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1 INTRODUCTION

Trading and portfolio optimisation (PO) are two of the most prominent activities in finance. While PO deals with
managing a portfolio of financial assets, trading focuses on a single financial asset. Most practitioners use domain
knowledge to formulate manual strategies for trading and PO. This process is time-consuming and prone to behavioural
biases like overreaction [46], overconfidence [63], regret [14], loss aversion [92], etc. The dynamic nature of financial
markets makes it difficult even for specialists to formulate profitable strategies consistently [82]. Recently, algorithmic
trading has gained popularity by reducing the manual workload of traders. It also leads to stable trading as it suppresses
the impact of human emotions. Contemporary automated systems in finance are mainly used for drawing inferences
from the vast amounts of available data and executing trades, based on the rules fed by humans, at faster speeds [181].
However, the crucial decision-making aspect is still predominantly handled by humans. Intelligent systems are needed
which can discover profitable strategies for trading and PO.

Researchers have proposed systems for trading and PO using supervised learning [39, 62]. However, some limitations

of such systems include poor availability of accurate labels and the dynamic nature of ever-changing financial markets.
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RL [175] is a learning approach in which an agent continuously interacts with its environment and learns through trial
and error. RL is one of the most natural approaches for sequential decision-making problems like trading and PO due to
its ability to handle delayed feedback and dynamic environments. Additionally, the agent-environment framework of RL
allows easier incorporation of practical considerations like transaction costs, risk preferences, etc. EC [54] is a class of
population-based search metaheuristics, inspired by biological evolution, that work even when the objective function is
non-linear, non-convex, non-differentiable, and non-unimodal. EC is quite helpful in finance as the objective functions
become non-differentiable after incorporating practical considerations like transaction costs, risk preferences, etc.

Learning and evolution have contributed significantly to the development of intellectual capabilities in living
organisms. Learning assists individuals in adapting to new situations while evolution leads to genetically superior
populations across generations. Hinton et al. [75] have made one of the initial attempts to study interactions between
learning and evolution. Ackley et al. [4] hybridise genetic evolution and reinforcement learning. Whiteson et al. [190]
investigate how EC can improve RL and vice versa. EC has been used to improve RL in terms of better function
approximation [190], selecting better state features [50], etc. Also, RL has been shown to assist EC in hyperparameter
adaptation [178], balancing exploration-exploitation trade-off [190], etc. We use the term EC+RL for referring to
techniques that hybridise EC and RL. EC+RL hybrids have been successfully used to solve various problems like
feature selection [19], nuclear fuel assembly [148], satellite scheduling [166], sorting [189], spam bot detection [104],
etc. Drawing inspiration from the success of EC+RL hybrids in other domains, researchers have applied EC+RL hybrids
for financial applications like trading [50, 82, 201] and portfolio optimisation [7]. This paper presents a detailed survey
of EC+RL hybrids proposed for financial applications like trading and PO.

Motivation for the survey. In literature, there exist many recent survey papers [57, 71, 125, 133, 174] focusing
on applications of RL in finance. However, none of them specifically focuses on EC+RL techniques in finance. On the
other hand, there also exist survey papers [11, 53, 167, 191, 205] which focus on EC+RL techniques but none of them
specifically focus on financial applications. The finance domain has its intricacies in terms of the non-stationary, noisy,
and chaotic nature of financial data. Although EC and RL have been independently used to tackle trading and PO in
various research studies [103, 130, 135, 141, 172], there are multiple limitations. Incorporating practical considerations
like transaction costs, risk preferences, etc. leads to a non-differentiable objective function that cannot be optimised
using gradient-based RL approaches. EC can help RL in developing realistic solutions to financial problems due to
its ability to handle non-differentiable objective functions. EC has also been used to evolve a population of RL-based
trading agents that provide more robust judgement compared to a single trading agent. In PO, rules for asset selection
have also been dynamically evolved. Financial applications like trading and PO are sequential decision-making tasks in
which a decision is made at every time step. The decision at the next step is often influenced by the choice of actions
in the previous time steps. However, most works using EC for finance utilise single-period formulation and neglect
the sequential component. This leads to temporally incoherent decisions, resulting in higher transaction costs. RL can
assist EC in this regard through its sequential decision-making framework. Thus, it is evident that EC and RL possess
complementary strengths and their hybrids can significantly alleviate their limitations while amplifying their strengths.
Using EC+RL hybrids can prove to be highly beneficial in the finance domain and this survey precisely captures that
aspect. To the best of our knowledge, the literature does not contain a survey article at the intersection of RL, EC
and finance (Fig. 1). This paper aims to fill the existing void by providing an exhaustive survey of EC+RL techniques
proposed for two important financial applications: trading and PO.

Intended audience. The main intended audience of this survey paper includes practitioners who intend to use

intelligent systems for executing trades and managing portfolios. Secondly, researchers working on EC+RL hybrids
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Fig. 1. This paper surveys EC+RL hybrids proposed for financial applications. We also present brief reviews of RL in finance (Section
2.4), EC in finance (Section 2.5) and EC+RL hybrids in general (Section 2.6).

can also find this survey paper useful. Lastly, the survey paper might be of general interest to researchers, educators,
engineers, technologists, etc.

Theme of the survey. This paper focuses on two important financial applications: trading and PO (Fig. 2a). We
classify EC+RL techniques in finance into two major categories (Fig. 2b). In the first category, RL is the main driver
technique which provides the final decision while EC assists RL in arriving at that decision. In the second category, EC
is the main driver technique that provides the final decision while RL assists EC in arriving at that decision. Both these
categories are further classified on the basis of whether the hybrids are tightly coupled or loosely coupled. In tightly
coupled approaches, RL and EC are closely bound and can not function without each other. On the other hand, in loosely
coupled approaches, the binding is not tight and both EC and RL can operate independently of each other. Loosely
coupled approaches simply focus on using one technique to improve some particular aspect of the other technique. The
theme of the survey is succinctly captured by Fig. 3. EC has been shown to improve RL in a tightly coupled manner for
gradient-free policy search (Section 3.1), state feature selection (Section 3.2), evolving population of trading agents
(Section 3.3), evolving rules for asset allocation (Section 3.4), and controlling overfitting (Section 3.5). In terms of loose
coupling, EC improves RL in selecting state features (Section 4.1), searching hyperparameters (Section 4.2), tuning
technical indicators (Section 4.3), and generating labels (Section 4.4). The tightly coupled ways of improving EC using
RL include dynamic indicator selection (Section 5.1) and generating signals for EC algorithms (Section 5.2). RL improves
the performance of EC in a loosely coupled manner by adapting hyperparameters (Section 6).

Organisation of the paper. The remainder of the paper is organised as follows: Section 2 provides the required
background in RL, EC, and finance. Section 3 surveys the approaches where EC helps RL in a tightly coupled manner
for financial applications. Section 4 focuses on loosely coupled approaches that utilise EC to improve RL for financial
applications. Section 5 and 6 present techniques where RL assists EC for financial applications in tightly and loosely
coupled manner respectively. Section 7 discusses the research gaps in the existing literature and presents some open
problems. Section 8 concludes the paper. We describe the paper collection methodology in Appendix A. The table of

abbreviations is presented in Appendix B while the table of notations is presented in Appendix C.
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Fig. 2. Distribution of the surveyed papers (a) based on whether the financial application is trading or portfolio optimisation (b)
based on whether EC helps RL or RL helps EC in finance.

