Experiments and Results
We begin our experimental evaluation by comparing
F2 (Roy Chaudhuri & Kalyanakrishnan, 2017) and LUCB-
k-m based on the number of samples drawn on different
instances of Q-F or (1,m, n). F2 is a fully-sequential algo-
rithm that resembles LUCB-k-m, but subtle differences in

the way the algorithms partition A and select arms to pull
lead to different results. At each time step t, F2 partitions
A into Ā1(t), Ā2(t), and Ā3(t). It puts the highest-LCB
arm in Ā1(t); among the rest, it puts m− 1 arms with the
highest UCBs in Ā2(t); and the remaining n−m arms in
Ā3(t). At each time step t, it samples three arms—the arm
in Ā1(t), the least sampled arm in Ā2(t), and the highest
-UCB arm in Ā3(t). Ties are broken uniformly at random.

We take five Bernoulli instance of sizes n = 10, 20, 50, 100,
and 200, with the means linearly spaced between 0.999
and 0.001 (both inclusive), and sorted in descending order.
We name the bandit instance of size n as In. Now, set-
ting ε = 0.05, δ = 0.001, and m = 0.1 × n, we run the
experiments and compare the number of samples drawn
by F2 and LUCB-k-m to solve these five instances for
k = 1. In our implementation we have used KL-divergence
based confidence bounds (Cappé et al., 2013; Kaufmann &
Kalyanakrishnan, 2013) for both F2 and LUCB-k-m. As
depicted by Figure 1(a), as the number of arms (n) increases,
the sample complexity of both the algorithms increases due
to increase in hardnessHε. However, the sample complexity
of F2 increases much faster than LUCB-k-m.

As shown by Jamieson & Nowak (2014) the efficiency of
LUCB1 comes from the quick identification of the most
optimal arm due to a large separation from the (m+ 1)-st
arm. Intuitively, the possible reason for F2 to incur more
samples is the delay in prioritising the optimal arm to pull
more frequently. This should result in a smaller fraction
of total samples taken from the best arm. Figure 1(b) af-
firms this intuition. It shows a comparison between F2 and
LUCB-k-m on the number of samples obtained by three
“ground-truth” groups—B1, B2, and B3 on I10, keeping
k = 1 and varying m from 1 to 5. We note that the lesser
the difference between k and m, the higher the hardness
(Hε), and both F2 and LUCB-k-m find it hard to identify
a correct arm. Hence, for k = m = 1, both of them spend
almost the same fraction of pulls to the best arm. However,
as m becomes larger, keeping k = 1, the hardness of the
problem reduces, but F2 still struggles to identify the best
arm and results in spending a significantly a lesser fraction
of the total pulls to it, compared to LUCB-k-m.

In this paper, we have developed algorithms specifically for
the (k,m, n) problem; previously one might have solved
(k,m, n) either by solving (k, k, n) or (m,m, n): that is
choosing the best k- or m-sized subset. In Figure 1(c) we
present a comparison of the sample complexities for solving
(k,m, n) and the best subset-selection problems. Fixing
A = I20, n = 20, m = 10, (k,m, n) instances are given
by and varying k ∈ {1, 3, 5, 8, 10}, whereas, for the best
subset-selection problem we set m = k. As expected, the
number of samples incurred is significantly lesser for solv-
ing the problem instances with k < m, thereby validating
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the use of LUCB-k-m.

6. Conclusion
Identifying one arm out of the bestm, in an n-armed stochas-
tic bandit is an interesting problem identified by Roy Chaud-
huri & Kalyanakrishnan (2017). They have mentioned the
scenarios where identifying the best subset is practically
infeasible. However, there are numerous examples in prac-
tice that demand efficient identification of multiple good
solutions instead of only one; for example, assigning a dis-
tributed crowd-sourcing task, identification of good molecu-
lar combinations in drug designing, etc. In this paper, we
present (k,m, n)—a generalised problem of identifying k
out of the best m arms. Setting k = 1, (k,m, n) reduces
to selection of one out of the best m arms, while setting
k = m, makes it identical to “subset-selection” (Kalyanakr-
ishnan & Stone, 2010). We have presented a lower bound
on the sample complexity to solve (k,m, n). We have also
presented a fully sequential adaptive PAC algorithm, LUCB-
k-m, that solves (k,m, n), with expected sample complexity
matching up to a constant factor that of F2 (Roy Chaudhuri
& Kalyanakrishnan, 2017) and LUCB1 (Kalyanakrishnan
et al., 2012) for k = 1 and k = m, respectively. Through
an empirical comparison on different problem instances,
we have shown that LUCB-k-m outperforms F2 by a large
margin in terms of the number of samples as n grows.