Gradient-free

policy search
State feature
selection
Evolving Pyr:lamic
trading agents . ; . . izl 7
EC improving RL improving selection
Evolving rules for RL : tightly EC: tightly
. -1 coupled —_ — coupled
asset selection
approaches approaches
Controlling _| ~ (Section3) EC+RL (Section 5) s?‘::;f:?i'r"fc
overfitting techniques aglgorithms
in
EC improving JLELE RL improving
RL : loosely EC :loosely
State feature ____ coupled - L coupled Hyperparameter
selection approaches approaches adaptation
(Section 4) (Section 6)

Hyperparameter _|
search

Tuning technical _|
indicators

Label
generation

Fig. 3. Classification of EC+RL techniques in finance. Each classification category (in yellow) has its dedicated section with the leaf
nodes discussed in corresponding subsections.

2 BACKGROUND

This section provides the required background in RL, EC, and finance. The finance domain comprises many sequential
decision-making problems that have been modelled using RL and EC. We discuss two of them in detail: trading and
portfolio optimisation. We also present brief surveys on RL in finance, EC in finance and EC+RL hybrids in general.
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2.1 Reinforcement learning

Reinforcement learning [175] is a learning approach in which an agent learns by interacting with its environment
through trial and error. Based on the current state, an agent takes a suitable action and consequently, the environment
provides it with a reward and the next state. Fig. 4 depicts the typical agent-environment interaction for sequential
decision-making. In finance, decision-making algorithms act as agents while the financial markets are treated as
environments. RL models the environment as a Markov decision process (MDP) represented by the 5-tuple (S, A, T, R, y),

where

o S denotes the set of states that the agent can be present in.

o A denotes the set of actions that the agent can take.

e T:SxXAXS — [0,1] denotes the transition function. Fors, s’ € S, a € A, T(s,a,s’) represents the probability
of moving to state s” from state s if the agent picks action a.

® R:SXAXS — [—Ruyax, Rmax], for some Ry > 0, denotes the reward function. Fors, s’ € S, a € A, R(s,a,s’)

represents the reward obtained by the agent if it moved to state s” from state s by choosing action a.

v € [0, 1) denotes the discount factor. Smaller y means lesser importance to future rewards.

The agent follows a policy 7 : S— A. The value function of policy x is denoted by V7 : S — R. V”(s) denotes the
value of state s under policy 7. The value of a state under policy 7 means the expected long-term discounted cumulative

reward obtained by the agent if it starts in that state and chooses actions according to policy z. For s € S,
def
V(s) S Bx[ro+yn+yra+y’nm+.. Is=s|, )

where r; denotes the reward obtained at step ¢ € {0, 1,2, 3, ...} and sy denotes the state at t = 0. Larger V" (s) is better.
The goal of RL is to maximise the long-term discounted cumulative reward. Q" : S X A — R denotes the action-value
function under policy 7. Q" (s, a) denotes the expected long-term discounted cumulative reward obtained by the agent

if it starts in state s, taking action a at t = 0, and following policy  afterwards. For s € S,a € A,

Q7 (s,a) =R [ro +yr+ Y+ .. | so =s;a0 = asar = 7w (s;) fort > 1], (2)
where 7, s; and a; denote the reward, state, and action respectively at time step t € {0,1,2,3,...}.

The agent does not have complete information about the environment dynamics. It can learn by interacting with the
environment using algorithms based on value function, policy, or both. Value-based approaches, also called critic-only
approaches, focus on learning the optimal action-value function and use it to obtain the policy. Some popular examples
of value-based approaches include Q-learning (QL) [186] and state—action-reward-state—action (SARSA) [154]. Policy-
based approaches, also called actor-only approaches, focus on learning the optimal policy directly without involving
the action-value function. If the policy 7 is parameterised by parameter vector 6, various algorithms can be used to
optimise for 6 using the objective function J(6) = V"0 (s)), where sy denotes the start state. J(6) can be expressed as
follows (see Sutton and Barto [175], Chapter 13):

J(8) =" 1™ (s,50) " 7p(als)Q™ (s, ), 3)
SES acA
where p0 denotes the on-policy distribution under my with the start state s,. Here, g is a stochastic policy that

assigns a probability distribution over the set of actions A as opposed to a deterministic policy that specifies a single
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Fig. 4. Reinforcement learning framework (adapted from Sutton and Barto [175]).

action for each state. If J(0) is differentiable with respect to 8, good values of 8 can be searched using the following

stochastic gradient ascent updates:

0141 < 0; +aVe](0;), 4

where « denotes the learning rate. The policy gradient (PG) theorem states that:

Vo (8) < Y 1™ (s,50) ) Q™ (s,a)Voro(als). (5)
SES acA
Various PG algorithms [176] have been proposed using the foundation laid by the PG theorem. Suppose 7y is used

to generate a trajectory (s, ag, ro, S1, a1, 71, - - -, ST), Where sy denotes the terminal state of the episode. The vanilla PG

method estimates the gradient using:

T-1
VoJ(6) & Ery | > Q™ (s1,01) Vo Inm(arls,) | (6)

=0
Although there is no bias in vanilla PG updates, they introduce a high variance. REINFORCE [192] uses the returns
estimated by Monte-Carlo methods to compute Vg J(8). For reducing the variance of PG methods, a baseline like V70 (s)

is subtracted from Q™ (s, a) in Eq. (6), giving rise to the advantage function A" (s, a) defined as:

AT0(s,a) = Q™ (s,a) = V7(s). ™)

Trust region policy optimisation (TRPO) [157] focuses on improving training stability by imposing a KL-divergence
constraint on the size of the PG parameter update, which ensures that policy does not change significantly in a single
step. Proximal policy optimisation (PPO) [158] simplifies the TRPO constraint by using a clipped surrogate function.
Actor-critic approaches [97] combine value-based approaches and policy-based approaches to get the best of both worlds.
Some popular examples of actor-critic methods include advantage actor-critic (A2C) [38], asynchronous advantage
actor-critic (A3C) [126] and soft actor-critic (SAC) [70].

Traditional RL approaches maintain value function and policy using tables that are updated as the agent accumulates
more experience by interacting with the environment. However, when dealing with large and continuous state or action
spaces, tabular approaches become infeasible. In such complex scenarios, function approximators are needed. Neural
networks are one of the most popular function approximators. The use of neural networks in reinforcement learning
gave rise to deep reinforcement learning (DRL) [58]. DRL uses neural networks for maintaining value function and
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policy. Recently, the usage of DRL has resulted in many successful breakthroughs in various domains [127, 161-163].
A taxonomy of RL algorithms is given in Appendix D while Appendix E presents a summary of the various design

choices made in the literature for state features, actions, reward functions, etc. to tackle trading and PO.

2.2 Evolutionary computation

Evolutionary computation [54] approaches are population-based search metaheuristics [149] that work even when the
objective function is non-linear, non-convex, non-differentiable and non-unimodal. EC algorithms take inspiration from
biological evolution to guide the search process. We depict the typical flow of an EC algorithm in Fig. 5. EC approaches
begin with a population of P randomly generated candidate solutions {x,x%..., XP} where x' = (x{, xé, ., xiD) denotes
the i*? candidate solution in the D—dimensional search space. In evolutionary terminology, a candidate solution x' is
referred as a chromosome with D genes {x/,x},..., x5 }. The quality of the candidate solutions is evaluated using a
fitness function f that maps good solutions to higher fitness values while bad solutions are assigned lower fitness values.
Suppose an EC algorithm is used to minimise the sphere objective function, g(x) = ?:1 (xj)?, whose optimal value lies
at the origin. In this case, the fitness function can be formulated as f(x) = —||x||, where ||x||, denotes the l,-norm. In
EC algorithms, the next generation of candidate solutions is derived from the current generation of candidate solutions
by applying two evolutionary operators: crossover and mutation. The crossover and mutation operators are inspired by
biological crossover and mutation. The crossover operator, also called the recombination operator, takes two candidate
solutions and combines their genes to produce two new candidate solutions. The mutation operator takes one candidate
solution and perturbs some of its genes to produce a new candidate solution. Suppose the candidate solutions are
represented as binary vectors. In this case, the crossover operator splits two candidate solutions at the same point
and exchanges their tails while the mutation operator simply flips some of the bits of the candidate solution. We refer
the reader to Eiben and Smith [54] for further details. Over the generations, the fitness of candidate solutions keeps
improving and eventually, the candidate solution with the best fitness in the last generation is chosen as the final
solution. Some common stopping criteria include specifying the maximum number of generations, terminating when
the fitness improvement saturates, etc. The biggest advantages of EC algorithms include gradient-free optimisation,
inherent parallelisation and excellent empirical performance.

There are different types of EC algorithms based on the data structure used for the representation of candidate
solutions. Genetic algorithm (GA) [81] is inspired by the biological evolution of chromosomes and is used to solve
optimisation problems by evolving a population of vectors. Genetic programming (GP) [98] extends the expressibility of
GA by replacing vectors with tree structures. However, GP faces scalability issues as the search space grows exponentially
with an increase in the depth of the tree. Genetic network programming (GNP) [76] is an improvement over GP which
uses directed graphs to represent candidate solutions instead of trees. The directed graph structures used by GNP are
quite compact as nodes can be reused and connections between nodes exist only if necessary. GNP node transitions
begin from a designated start node and continue on the basis of directed edges. Thus, the directed graph structure of
GNP acts as an implicit memory function and gives it the capability to deal with repetitive processes. There are two
types of nodes in GNP: judgement nodes and processing nodes. Judgement nodes are meant just for determining the
next node while processing nodes execute the actual actions like buying or selling stocks. There are no terminal nodes
in GNP so time delays are used to implement termination criteria.

Differential evolution (DE) [171] is a popular EC algorithm that uses distance and direction information from the
current population to guide the search process. Evolutionary strategies (ES) [16] form another popular class of EC

techniques that perform self-adaptation of hyperparameters by incorporating hyperparameters alongside parameters
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Fig. 5. Typical flow of an EC algorithm (adapted from Kachitvichyanukul [90]).

in the solution representation. Apart from biological evolution, researchers have also taken inspiration from natural
processes like group behaviour of living organisms to propose swarm intelligence algorithms like particle swarm
optimisation (PSO) [94]. We provide a taxonomy of nature-inspired algorithms in Appendix D. Additionally, artificial
processes like annealing from metallurgy have been used as inspiration to propose algorithms like simulated annealing
(SA) [96]. It is worth noting that SA is a point-based search algorithm, unlike EC algorithms which use a population of

candidate solutions.

2.3 Finance

Traders and investors are two important elements of the finance domain. Traders indulge in short-term trades while
investors focus on long-term investments. Investors base their decisions on fundamental analysis while the decision-
making of traders involves technical analysis. Fundamental analysis [67, 100] deals with estimating the intrinsic value of
financial assets. This involves the study of the economy, industry conditions, business, financial reports, etc. Technical
analysis [3, 134] involves studying price charts of financial assets to identify patterns and trends using a variety of
technical indicators like moving average, momentum, etc. Technical indicators are functions of prices of financial assets
or other market data like trading volumes, open interest, etc. Technical indicators help in discovering trends in prices,
reversal of trends, and various fluctuations in prices. Some indicators work better in trending markets while others
work better in neutral markets. Fundamental analysis and technical analysis aid in decision-making by predicting the
rise or fall of prices in the upcoming future. Both fundamental analysis and technical analysis are tedious tasks and
require a lot of time and effort. Many people hire a financial advisor to assist them in trading or investment-related
decisions. Traders and investors consider a wide variety of financial assets like currencies, stocks (also called equities),
indices, exchange-traded funds (ETF), bonds, commodities, and derivatives (Fig. 6). Researchers have shown that the risk
associated with a portfolio of assets is lower than that of an individual asset provided that the assets are not perfectly
correlated [206]. This is an intuitive implication of Jensen’s inequality which claims that the mean of the payoffs will
always be larger than or equal to the payoff of the mean outcome. Due to this, portfolios are constructed in a manner
that leads to maximum diversification of chosen financial assets.

Portfolio optimisation (PO) is a challenging task of capital allocation among a portfolio of assets to maximise
risk-adjusted returns. Suppose the portfolio contains N assets which are to be managed for a horizon of Ty time-periods.
The duration of the period can vary from a day to a year based on the preferences of the fund manager. A cash reserve
is also maintained and is typically considered part of the portfolio. Each asset 1 < i < N has a price p! corresponding to
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Fig. 6. Choice of financial assets used for testing performance in the surveyed papers.

each period 1 < t < Ty. For each period 1 < t < Ty, the decision-making task in PO is to determine nf , the number
of units of asset i to have in the portfolio for the period t. If n! > n!~!, then (n! — n!~") units of asset i are bought by
spending (n! —n!™1) - p!. If n! < n!~!, then (n!~' — n!) units of asset i are sold resulting in earnings of (n!™! —n!) - p!.In
both scenarios, transaction cost cf =c- |nf - nf -1 pf is incurred, where c is a market-dependent constant. Transaction
costs are typically expressed in basis points (1 bp = 0.01%). The need for rebalancing portfolios stems from the varying

rates at which asset prices grow. After period ¢, the portfolio’s total value is

N N t
R R WIE ®
i=1

i=1 t'=1

Conventionally, the portfolio for period ¢ is represented as a vector of non-negative weights (w!, wj, ..., wk;), where
R
the main task in PO is to specify the portfolio weight vector (w}, w}, ..., wk). The portfolio return corresponding to

. . t_pt-1
period ¢ is defined as r* = RR,}EI

minimise the associated risk. Risk is typically measured in terms of the standard deviation of portfolio returns and

Zﬁl w!=landw! = represents the fraction of the portfolio’s value corresponding to asset i. For each period t,

. The main objective of PO is to maximise the portfolio returns and simultaneously

drawdowns. Consider a non-increasing sequence of portfolio values (R*, Ri*1, Ri+2  R2)for0 < t; < t, < Ty. A

drawdown measures the biggest fall in portfolio value and is defined as:

R —R"2
TR ©)

A wide variety of metrics have been proposed for measuring risk-adjusted return. Let 7 denote the average return

Drawdown =

of the portfolio and ry denote the risk-free rate. The risk-free rate indicates the return rate on risk-free assets like
government bonds. Next, we give a brief description of some popular risk-adjusted return metrics.