For the problem of identification of a single [ε, ρ]-optimal
arm (Roy Chaudhuri & Kalyanakrishnan, 2017) in infinite
bandit instances, the existing upper bound on the sample
complexity differs from the lower bound by a multiplicative
log 1

δ factor. It was not clear whether the lower bound was
loose, or the upper can be improved, and left as an interest-
ing problem to solve by Aziz et al. (2018). In this paper we
reduce the gap by furnishing an upper bound which is opti-
mal up to an additive poly-log term. Further, we show that
the problem of identifying k distinct [ε, ρ]-optimal arms is
not well-posed in general, but when it is, we derive a lower
bound on the sample complexity. Also, we identify a class
of well-posed instances for which we present an efficient
algorithm. Finally, we show how improved upper bounds on
the sample complexity of solving Q-F can translate to im-
proved upper bounds on the sample-complexity of solving
Q-P. However, we conjecture that solving an instance of Q-
F by posing it as an instance of Q-P with uniform sampling
over arms will need more samples. Proving this conjecture
and improving the bounds on the sample complexities are
some interesting directions we leave for future work.

Acknowledgements
SK was partially supported by grants from SERB
(ECR/2017/002479) and Ubisoft India.

(a)

(b)

(c)

Figure 1. 1(a) Comparison of sample complexities of F2 and
LUCB-k-m to solve Q-F with m = n/10, on the five instances
detailed in Section 5. In this and subsequent graphs, the y-axis
shows the average sample complexity over 100 runs, with stan-
dard error bars. 1(b) Comparison between F2 and LUCB-k-m
on the number of pulls received by the camps B1, B2 and B3, for
solving different instances of Q-F on I10, by varying m from 1 to
5. Recall that B1 is the singleton set, with the best arm being the
only member. 1(c) Comparison of number of samples incurred for
solving different instances of (k,m, n) defined on I20, by setting
m = 10, and varying k ∈ {1, 2, 3, 5, 8, 10}. The x-axis shows k.
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A. Lower Bound on the Worst Case Sample Complexity to Solve (k,m, n)

Theorem 3.1. [Lower Bound for (k,m, n) ] Let L be an algorithm that solves (k,m, n). Then, there exists an instance
(A, n,m, k, ε, δ), with 0 < ε ≤ 1√

32
, 0 < δ ≤ e−1

4 , and n ≥ 2m, 1 ≤ k ≤ m, on which the expected number of pulls

performed by L is at least 1
18375 .

1
ε2 .

n
m−k+1 ln

( m
k−1)
4δ .

The proof technique for Theorem 3.1 follows a path similar to that of (Kalyanakrishnan et al., 2012, Theorem 8), but differs
in the fact that any k of the m (ε,m)-optimal arms needs to be returned as opposed to all the m.

A.1. Bandit Instances:

Assume we are given a set of n arms A = {0, 1, 2, · · · , n − 1}. Let I0
def
= {0, 1, 2, · · · ,m − k} and Il

def
= {I : I ⊆

{A \ I0} ∧ |I| = l}. Also for I ⊆ {m− k + 1,m− k + 2, · · · , n− 1}, we define

Ī
def
= {m− k + 1,m− k + 2, · · · , n− 1} \ I.

With each I ∈ Ik−1 ∪ Im we associate an n-armed bandit instance BI , in which each arm a produces a reward from a
Bernoulli distribution with mean µa defined as:

µa =


1
2 if a ∈ I0
1
2 + 2ε if a ∈ I
1
2 − 2ε if a ∈ Ī .

(2)

Notice that all the instances in Ik−1 ∪ Im have exactly m (ε,m)-optimal arms. For I ∈ Ik−1, all the arms in I0 are
(ε,m)-optimal, but for I ∈ Im they are not. With slight overloading of notation we write µ(S) to denote the multi-set
consisting of means of the arms in S ⊆ A.

The key idea of the proof is that without sufficient sampling of each arm, it is not possible to correctly identify k of the
(ε,m)-optimal arms with high probability.

A.2. Bounding the Error Probability:

We shall prove the theorem by first making the following assumption, which we shall demonstrate leads to a contradiction.

Assumption 1. Assume, that there exists an algorithm L, that solves each problem instance in (k,m, n) defined
on bandit instance BI , I ∈ Ik−1, and incurs a sample complexity SCI . Then for all I ∈ Ik−1, E[SCI ] <

1
18375 .

1
ε2 .

n
m−k+1 ln

(
( m
m−k+1)

4δ

)
, for 0 < ε ≤ 1√

32
, 0 < δ ≤ e−1

4 , and n ≥ 2m, where C = 1
18375 .

For convenience, we denote by PrI the probability distribution induced by the bandit instance BI and the possible
randomisation introduced by the algorithm L. Also, let SL be the set of arms returned (as output) by L, and TS be the total
number of times the arms in S ⊆ A get sampled until L stops.