Sharpe Ratio: It is one of the most popular measures of risk-adjusted return. It indicates the excess return achieved
by the portfolio, in comparison to a risk-free asset, per unit risk. Sharpe ratio [160] uses the standard deviation of
returns as a measure of risk and is defined as:

=y
Sharpe ratio = . (10)
o

where o denotes the standard deviation of portfolio returns.
Sortino Ratio: It is defined similarly to the Sharpe ratio except that it uses downside deviation as the risk measure
instead of standard deviation. Downside deviation is defined as the standard deviation of portfolio returns that are
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negative. Sortino ratio is defined as:

f—rf

(11)

Sortino ratio =

where 0~ denotes the downside deviation of portfolio returns.
Calmar Ratio: It uses maximum drawdown as the risk measure instead of deviation of returns. Maximum drawdown
refers to the largest drawdown encountered during the course of investment. Calmar ratio is defined as:
r— re

Calmar ratio = , (12)
max

where D,,,, denotes the maximum drawdown.

Sterling Ratio: It is similar to the Calmar ratio except that it uses the average drawdown as a measure of risk instead
of the maximum drawdown. Average drawdown refers to the average of all drawdowns encountered during the course
of investment. Sterling ratio is defined as: .

Sterling ratio = - rf, (13)

avg

where D,y denotes the average drawdown.

Even after diversification, determining optimal asset proportions in a portfolio is challenging due to the dynamic
nature of financial markets, resulting in uncertainty around future asset prices. Negatively correlated assets might
become positively correlated later due to mergers and acquisitions leading to an extra element of uncertainty in PO.
Furthermore, the possible choices for constructing a portfolio are humongous: stocks, bonds, commodities, currencies,
derivatives, etc.

Despite the aforementioned advantages of diversification, many practitioners participate in trading on a single
financial asset. Trading can be viewed as a special case of PO with the portfolio containing just a single financial asset
alongside a cash reserve. PO is the general case of trading in which we trade on more than one asset. For each period
1 < t < Ty, the decision-making task in trading is determining n’, the number of units of the asset to own for the
period t. Trading is modelled as a continuous control task in terms of number of units of asset to trade, A+ = n’ — nf™1,
for each period 1 < t < Ty, to maximise risk-adjusted return. Some works consider A, to be a constant quantity and
formulate trading as a discrete control problem with the action set {buy, sell, hold}. Traders enter a long position when
they make a purchase, a short position when they make a sale and a neutral position when they are holding zero units
of a financial asset.

Trading and PO are control problems where the task is determining optimal actions at each time step to maximise
long-term gains. Trading and PO are challenging tasks due to the uncertainty surrounding future asset prices. The prices
of assets are not only influenced by demand and supply but also by a wide variety of external factors like government
policies, geo-political situations, crude oil, currency exchange rates, pandemics, wars, etc. Quite often, a practitioner
buys an asset and its price decreases and vice versa. Financial markets are dynamic and contain a significant amount of
noisy data, adding to the complexity of trading and PO. Additionally, there are practical constraints like transaction
costs, capital gain taxes, slippage in prices due to order placement delays, etc. which eat up a chunk of profits, making
it hard to generate profits consistently.

PO has been modelled using a wide variety of approaches, with many originating from the finance domain itself.
The fixed allocation ratio strategy focuses on maintaining predetermined allocation ratios, based on risk preferences,
by rebalancing the portfolio once or twice a year. The maximum diversification strategy maximises the diversity of
a portfolio by selecting minimally correlated assets. Stochastic portfolio theory focuses on constructing portfolios
that have the capability of outperforming benchmark market indices like the Standard and Poor’s 500 (S&P 500). The
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mean-variance (MV) portfolio optimisation [122], introduced by Markowitz in 1952, is a classical 2-step approach for
PO. Firstly, it estimates the expected returns and obtains a covariance matrix of the prices of financial assets. Then,
it either maximises the returns for a given risk level or minimises the risk for a specified portfolio return to obtain
profitable portfolio allocations. However, it makes a lot of unrealistic assumptions like zero transaction costs, normal
distribution of returns, etc. Also, estimating expected returns is a challenging task.

Many trading strategies have been proposed by practitioners [40], predominantly based on technical analysis. Some
prominent ones include trend-following strategies, mean-reverting strategies, etc. Researchers have attempted to model
trading using different approaches. Many traditional approaches integrate domain knowledge and formulate financial
problems in a stochastic control framework. These problems are solved analytically by making a lot of simplistic
assumptions. Forecasting approaches have been used extensively for predicting the prices of financial assets over
fixed horizons. Forecasting approaches can provide predictive signals but they do not model trading positions directly.
Mapping of predicted prices to actual trading positions is an overhead. RL can model trading positions as actions and

output them directly, bypassing the forecasting step.

2.4 Reinforcement learning in finance

Researchers have used RL to model various financial applications [59, 141, 180]. Moody et al. [129-132] introduce
recurrent reinforcement learning (RRL) for trading and PO, representing policy using a recurrent neural network
(RNN). They use asset prices as input features and show that policy-based approaches perform better than value-based
approaches like Q-learning. Their work has inspired numerous follow-up investigations [2, 6, 120]. Recently, DRL
approaches have been used extensively to tackle trading and PO. Zhang et al. [202] use deep Q-network (DQN), PG and
A2C for trading. Liu et al. [108] propose multiple PG-based DRL agents like A2C, PPO, DDPG, SAC, etc. for trading
and PO. Yang et al. [195] use an ensemble of A2C, PPO and DDPG agents for stock trading. Sood et al. [168] present a
comparative study between DRL approaches and the MV model for PO. We refer the reader to some recent surveys
[57, 71, 125, 133, 174] for further details on applications of RL in finance.

Gradient-based RL approaches for trading and PO need the objective functions to be differentiable, which becomes
challenging to obtain when incorporating practical considerations like risk preferences, transaction costs, etc. Depending
on their risk appetite, some users impose thresholds on the maximum weight of an asset in the portfolio. Incorporating
transaction costs also introduces non-differentiability in the objective function due to the usage of the absolute value
function. Additionally, some risk-adjusted return metrics are not always differentiable and their approximations have to
be used. EC can help RL in this aspect due to its ability to deal with non-differentiable objective functions. RL algorithms
produce a single solution while EC algorithms can produce a population of solutions, which gives users the flexibility to
choose between multiple solutions. Additionally, EC can also help RL in narrowing down feature sets, evolving trading

agents, searching hyperparameters, etc.

2.5 Evolutionary computation in finance

Similar to RL, researchers have used EC for various financial applications [86]. Trading has been tackled using EC to
discover trading rules. Neely et al. [135] use GP to develop trading rules based on technical indicators. The trading rules
demonstrate good performance on different currency datasets. Dempster et al. [49] use GA to discover trading rules at
regular intervals for better adaptation to dynamic financial markets. Hu et al. [85] provide a detailed survey on the use of
EC for discovering trading rules. Yelleti et al. [183] use multi-objective EC algorithms to develop trading strategies using

technical indicators. PO has been modelled using single-objective [23, 184] as well as multi-objective EC algorithms
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[145, 164], that focus on conflicting objectives like maximising portfolio return and minimising the associated risk.
Many works formulate PO as a single-period investment problem, neglecting the timely rebalancing component. RL
can assist EC in this aspect due to its ability to handle sequential decision-making through its agent-environment
framework. Additionally, RL can help EC in adapting hyperparameters, balancing the exploration-exploitation trade-off,

etc.