Then, as L solves (k,m, n), for all I ∈ Ik−1

Pr
I
{SL ⊆ I0 ∪ I} ≥ 1− δ. (3)

Therefore, for all I ∈ Ik−1

EI [TA] ≤ C n

(m− k + 1)ε2
ln

((
m

m−k+1

)
4δ

)
. (4)

A.2.1. CHANGING PrI TO PrI∪Q WHERE Q ∈ Ī S.T. |Q| = m− k + 1:

Consider an arbitrary but fixed I ∈ Ik−1. Consider a fixed partitioning of A, into
⌊

n
m−k+1

⌋
subsets of size (m− k + 1)

each. If Assumption (1) is correct, then for the instance BI , there are at most
⌊

n
4(m−k+1)

⌋
− 1 partitions B ⊂ Ī , such that
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EI [TB ] ≥ 4C
ε2 ln

(
1
4δ

)
. Now, as

⌊
n−m
m−k+1

⌋
−
(⌊

n
4(m−k+1)

⌋
− 1
)
≥
⌊

n
4(m−k+1)

⌋
+ 1 > 0; therefore, there exists at least

one subset Q ∈ Ī such that |Q| = m− k + 1, and EI [TQ] < 4C
ε2 ln

(
( m
m−k+1)

4δ

)
. Define T ∗ = 16C

ε2 ln

(
( m
m−k+1)

4δ

)
. Then

using Markov’s inequality we get:

Pr
I
{TQ ≥ T ∗} <

1

4
. (5)

Let ∆ = 2εT ∗ +
√
T ∗ and also let KQ be the total rewards obtained from Q.

Lemma A.1. If I ∈ Ik−1 and Q ∈ Ī s.t. |Q| = m− k + 1, then

Pr
I

{
TQ ≤ T ∗ ∧KQ ≤

TQ
2
−∆

}
≤ 1

4
.

Proof. Let KQ(t) be the total sum obtained from Q at the end of the trial t. As for BI0 , ∀j ∈ Q µj = 1/2 − 2ε, hence
selecting and pulling one arm at each trial from Q following any rule (deterministic or probabilistic) is equivalent to selection
of a single arm from Q for once and subsequently perform pulls on it. Hence whatever be the strategy of pulling one arm
at each trial from Q, the expected reward for each pull will be 1/2− 2ε. Let ri be the i.i.d. reward obtained from the ith

trial. Then KQ(t) =
∑t
i=1 ri and V ar [ri] =

(
1
2 − 2ε

) (
1
2 + 2ε

)
=
(

1
4 − 4ε2

)
< 1

4 . As ∀i : 1 ≤ i ≤ t, ri are i.i.d., we get
V ar[KQ(t)] =

∑t
i=1 V ar(ri) <

t
4 . Now we can write the following:

Pr
I

{
min

1≤t≤T∗

(
KQ(t)− t

(
1

2
− 2ε

))
≤ −
√
T ∗
}

≤ Pr
I

{
max

1≤t≤T∗

∣∣∣∣KQ(t)− t
(

1

2
− 2ε

)∣∣∣∣ ≥ √T ∗}
≤ V ar[KQ(T ∗)]

T ∗
<

1

4
, (6)

wherein we have used Kolmogorov’s inequality.

Lemma A.2. Let I ∈ Ik−1 and Q ∈ Im−k+1 such that Q ⊆ Ī , and let W be some fixed sequence of rewards obtained by
a single run of algorithm L on BI such that TQ ≤ T ∗ and KQ ≥ TQ

2 −∆, then:

Pr
I∪Q
{W} > Pr

I
{W} · exp(−32ε∆). (7)

Proof. Recall the fact that all the arms in Q have the same mean. Hence, if chosen one at each trial (following any strategy),
the expected reward at each trial remains the same. Hence the probability of getting a given reward sequence generated from
Q is independent of the sampling strategy. Again as the arms in Q have higher mean in BQ, the probability of getting the
sequence (of rewards) decreases monotonically as the 1-rewards for BI0 become fewer. So we get

Pr
I∪Q
{W} = Pr

I
{W}

(
1
2 + 2ε

)KQ ( 1
2 − 2ε

)TQ−KQ(
1
2 − 2ε

)KQ ( 1
2 + 2ε

)TQ−KQ
≥ Pr

I
{W}

(
1
2 + 2ε

)(TQ
2 −∆

) (
1
2 − 2ε

)(TQ
2 +∆

)
(

1
2 − 2ε

)(TQ
2 −∆

) (
1
2 + 2ε

)(TQ
2 +∆

)

= Pr
I
{W} ·

( 1
2 − 2ε
1
2 + 2ε

)2∆

> Pr
I
{W} · exp(−32ε∆)

[
for 0 < ε ≤ 1√

32

]
.
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Lemma A.3. If (5) holds for an I ∈ Ik−1 and Q ∈ Im−k+1 such that Q ⊆ Ī , and ifW is the set of all possible reward
sequences W , obtained by algorithm L on BI , then PrI∪Q{W} >

(
PrI {W} − 1

2

)
· 4δ. In particular,

Pr
I∪Q
{SL ⊆ I0 ∪ I} >

δ(
m

m−k+1

) . (8)

Proof. Let for some fixed sequence (of rewards) W , TWQ and KW
Q respectively denote the total number of samples received

by the arms in Q and the total number of 1-rewards obtained before the algorithm L stopped. Then:

Pr
I∪Q
{W} = Pr

I∪Q
(W : W ∈ W)

≥ Pr
I∪Q

{
W : W ∈ W

∧
TWQ ≤ T ∗

∧
KW
Q ≥

TWQ
2
−∆

}

> Pr
I

{
W : W ∈ W

∧
TWQ ≤ T ∗

∧
KW
Q ≥

TWQ
2
−∆

}
· exp(−32ε∆)

≥
(

Pr
I

{
W : W ∈ W

∧
TWQ ≤ T ∗

}
− 1

4

)
· exp(−32ε∆)

≥
(

Pr
I
{W} − 1

2

)
· 4δ(

m
m−k+1

) for C =
1

18375
, δ <

e−1

4
.

In the above, the 3rd, 4th and the last step are obtained using Lemma A.2, Lemma A.1 and Equation (5) respectively. The
inequality (8) is obtained by using inequality (3), as PrI{SL ∈ I0} > 1− δ ≥ 1− e−1

4 > 3
4 .

A.2.2. SUMMING OVER Ik−1 AND Im

Now, we sum up the probability of errors across all the instances in Ik−1 and Im. If the Assumption 1 is true, using the
pigeon-hole principle we show that there exists some instance for which the mistake probability is greater than δ.
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∑
J∈Im

Pr
J
{SL * J}

≥
∑
J∈Im

∑
J′⊂J

:|J′|=m−k+1

Pr
J
{SL ⊆ {J \ J ′} ∪ I0}

≥
∑
J∈Im

∑
J′⊂J

:|J′|=m−k+1

Pr
J
{∃a ∈ I0 : SL = {J \ J ′} ∪ {a}}

=
∑
J∈Im

∑
J′⊂J

:|J′|=m−k+1

∑
I∈Ik−1

11[I ∪ J ′ = J ] · Pr
J
{SL ⊆ I ∪ I0}

=
∑
J∈Im

∑
J′⊂A\I0

:|J′|=m−k+1

∑
I∈Ik−1

11[I ∪ J ′ = J ] · Pr
J
{SL ⊆ I ∪ I0}

=
∑
J∈Im

∑
I∈Ik−1

∑
J′⊂A\I0

:|J′|=m−k+1

11[I ∪ J ′ = J ] · Pr
J
{SL ⊆ I ∪ I0}

=
∑

I∈Ik−1

∑
J∈Im

∑
J′⊂Ī

:|J′|=m−k+1

11[I ∪ J ′ = J ] · Pr
J
{SL ⊆ I ∪ I0}

=
∑

I∈Ik−1

∑
J′⊂Ī

:|J′|=m−k+1

∑
J∈Im

11[I ∪ J ′ = J ] · Pr
J
{SL ⊆ I ∪ I0}

=
∑

I∈Ik−1

∑
J′⊂Ī

:|J′|=m−k+1

Pr
I∪J′
{SL ⊆ I ∪ I0}

Recall that ∀I ∈ Ik−1 there exists a set Q ⊂ A \ {I ∪ I0} : |Q| = (m− k + 1), such that TQ < T ∗. Therefore,

∑
J∈Im

Pr
J
{SL * J}

≥
∑

I∈Ik−1

∑
J′⊂Ī

:|J′|=m−k+1

Pr
I∪J′
{SL ⊆ I ∪ I0}

>
∑

I∈Ik−1

∑
J′⊂Ī

:|J′|=m−k+1

δ(
m

m−k+1

)
≥

∑
I∈Ik−1

(
n−m

m− k + 1

)
· δ(

m
m−k+1

)
≥
(
n− (m− k + 1)

k − 1

)
·
(

n−m
m− k + 1

)
· δ(

m
m−k+1

)
=

(
n− (m+ k − 1)

m

)
δ

= |Im|δ.

Hence, we get a contradiction to Assumption 1, thereby proving the theorem.
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B. Analysis of LUCB-k-m
Let at time t, p̂ta be the empirical mean of the arm a ∈ A, and uta be the number of times the arm a has been pulled

until (and excluding) time t. For a given δ ∈ (0, 1], we define β(uta, t, δ) =
√

1
2uta

ln k1nt4

δ , where k1 = 5/4. We define

upper and lower confidence bound on the estimate of the true mean of arm a ∈ A as ucb(a, t) = p̂a + β(uta, t, δ), and
lcb(a, t) = p̂a − β(uta, t, δ) respectively.