2.6 Hybridisation of RL and EC

The performance of EC algorithms depends on their hyperparameters, which are often problem-sensitive, resulting in
poor generalisation. Conversely, RL offers good generalisation but its performance deteriorates in the absence of domain
knowledge [166]. RL is online and can handle changes in the environment. On the other hand, EC is offline by default
and the performance degrades when dealing with dynamic environments. However, the biggest advantage of EC is its
simplicity and inherent parallelisation. Salimans et al. [155] show that ES can be used as a scalable alternative to RL. Due
to their complementary nature, there is an incentive to hybridise RL and EC to get the best of both worlds. Numerous
studies demonstrate that EC can improve the performance of RL and vice versa. EC has been shown to improve RL
in aspects related to function approximation [190], directed exploration [41], generating interpretable policies [74],
improving sample efficiency [95], enhancing stability [137], vanishing gradients [147], improving scalability through
parallelisation [155], etc. On the other hand, RL has been demonstrated to assist EC in hyperparameter adaptation
[178], balancing exploration and exploitation [190], genetic locus selection [106], noisy optimisation [150], etc. EC+RL
hybrids have been successfully used in many applications [19, 104, 148, 166, 189]. We refer the reader to some recent
surveys [11, 53, 167, 191, 205] for further details on EC+RL hybrids.

3 ECIMPROVING RL IN FINANCE - TIGHTLY COUPLED APPROACHES

Many practical objective functions in finance are non-differentiable; making it infeasible to use gradient-based RL
approaches like PG and its variants. Consequently, researchers have used EC for gradient-free policy search (Section
3.1). The finance domain comprises various features like prices, trading volumes, technical indicators, fundamental
features, macroeconomic variables, etc. The selection of state features heavily influences the profitability of RL-based
agents for trading and PO. In Section 3.2, we discuss various works that use EC to select an appropriate set of state
features for RL. Financial environments are non-stationary and hence, strategies that worked in the past might cease
to be profitable. Also, a group of strategies tends to provide more robust judgement compared to a single strategy.
Accordingly, researchers have used EC to evolve a population of trading agents (Section 3.3) and rules for asset selection
in PO (Section 3.4). Lastly, EC has also been used to control overfitting in RL-based trading systems (Section 3.5). In all
these hybridisation approaches, EC is an integral component and RL cannot function in disjunction with EC. Hence,
this section surveys approaches where EC improves RL in a tightly coupled manner for financial applications like

trading and PO (Fig. 3). We present a summary of such techniques in Table 1.

3.1 Gradient-free policy search

Value-based RL approaches face issues related to convergence, the curse of dimensionality, etc., especially in continuous
action spaces. RRL [130] is a policy-based approach that manages to avoid all these issues related to value-based
approaches. However, it has issues of its own like vanishing gradients, exploding gradients, etc., arising due to the use of
backpropagation through time (BPTT) [188] in recurrent neural network (RNN) structure [51]. Many practical objective

functions in finance are non-differentiable. RNNs also face difficulties in modelling long sequences [15]. Consequently,
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Table 1. Summary of approaches where EC improves RL in a tightly coupled manner for financial problems

EC Component RL Component  Improved Aspect

Evolino Recurrent RL Gradient-free policy search [111]

Genetic Algorithm MADDPG Gradient-free policy search [119]
Evolutionary Strategies Policy Search Gradient-free policy search [5, 69]

Genetic Algorithm Q-learning State feature selection [9, 13, 50]

Genetic Algorithm Deep Q-learning Evolving population of trading agents [77, 78]
Genetic Algorithm RL Evolving hierarchy of agents [159]

Genetic Programming  RL Evolving rules for asset selection [22]

Genetic Algorithm Recurrent RL Controlling overfitting [199-201]

gradient-free RL [147] approaches have gained significant attention. Lu et al. [111] propose the use of gradient-free
approaches like ES [17], Nelder-Mead method [136] in place of BPTT. The authors use Evolino [156], an EC approach
that computes optimal mappings between the hidden-layer nodes and the output while evolving the weights connected
to the hidden-layer nodes. The authors use dropout [170] to control overfitting and long short-term memory (LSTM)
[80] networks to overcome the limitations of RNNs. The proposed trading system is more profitable using the Sortino
ratio as the objective function, instead of the Sharpe ratio, when tested on 30-minute interval data from the USD/GBP
exchange rate. Although the authors incorporate transaction costs, they consider fixed position size (A, is constant),
which is quite simplistic.

PG methods like multi-agent deep deterministic policy gradient (MADDPG) [110] face the issue of flat gradients,
resulting in convergence-related issues. Maree et al. [119] use GA instead of gradient-based optimisation to fix the issue
of flat gradients in MADDPG. The proposed system employs four different agents for PO: three for modelling profit,
risk, and sustainability while the last for managing the other three agents. The three agents produce portfolio allocation
(wi, wh, ..., wy,) as actions while the final action is determined by the manager agent based on their weighted average.
All three agents use different reward functions. The agent modelling profit uses the step-wise change in portfolio
value, R* — R'"1, as the reward while the agent modelling risk utilises the Sharpe ratio as the reward. For the agent
modelling sustainability, a novel reward is introduced based on the environmental, social, and governance (ESG) score
[37] of the portfolio assets. ESG score models sustainability and is used as a long-term risk indicator. The reward of
the manager agent is formulated as a weighted combination of the rewards of the other three agents. The GA-based
approach significantly outperforms vanilla MADDPG on a portfolio of three Dow Jones Industrial Average (DJIA)
stocks in terms of profitability, risk, and sustainability. Some limitations of this work include ignoring transaction costs
(c = 0) and the small size of the portfolio (N = 3).

Many existing approaches for PO assume stationarity although financial markets are non-stationary. Ha et al. [69]
propose an evolutionary meta-RL approach for PO to deal with the non-stationarity of financial markets. Their approach
slices the long-term trading activity into multiple short-term activities to improve the adaptation to the dynamic
financial markets. In addition, it has been shown that EC approaches can compete with conventional gradient-based
approaches to train deep neural networks for RL [173]. Ha et al. [69] use ES instead of conventional policy-based RL
methods. Their approach produces better results than multiple baselines on cryptocurrency data. Ala et al. [5] use ES to
avoid gradient-related issues in policy-based approaches for PO.

The use of EC algorithms for training policy networks not only helps in addressing gradient-related issues of PG
methods but also improves robustness to policy initialisation, noise, sparse rewards, long horizons and action frequency
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[73, 147, 155]. The choice of objective functions is no longer restricted to the class of differentiable functions. Also,
the inherent parallelisation of EC algorithms enables speed-up in training time and enhances scalability. Additionally,
gradient-free policy search using EC algorithms opens up the possibility of utilising well-established neuroevolution
approaches that can improve the performance even further [173]. However, care should be taken as some EC algorithms

are prone to entrapment in local optima.