To analyse the sample complexity, first we define some events, at least one of which must occur if the algorithm does not
stop at the round t.

PROBABLE EVENTS. Let a, b ∈ A, such that µa > µb. During the run of the algorithm, any of the following five events
may occur:
i) The empirical mean of an arm may falls outside the upper or the lower confidence bound. We define it as:

CROSSta
def
= {ucb(a, t) < µa ∨ lcb(a, t) > µa}.

ii) The empirical mean of arm a may be lesser than that of arm b; we definite as:

ErrA(a, b, t)
def
= {p̂ta < p̂tb}.

iii) The lower and upper confidence bounds of arm a may fall below those of arm b; we define them as:

ErrL(a, b, t)
def
= {lcb(a, t) < lcb(b, t)},

ErrU(a, b, t)
def
= {ucb(a, t) < ucb(b, t)}.

iv) If an arm’s confidence bounds are above a certain radius (say d), we define that event as

NEEDY ta (d)
def
= {{lcb(a, t) < µa − d} ∨ {ucb(a, t) > µa + d}} .

Let u∗(a, t) def
=
⌈

32
max{∆a,

ε
2}2

ln k1nt
4

δ

⌉
for all a ∈ A, where k1 = 5/4. We show that any arm a, if sampled sufficiently, that

is uta ≥ u∗(a, t), then occurrence of any of the PROBABLE EVENTS imply occurrence of CROSSta. First we show that if
CROSSta does not occur for any a ∈ A, then occurrence of any one of the PROBABLE EVENTS implies the occurrence of
NEEDY ta (·) or NEEDY tb (·).

Lemma B.1. [Expressing PROBABLE EVENTS in terms of NEEDY ta and CROSSta] To prove that {¬CROSSta ∧
¬CROSStb} ∧ {ErrA(a, b, t) ∨ ErrU(a, b, t) ∨ ErrL(a, b, t)} =⇒ {NEEDY ta

(
∆ab

2

)
∨NEEDY tb

(
∆ab

2

)
}.

Proof. ErrA(a,b, t): To prove that ¬{CROSSta ∨ CROSStb} ∧ ErrA(a, b, t) =⇒ NEEDY ta
(

∆ab

2

)
∨

NEEDY tb
(

∆ab

2

)
.

ErrA(a, b, t) =⇒ p̂ta < p̂tb

=⇒ p̂ta − (pa − β(uta, t, δ)) < p̂tb − (pb + β(utb, t, δ)+

(β(uta, t, δ) + β(utb, t, δ))−∆ab/2)

=⇒ NEEDY ta

(
∆ab

2

)
∨NEEDY tb

(
∆ab

2

)
.

ErrU(a,b, t): To prove that ¬{CROSSta ∨ CROSStb} ∧ ErrU(a, b, t) =⇒ NEEDY tb
(

∆ab

2

)
.
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Assuming ¬CROSSta ∧ ¬CROSStb we get

ErrU(a, b, t) =⇒ {ucb(b, t) > ucb(a, t)}
=⇒ {p̂tb + β(utb, t, δ) > p̂ta + β(uta, t, δ)}
=⇒ {p̂tb > µb + β(utb, t, δ)} ∨ {p̂ta < µa − β(uta, t, δ)}∨

{2β(utb, t, δ) > ∆ab}

=⇒ NEEDY tb

(
∆ab

2

)
.

ErrL(a,b, t): To prove that ¬{CROSSta ∨ CROSStb} ∧ ErrL(a, b, t) =⇒ NEEDY ta
(

∆ab

2

)
.

Assuming ¬CROSSta ∧ ¬CROSStb we get

ErrL(a, b, t) =⇒ {lcb(b, t) > lcb(a, t)}
=⇒ {p̂tb − β(utb, t, δ) > p̂ta − β(uta, t, δ)}
=⇒ {p̂tb > µb + β(utb, t, δ)} ∨ {p̂ta < µa − β(uta, t, δ)}∨

{2β(uta, t, δ) > ∆ab}

=⇒ NEEDY ta

(
∆ab

2

)
.

We show that given a threshold d, if an arm a is sufficiently sampled, such that β(uta, t, δ) ≤ d
2 , then NEEDY ta infers

CROSSta.

Lemma B.2. For any a ∈ A, {NEEDY ta (d)|β(uta, t, δ) < d/2} =⇒ CROSSta.

Proof. First, we show that {lcb(a, t) < µa − d|β(uta, t, δ) < d/2} =⇒ CROSSta,

{lcb(a, t) < µa − d|β(uta, t, δ) < d/2}
=⇒ {p̂ta − β(uta, t, δ) < µa − d|β(uta, t, δ) < d/2}
=⇒ {p̂ta < µa − d+ β(uta, t, δ)|β(uta, t, δ) < d/2}
=⇒ {p̂ta < µa − d/2|β(uta, t, δ) < d/2}
=⇒ CROSSta. (9)

The other part follows the similar way.

By the very definition of confidence bound, at any round t, the probability that the empirical mean of an arm will lie outside
it, is very low. In other words, the probability of occurrence CROSSta is very low for all t and a ∈ A.

Lemma B.3. [Upper bounding the probability of CROSSta] ∀a ∈ A and ∀t ≥ 0, Pr{CROSSta} ≤ δ
knt4 . Hence,

P [∃t ≥ 0 ∧ ∃a ∈ A : CROSSta|uta ≥ 0] ≤ δ
k1t3

.

Proof. Pr{CROSSta} is upper bounded by using Hoeffding’s inequality, and the next statement gets proved by taking
union bound over all arms and t.

Now, recalling the definition of ht∗, and lt∗ from Algorithm 1, we present the key logic underlying the analysis of LUCB-k-m.
The idea is to show that if the algorithm has not stopped, then one of those PROBABLE EVENTS must have occurred. Then
using Lemma B.1, and Lemma B.2, Lemma B.3 we show that beyond a certain number of rounds, the probability that
LUCB-k-m will continue is sufficiently small. Lastly, using the argument based on pigeon-hole principle, similar to Lemma
5 of Kalyanakrishnan (2011), we establish the upper bound on the sample complexity. Below we present the core logic that
shows, until the algorithm stops one of the PROBABLE EVENTS must occur.
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Case 1 ht∗ ∈ B1 ∧ lt∗ ∈ B1

if ∃b3 ∈ At1 ∩B3 then
Then ErrL(ht∗, b3, t) has occurred.

else
∃b3 ∈ At2 ∩B3

Then ErrA(ht∗, b3, t) has occurred.
end if

Case 2 ht∗ ∈ B1 ∧ lt∗ ∈ B2

if ∃b3 ∈ At1 ∩B3 then
Then ErrL(ht∗, b

t
3, t) has occurred.

else
∃b3 ∈ At2 ∩B3.

if ∆ht∗l
t
∗
≥

∆ht∗
2 then

Then NEEDY tht∗(∆ht∗
/4) ∨NEEDY tlt∗(∆ht∗

/4) has occurred.
else

Then ErrL(lt∗, b
t
3, t) has occurred.

end if
end if

Case 3 ht∗ ∈ B1 ∧ lt∗ ∈ B3

Then NEEDY tht∗(∆ht∗
/4) ∨NEEDY tlt∗(∆lt∗

/4) has occurred.

Case 4 ht∗ ∈ B2 ∧ lt∗ ∈ B1

if ∆ht∗l
t
∗
≥

∆ht∗
2 then

Then ErrA(lt∗, h
t
∗, t) has occurred.

else
if ∃b3 ∈ At1 ∩B3 then

Then ErrL(ht∗, b
t
3, t) has occurred.

else
∃b3 ∈ At2 ∩B3

∴ ErrA(lt∗, b3, t) has occurred.
end if

end if
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Case 5 ht∗ ∈ B2 ∧ lt∗ ∈ B2 and ∆ht∗l
t
∗
> 0

Here, ∃b1 ∈ (At2 ∪At3) ∩B1 and ∃b3 ∈ (At1 ∪At2) ∩B3

if |∆ht∗l
t
∗
| < ∆ht∗

/2 then
if ∆b1ht∗

> ∆b1/4 then
if b1 ∈ At2) ∩B1 then
ErrA(b1, h

t
∗, t)

else
b1 ∈ At3 ∩B1

ErrU(b1, l
t
∗, t) has occurred.

end if
else

∆b1ht∗
≤ ∆b1/4 and hence ∆lt∗b3

≥ ∆lt∗
/4

if b3 ∈ At2 ∩B3 then
ErrA(lt∗, b3, t) has occurred.

else
b3 ∈ At1 ∩B3

ErrL(ht∗, b3, t) has occurred.
end if

end if
else
|∆ht∗l

t
∗
| > ∆ht∗

/2
NEEDY tht∗

(∆ht∗
/4) ∨NEEDY tlt∗(∆ht∗

/4) has occurred.
end if

Case 5 (continued) ht∗ ∈ B2 ∧ lt∗ ∈ B2 and ∆ht∗l
t
∗
≤ 0

Here, ∃b1 ∈ (At2 ∪At3) ∩B1 and ∃b3 ∈ (At1 ∪At2) ∩B3

if |∆ht∗l
t
∗
| < ∆ht∗

/2 then
if ∆b1lt∗

> ∆b1/4 then
if b1 ∈ At2 ∩B1 then
ErrA(b1, h

t
∗, t) has occurred.

else
b1 ∈ At3 ∩B1

ErrU(b1, l
t
∗, t) has occurred.