3.2 Selecting state features for RL using EC

Selecting suitable state features for RL is challenging due to the abundance of features in finance: prices, volumes,
technical indicators, fundamental features, etc. Financial features are typically unable to generate profits when used
in isolation [49]. Hence, a combination of financial features is used to generate trading signals. Many works simply
use a combination of popular technical indicators alongside prices as state features without giving a reason behind
their choice [185, 193, 202]. EC has been shown to assist RL in selecting state features for trading. Dempster et al. [50]
have made one of the initial attempts to use EC+RL hybrids for trading. In their previous work [48], the authors use
Q-learning [186] and GP [140] for foreign exchange (FX) trading. However, the Q-learning approach exhibits overfitting
leading to poor generalisation. To address this issue, the authors propose evolutionary reinforcement learning (ERL)
for constraining the inputs to the RL module [50]. GA [81] is used to determine the best possible subset of technical
indicators to be used as state features in the RL module. Eight technical indicators with parameters recommended by
Achelis et al. [3] are considered for selection. The genes of chromosomes (refer Section 2.2) are represented as binary
variables indicating the inclusion or exclusion of corresponding technical indicators. GA is used to search the space of
8-dimensional binary vectors. The fitness function of GA is chosen as the returns generated by the RL module in the
evaluation period using the indicators with gene value 1 as state features. Here, EC and RL are tightly coupled as the
GA module invokes the RL evaluator for fitness calculation (Fig. 7). This has also been done in a loosely coupled manner
as discussed in Section 4.1. The indicators having gene value 1 in the best solution vector found by GA are included as
state features for RL during testing. The authors consider two action sets for RL: {buy, sell} and {buy, sell, neutral}.
The difference in portfolio value between consecutive time steps, R* — R'"1, is chosen as the reward. ERL approach
outperforms vanilla RL for both action sets on 1-minute interval data of three FX rates: GBP/USD, USD/CHF, and
USD/JPY. The proposed system generates profits at transaction costs corresponding to ¢ < 4 bp and the returns are
mixed at ¢ = 10 bp. The importance of neutral action is also demonstrated in the presence of transaction costs. Some
results are shown to be statistically significant using a non-parametric binomial test. However, the authors do not
incorporate risk in the objective function.

Bates et al. [13] incorporate indicators derived from the order book and order flow data alongside technical indicators.
Twelve order book-based indicators are derived from net open orders of different types: take-profit orders, stop-loss
orders, new orders, all orders, etc. These help to model demand and supply pressure in the market. Nine order flow-
based indicators are derived from daily order volume generated by different types of customers: retail, institutional,
speculative, non-speculative, etc. These help in modelling customer behaviour. The proposed system is tested on 3 FX
rates: GBP/USD, USD/EUR and USD/JPY. Superior results are obtained even at high transaction costs corresponding to
¢ =10 bp, implying that there is some merit in considering indicators derived from order book and order flow data
alongside technical indicators. Although the authors incorporate transaction costs, they consider the simple case of
fixed position size (A, is constant).

Austin et al. [9] include price series data alongside technical indicators and generate positive returns on 1-minute

interval FX rates. However, the ERL system is profitable only up to transaction costs corresponding to ¢ = 2 bp. Before
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Fig. 7. Tightly coupled approach for state feature selection proposed by Dempster et al. [50].

integrating order book and order flow data, a statistical analysis is performed to demonstrate that FX rates are indeed
influenced by order book and order flow data. Consequently, gross flow and net flow indicators are derived for four
types of clients: institutional, corporate, speculative, and others. Twelve indicators are derived from order book data
similar to Bates et al. [13]. Tests are conducted on daily data of three FX rates using order flow indicators, order book
indicators, and technical indicators in isolation as well as in combination. When considered in isolation, order book
indicators outperform order flow indicators which in turn outperform technical indicators. The combination of technical
indicators with either order book indicators or order flow indicators produces profits even at high transaction costs
corresponding to ¢ = 10 bp. However, the combination of order book and order flow indicators is relatively less profitable
demonstrating the importance of technical indicators. One limitation of this work is that order flow and order book
data are not publicly available. The authors obtain this proprietary data through HSBC, an important market maker in
FX markets.

Some advantages of using EC algorithms for feature subset selection include their simplicity and minimal requirements
on the optimisation front. Also, EC offers flexibility to use any user-defined fitness function for feature subset selection;
in contrast with approaches like principal component analysis (PCA) which work with their well-defined objective
function. Additionally, the inherent parallelisation of EC algorithms offers increased scalability. However, care should
be taken while choosing the feature set for subset selection using GA as adding an extra feature doubles the search

space. Also, invoking the RL module for fitness calculation is computationally expensive.

3.3 Evolving population of trading agents

Developing RL-based autonomous agents for financial applications is challenging due to issues like reward sparsity,
imperfect information, etc. Also, the actions of agents can impact the environment, especially in small markets. Hirchoua
et al. [78] propose the evolution of a population of deep Q-learning (DQL) agents for trading that learn during their
lifetime and transfer their knowledge to the next generation. This helps in handling situations that the agent has not
encountered before. Additionally, each agent learns from a different dataset to maintain diversity and deal with various

levels of risk and complexity [77]. State space in trading is considered to be partially observable and hence partially
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observable Markov decision process (POMDP) [91] are used instead of usual MDP. Similar to GA [81], this approach
starts with a population of randomly initialised agents. During their lifetime, the agents execute trades and based on
the accumulated reward, a set of best agents are selected for the mutation phase. Elitism is incorporated which retains
the best agent directly in the next generation. Over the generations, evolution enforces the rejection of risky tactics
culminating in stable trading strategies. Eventually, the winner of the final generation is tested against baselines on
eight stocks. The proposed system successfully navigates through six different economic crises as it refines its strategies
by transferring knowledge instead of bothering about seasonal events [55]. Since this work uses a value-based RL
approach, it faces issues related to convergence, the curse of dimensionality, etc., especially in continuous action spaces.

The human brain comprises dense local clusters of neurons capable of different functions [12]. These clusters
specialise in learning a task by adaptation [169]. Serrano et al. [159] propose a hierarchical system for PO that mimics
the human brain by combining different techniques. RL is used for making quick local decisions, neural networks
serve as memory, cluster managers make global decisions and EC transfers learned information to future generations.
The hierarchy of agents comprises asset bankers, market bankers, and a CEO banker. CEO banker is at the top of the
hierarchy with various market bankers under it. Market bankers specialise in a particular type of market, like equities
or bonds, and have a cluster of asset bankers under them. Market bankers can also specialise in the same type of market
but at different risk levels. Asset bankers use RL to learn trading on different assets within the market. The market
banker selects the best asset banker under him and eventually based on the selection of different market bankers, the
CEO banker makes the final investment decisions at the portfolio level. Additionally, the entire hierarchy of agents
keeps evolving and transferring their learning to future generations. The authors use a genetic learning approach
where information is transmitted through network weights rather than the nodes themselves. It has been found that
random genetic changes tend to be more successful than systematic changes as they improve generalisation [142].
Hence, random neural networks [60] are used which imitate the working of biological neurons more accurately than
conventional neural networks. In these networks, signals are transmitted in a spiking manner as impulses rather than in
an analog manner. The proposed system is evaluated on eight assets from bond and derivative markets and promising
results are obtained. Although more robust judgement is obtained using a hierarchy of agents, heavy computation is

required to evolve a population of agents.