end if
else

∆b1lt∗
≤ ∆b1/4 and hence ∆ht∗b3

≥ ∆ht∗
/4

if b3 ∈ At2 ∩B3 then
ErrA(lt∗, b3, t) has occurred.

else
b3 ∈ At1 ∩B3

ErrL(ht∗, b3, t) has occurred.
end if

end if
else
|∆ht∗l

t
∗
| > ∆ht∗

/2
NEEDY tht∗

(∆ht∗
/4) ∨NEEDY tlt∗(∆ht∗

/4) has occurred.
end if
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Case 6 ht∗ ∈ B2 ∧ lt∗ ∈ B3

if ∆ht∗l
t
∗
≥

∆lt∗
2 then

Then NEEDY tht∗(∆/4) ∨NEEDY tlt∗(∆lt∗
/4) has occurred.

else
∆ht∗l

t
∗
<

∆lt∗
2

∴ ∀b1 ∈ {At2 ∪At3} ∩B1, ∆b1ht∗
>

∆b1

2 .
if ∃b1 ∈ At2 ∩B1 then
ErrA(b1, h

t
∗, t) has occurred.

else
∃b1 ∈ At3 ∩B1.
Then ErrU(bt1, l

t
∗, t) has occurred.

end if
end if

Case 7 ht∗ ∈ B3 ∧ lt∗ ∈ B1

∴ ErrA(lt∗, h
t
∗, t) has occurred.

Case 8 ht∗ ∈ B3 ∧ lt∗ ∈ B2

if ∆ht∗l
t
∗
≥

∆ht∗
2 then

ErrA(lt∗, h
t
∗, t) has occurred.

else
∆ht∗l

t
∗
<

∆ht∗
2

∴ ∀b1 ∈ {At2 ∪At3} ∩B1, ∆b1lt∗
>

∆b1

2 .
if ∃b1 ∈ At2 ∩B1 then
ErrA(b1, h

t
∗, t) has occurred.

else
∃b1 ∈ At3 ∩B1.
∴ ErrU(b1, l

t
∗, t) has occurred.

end if
end if

Case 9 ht∗ ∈ B3 ∧ lt∗ ∈ B3

∃b1 ∈ {At2 ∪At3} ∩B1

if ∃b1 ∈ At2 ∩B1 then
ErrA(b1, h

t
∗, t) has occurred.

else
∃b1 ∈ At3 ∩B1

∴ ErrA(b1, l
t
∗, t) has occurred.

end if

Lemma B.4 (H). If T = CHε ln
(
Hε
δ

)
, then for C ≥ 2732, the following holds:

T > 2 + 2
∑
a∈A

u∗(a, T ).

Proof. This proof is taken from Appendix B.3 of Kalyanakrishnan (2011).

2 + 2
∑
a∈A

u∗(a, T ) = 2 + 64
∑
a∈A

⌈ 1

max(∆a, (ε/2))2
ln
knt4

δ

⌉



PAC Identification of Many Good Arms in Stochastic Multi-Armed Bandits

≤ 2 + 64n+ 64Hε ln
knT 4

δ

= 2 + 64n+ 64Hε ln k + 64Hε ln
n

δ
+ 256Hε lnT

< (66 + 64 ln k)Hε + 64Hε ln
n

δ
+ 256Hε

[
lnC + lnHε + ln ln

Hε

δ

]
< (66 + 64 ln k)Hε + 64Hε ln

n

δ
+ 256Hε

[
lnC + lnHε + ln ln

Hε

δ

]
< 130Hε + 64Hε ln

n

δ
+ 256Hε

[
lnC + lnHε + ln

Hε

δ

]
< 130Hε + 64Hε ln

Hε

δ
+ 256Hε

[
lnC + 2 ln

Hε

δ

]
< (706 + 256 lnC)Hε ln

Hε

δ
< CHε ln

Hε

δ
[For C ≥ 2732] .

Lemma B.5. Let T ∗ =
⌈
2732Hε ln

(
Hε
δ

)⌉
. For every T > T ∗1 , the probability that the Algorithm 1 has not terminated

after T rounds of sampling is at most 8δ
T 2 .

Proof. Letting T̄ = T
2 we define two events for T̄ ≤ t ≤ T−1: E(1) def

= ∃a ∈ A : CROSSta andE(2) def
= ∃NEEDY ta

(
∆a

4

)
.

If the algorithm stops for t < T̄ , then there is nothing to prove. On the contrary, let the algorithm has not stopped after
t > T̄ and neither E(1) nor E(2) has occurred. Letting Nrounds be the the required number of rounds beyond T̄ , we can
upper bound it as:

Nrounds =
∑
t=T̄

{
11

[
NEEDY tht∗

(
∆ht∗

4

)
∨NEEDY tmt∗

(
∆mt∗

4

)
∨NEEDY tlt∗

(
∆lt∗

4

)]}

≤
T−1∑
T̄

∑
a∈A

11

[
a ∈ {ht∗,mt

∗, l
t
∗} ∧NEEDY ta

(
∆a

4

)]

=

T−1∑
T̄

∑
a∈A

11[a ∈ {ht∗,mt
∗, l

t
∗} ∧ (uta < u∗(a, t))]

≤
T−1∑
T̄

∑
a∈A

11[a ∈ {ht∗,mt
∗, l

t
∗} ∧ (uta < u∗(a, t))]

≤
∑
a∈A

T−1∑
T̄

11[(a ∈ {ht∗,mt
∗, l

t
∗}) ∧ (uta < u∗(a, t))]

≤
∑
a∈A

u∗(a, t).

Using Lemma B.4, T ≥ T ∗ ⇒ T > 2 + 2
∑
a∈A u

∗(a, t). Hence, if neither E(1) nor E(2) occurs then the algorithm runs
for at most T̄ +Nrounds ≤ dT/2e+

∑
a∈A 16u∗(a, t) < T number of rounds.

The probability that the algorithm does not stop within T rounds, is upper-bounded by P [E(1)∨E(2)]. Applying Lemma B.2
and Lemma B.3,

P [E(1) ∨ E(2)] ≤
T−1∑
t=T̄

(
δ

k1t3
+

δ

kt4

)
≤
T−1∑
t=T̄

δ

k1t3

(
1 +

2

t

)
≤
(
T

2

)
8δ

k1T 3

(
1 +

4

T

)
<

8δ

T 2
.
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Theorem 3.2. [Expected Sample Complexity of LUCB-k-m ] LUCB-k-m solves (k,m, n) using an expected sample
complexity upper-bounded by O

(
Hε log Hε

δ

)
.

Using Lemma B.4, and Lemma B.5 the expected sample complexity of the Algorithm 1 can be upper bounded as

E[SC] ≤ 2

T ∗1 +

∞∑
t=T∗1

8δ

T 2

 ≤ 5464 ·
(
Hε ln

(
Hε

δ

))
+ 32. (10)
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C. Proof of Theorem 4.7
Algorithm 4 describes OPTQP. It uses P2 (Roy Chaudhuri & Kalyanakrishnan, 2017) with MEDIAN ELIMINATION as the
subroutine (inside P2), to select an [ε, ρ]-optimal arm with confidence 1− δ′. We have assumed δ′ = 1/4, in practice the
one can choose any sufficiently small value for it, which will merely affect the multiplicative constant in the upper bound.

Algorithm 4 OPTQP
Input: A, ε, δ, and OPTQF.
Output: A single [ε, ρ]-optimal arm

Set δ′ = 1/4, u =
⌈

1
2(0.5−δ′)2 · log 2

δ

⌉
=
⌈
8 log 2

δ

⌉
.

Run u copies of P2(A, ρ, ε/2, δ′) and form set S with the output arms.
Return the output from OPTQF

(
S, u, bu2 c, 1,

ε
2 ,

δ
2

)
.

Theorem C.1. [Correctness and Sample Complexity of OPTQP] If OPTQF exists, then OPTQP solves Q-P, within the
sample complexity Θ

(
1
ρε2 log 1

δ + γ(·)
)

.

Proof. First we prove the correctness and then upper bound the sample complexity.

Correctness. First we notice that each copy of P2 outputs an [ε/2, ρ]-optimal arm with probability at least 1− δ′. Also,
OPTQF outputs an [ε/2, ρ]-optimal arm with probability 1 − δ. Let, X̂ be the fraction of sub-optimal arms in S. Then
Pr{X̂ ≥ 1

2} = Pr{X̂ − δ′ ≥ 1
4} ≤ exp(−2 · ( 1

4 )2 · u) = exp(−2 · 1
16 · 8 log 2

δ ) < δ
2 . On the other hand, the mistake

probability of OPTQF is upper bounded by δ/2. Therefore, by taking union bound, we get the mistake probability is upper
bounded by δ. Also, the mean of the output arm is not less than ε

2 + ε
2 = ε from the (1− ρ)-th quantile.

Sample complexity. First we note that, for some appropriate constant C, the sample complexity (SC) of each of
the u copies of P2 is C

ρ(ε/2)2

(
log 2

δ′

)2 ∈ O
(

1
ρε2

)
. Hence, SC of all the u copies P2 together is upper bounded

by C1·u
ρε2 , for some constant C1. Also, for some constant C2, the sample complexity of OPTQF is upper bounded by

C2

(
u

(u/2)(ε/2)2 log 2
δ + γ(·)

)
= C2

(
8
ε2 log 2

δ + γ(·)
)
. Now, adding the sample complexities, and substituting for u we

prove the bound.