3.4 Evolving rules for asset selection

While tackling PO, a real-world portfolio manager often goes through a three-step process. Firstly, the markets are
decided from which assets are targeted for selection in the portfolio. Then, on a timely basis, a set of N potentially
profitable assets are selected in the portfolio. Lastly, the portfolio is rebalanced at some frequency to generate portfolio
allocation (wi,wj, ..., wi,) Casanova [22] proposes the use of RL in conjunction with GP [98] to select a set of N
potentially profitable assets daily. A population of rules for discovering potentially profitable assets is initialised with
each rule having a corresponding portfolio. This population of rules is evolved using portfolio return as the fitness
function. The proposed system is tested on IBEX35 stocks and outperforms some of the best Spanish investment funds.
This approach of pre-screening helps in avoiding bad financial assets becoming a part of the portfolio. Although the
authors consider transaction costs corresponding to ¢ = 20 bp in their work, their objective function does not incorporate
risk. Another limitation of this approach is the heavy computation required to evolve a population of rules for asset
selection. However, the inherent parallelisation ability of EC can help in reducing computation time. Additionally, the

universe of financial assets is huge.
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3.5 Controlling overfitting through elitism

RRL [132] has been used to develop many financial trading systems [2, 6, 120]. Researchers have found that RRL
finds autocorrelations in price changes of high-frequency financial data and hence generates high profits. Most of the
RRL-based research has been conducted for high-frequency trading on stocks and currencies [47, 64]. Very little research
has been done on using RRL for low-frequency trading where the weak autocorrelation might reduce profits [66]. Also,
most of the studies utilise technical analysis while ignoring fundamental analysis and, econometric analysis which hold
high explanatory power, especially in low-frequency trading [100]. Zhang et al. [199] use fundamental and econometric
indicators alongside technical indicators. The best subset of indicators is selected using GA and fed to the RRL module as
state features. The search space of GA comprises a mixture of eight fundamental, technical, and econometric indicators.
This approach of screening indicators using GA is similar to that of Dempster et al. [50] which uses chromosomes with
binary genes to depict the inclusion or exclusion of corresponding indicators. The major contribution by Zhang et al.
[199] is incorporating the concept of elitism by modifying RRL’s parameter update scheme. In EC, elitism refers to
preserving the best candidate solution from the previous generation into the next generation. Maringer et al. [120]
advocate the use of a set of trading agents instead of just one trading agent to explore the search space more effectively.
The trading agent with the best Sharpe ratio in the evaluation phase is termed an elitist trader. The elitist trader is
outperformed by other trading agents in the testing phase indicating signs of overfitting. Average elitism refers to the
use of a set of trading agents instead of just one trading agent and then using their average contributions for parameter
updates. The GA-RRL trading system consists of 100 trading agents from which an elitist set of best-performing trading
agents is selected based on Sharpe ratios obtained during the evaluation phase. All the trading agents in the elitist set
contribute equally to the parameter updates in RRL. The proposed system significantly outperforms the buy-and-hold
and random trading strategy on daily data of 238 S&P 500 stocks. Moreover, the average elitist scheme outperforms
the single elitist trader. The results demonstrate that incorporating average elitism helps in controlling overfitting in
RRL-based trading systems.

Zhang et al. [200] present another RRL parameter update scheme called multiple-elitist to deal with stocks with high
correlation. In this scheme, the parameter updates for a particular stock involve the contribution from other correlated
stocks besides its own contribution. The returns obtained by trading on S&P stocks are profitable and stable. Zhang et
al. [201] extend their GA-RRL approach by incorporating volatility indicators and volume indicators [25] alongside
technical indicators, fundamental indicators, and price series in the state of the RRL module. Average elitism is used
to encounter overfitting. The trading system is evaluated on the daily data of 180 S&P stocks. Out of 100 simulation
traders, five are selected into the elite set based on Sharpe ratios obtained during the evaluation phase. A variant of the
Sharpe ratio is used as the fitness function for GA. The best chromosomes produced by the GA module are obtained for
all 180 stocks. Testing is done in four scenarios based on how the indicators from the best chromosomes discovered by
GA are fed to the RRL module. In the tailored scenario, the indicators from an asset’s best chromosome are fed to RRL
for that asset’s testing. In the general scenario, the indicators that appeared in the best chromosomes of more than
90 stocks are fed to RRL for all the stocks. In the all-in scenario, all 10 indicators are fed to RRL while in the all-zero
scenario, only the prices are fed to RRL without any indicator. The all-zero scenario is equivalent to the vanilla RRL
approach [130]. Since the performance of RRL trading systems might depend on initial parameters, 100 different runs
are performed for each stock. Transaction costs correspond to ¢ = 3 bp. The GA-RRL trading system obtains superior
performance compared to the random trading strategy. While the GA-RRL approach is unable to obtain a higher Sharpe

ratio than the buy-and-hold strategy, it produces more stable results. Apart from the all-zero scenario, returns are
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positive and stable in the other three scenarios establishing the merit in feeding indicators. The best performance of
GA-RRL is obtained in the tailored and general scenario. Also, the standard deviations are higher in the all-in scenario
compared to the tailored and general scenario implying that feeding all indicators leads to increased noise at the RRL
terminal. Thus, a suitable combination of indicators should be used.

It is worth noting that fundamental and econometric indicators are relatively harder to obtain than technical
indicators. Also, since the fundamental and econometric indicators are not updated very frequently, interpolation
has to be applied. One big advantage of incorporating average elitism in EC is that it controls overfitting without
compromising on the diversity of candidate solutions. Multiple elitism is useful in scenarios when the financial assets

are highly correlated.

4 ECIMPROVING RL IN FINANCE - LOOSELY COUPLED APPROACHES

This section surveys approaches where EC improves the performance of RL in a loosely coupled manner for financial
applications (Fig. 3). Recall that selecting appropriate state features for RL in financial applications is challenging due to
the vast number of available features encompassing prices, volumes, technical indicators, fundamental features and
macroeconomic variables. In Section 3.2, we surveyed approaches where EC is used to select a suitable set of state
features for RL in a tightly coupled manner. Researchers have also used EC to select state features for RL in a loosely
coupled manner (Section 4.1). The performance of RL is impacted by the choice of hyperparameters. Due to the dynamic
nature of financial environments, the RL hyperparameters have been searched using EC approaches on a timely basis
(Section 4.2). EC has also been used to tune technical indicators for RL-based trading agents (Section 4.3) and label

generation (Section 4.4). A summary of such techniques is presented in Table 2.

4.1 Selecting state features for RL using EC

Human traders use a set of rules derived from technical indicators to formulate their trading strategies. This activity
is fairly individualised as traders use distinct sets of indicators and interpret the signals differently. Since financial
markets are non-stationary, trading rules exhibit varying effectiveness at different times. Also, different indicators are
useful in different financial markets. Hence, optimal trading rules vary according to the situation and a rule is not
guaranteed to be profitable in all scenarios. Usually, a set of trading rules is used to determine the final decision. A
trading strategy comprises entry and exit rules. Entry rules dictate the conditions of entering a trade (taking a long
or short position) while the exit rules indicate when to return to the neutral position. Hryshko et al. [82] propose
a hybrid trading system that uses GA to search the space of trading strategies formed using subsets of 10 popular
technical indicators. The indicators present in the best strategy discovered by GA serve as state features for the RL
component based on Q-learning. The intuition behind this choice is that if the trading strategy based on a certain set
of indicators is found to be the best by the GA then those indicators are capable of predicting prices. The action set
considered is {buy, hold, sell} while the difference in portfolio value between consecutive time steps, R — R’ ~1 serves
as the reward. The trading system is tested in FX markets on 5-minute interval data of the EUR/USD exchange rate and
generates moderate profits at low transaction costs (c = 2 to 4 bp). However, later the system generates very meagre
profits implying that old technical indicators have become obsolete due to changed market conditions and the GA
module needs to be run again. The loosely coupled hybrid trading system proposed by Hryshko et al. [82] differs in two
ways from the tightly coupled approach of Dempster et al. [50]. Firstly, the chromosomes used by GA of Hryshko et al.
denote trading rules based on conditions dictated by indicators and are of variable length while the chromosomes used

by Dempster et al. depict the inclusion or exclusion of indicators and are encoded as binary vectors of fixed length.
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Table 2. Summary of approaches where EC improves RL in a loosely coupled manner for financial problems

EC Component RL Component  Improved Aspect

Genetic Algorithm Q-learning State feature selection [82-84]
Simulated Annealing RL State feature selection [88]
Differential Evolution Recurrent RL Hyperparameter search [121]
Genetic Algorithm Recurrent RL Hyperparameter adaptation [165]
Particle Swarm Optimisation RL Tuning technical indicators [21]
Differential Evolution Deep Q-learning Label generation [44]
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Fig. 8. Loosely coupled approach for state feature selection proposed by Hryshko et al. [82].

Secondly, the fitness function of Dempster et al. (Fig. 7) uses the returns generated by the RL module in the evaluation
phase while Hryshko et al. do not invoke the RL module for fitness calculation (Fig. 8). Since the trading rules are
capable of executing trades themselves, the Sterling ratio is used as the fitness function. This makes the loosely coupled
approach of Hryshko et al. computationally lightweight. This is particularly helpful in finance as the non-stationary
nature of environments requires the GA module to be invoked on a timely basis. Some limitations of this work include
the simplistic assumption of fixed position size (A, is constant) and ignoring risk in the objective function of RL.
Hryshko et al. [83, 84] extend their hybrid trading system by introducing online and offline modes. In online mode,
the trading system executes trades without human intervention while in offline mode, the trading system provides
analysis to the human trader who makes final trading decisions. Forecasts can also be used as state features in RL. Jamali
et al. [88] propose a trading system that combines various techniques like RL, SA [96], multiple regression, and technical
analysis for FX trading. Multiple regression is used to forecast the FX rates for the next 15 days. SA is used to refine the
forecasts as long forecasts are often less accurate. RL module uses the forecasts as state features and generates trading
actions. The final decision is taken based on the outputs of the RL module and technical analysis performed using the
relative strength index (RSI). If both RL and RSI indicate buy or sell, then only assets are bought or sold. Otherwise, if
RL and RSI disagree, the action taken is hold. The trading system is tested on daily data from the EUR/USD exchange

rate and generates small profits. Some limitations of this work include ignoring risk and transaction costs (¢ = 0).

4.2 Searching optimal hyperparameters

Maringer et al. [120] combine RRL with regime switching (RS), a statistical modelling technique, to deal with situations
where different regimes characterise financial data. The RS-RRL system comprises a transition variable that is used to
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make decisions about switching between regimes. Maringer et al. [121] experiment with 4 different choices of transition
variable and the results show that using volume variable produces a higher Sharpe ratio compared to conditional
volatility, implied volatility, and RSI indicator. DE [171] is used to search the optimal hyperparameters for the RS-RRL
system. RRL’s performance is influenced by its hyperparameter values. Song et al. [165] use GA for adapting RRL’s
hyperparameters. GA not only supplies good initial hyperparameters but also evolves them over time to adapt to
the dynamic financial markets. One limitation of this approach is the heavy computation involved in adapting RRL
hyperparameters using EC on a timely basis. However, computation time can be reduced using parallelisation, an

inherent capability of EC algorithms.

4.3 Tuning technical indicators

Although financial environments are non-stationary, it has been observed that certain patterns are repetitive [109].
Thus, trading systems should not only adjust to market changes but also be able to recognise previously successful
patterns. Technical indicators are functions of prices of financial assets or other market data like trading volumes,
open interest, etc. Technical indicators help to discover price trends, reversal of trends, and various price fluctuations.
Most technical indicators have parameters that are chosen based on financial wisdom. One popular example is the
number of periods for which the moving average is calculated. These parameters can also be tuned using EC to choose
suitable values. Bollinger Band [20] is a technical indicator that utilises the moving average and standard deviation
of prices to generate trading signals. Butler et al. [21] use a modification of learning classifier systems (LCS) [179]
to adapt a population of Bollinger Bands, instead of classifiers as in traditional LCS. These adaptive Bollinger Bands
(ABBs) correspond to time periods of varying lengths. The authors propose a dynamic multi-objective variant of
heterogeneous particle swarm optimisation (HPSO) [56] to tune the parameters of ABBs. The objectives are to maximise
both the profits and trading activity. Similar to LCS, a match set of ABBs is selected based on trading performance
and this match set is used to deduce the suitable action. Based on the action taken, a reward is obtained from the
trading environment in terms of return percentage. The proposed system is tested on simulated as well as real data
and is shown to outperform baselines like the buy-and-hold and canonical Bollinger Bands. This approach of tuning
parameters of technical indicators using EC reduces the reliance on conventionally accepted values. Although the
authors consider transaction costs corresponding to ¢ = 25 bp, they do not incorporate risk in their work. Also, the
objective of maximising trading activity results in higher transaction costs in aggregate. The advantage of this approach
is that the proposed setup is general and can be extended to other indicators apart from Bollinger Bands. However,

frequent tuning can make computation heavy.

4.4 Label generation in transfer learning based approach

Trading is a challenging application for RL due to convergence-related issues. To overcome these issues, Costa et al. [44]
transform time series into images as this approach has previously shown potential in classification-based trading [39].
The previous 64 values of price, volume, RSI, and moving average convergence divergence (MACD) are transformed
into 64x64 images and eventually concatenated into 4x64x64. DE [171] is used to optimise a parametric rule-based
strategy. This strategy labels the images with buy, hold, or sell to maximise gaps between subsequent buys and sells.
RL agents might take many episodes to converge so transfer learning is incorporated. Transfer learning [177, 187]
is a learning paradigm in which knowledge acquired through one task is transferred to another. Transfer learning
approaches take a model trained on one task and use it as a starting point to train a new model for another task. This is

particularly helpful in improving convergence as training is done from a better starting point. A convolutional neural
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network (CNN) based classifier is trained using the labelled images and then transfer learning is used from this trained
supervised model to improve the convergence of the deep Q-learning model. A negative reward is introduced for hold
action as the RL agent took hold action most of the time to minimise loss. The trading system is tested on hourly data
of various stocks from the New York Stock Exchange (NYSE). However, the results are not very good as the trading
system incurred losses on many stocks. Some limitations of this work include fixed position size (A, is constant) and

ignoring transaction costs (¢ = 0).

5 RL IMPROVING EC IN FINANCE - TIGHTLY COUPLED APPROACHES

This section surveys approaches where RL improves the performance of EC in a tightly coupled manner for financial
applications (Fig. 3). Recall from Section 4.1 that different technical indicators are effective in different situations [82].
Technical indicators are often used in combination rather than in isolation [49]. Hence, trading rules that were successful
in the past might become obsolete in future. There is a need for trading systems that can dynamically select appropriate
technical indicators at different times. In Section 5.1, we survey approaches where RL is used to assist EC in selecting
indicators dynamically for trading and PO. RL has also been used to generate trading signals for EC algorithms (Section

5.2). A summary of such techniques is presented in Table 3.

5.1 Selecting technical indicators dynamically

GNP [115] possesses the architectural capability to handle dynamic problems but it is offline by default. Hence, it has
been combined with different RL techniques to integrate the online aspect. In these GNP-RL hybrids, GNP evolves
directed graph structures while RL refines the graph structures produced by GNP. Evolution focuses on the diversification
of candidate solutions while learning focuses on intensification to obtain high-quality solutions from promising regions
of the search space. Mabu et al. [112, 113] propose GNP-AC for stock trading by combining GNP and actor-critic (AC)
method. The importance index (IMX) is also introduced for technical indicators. IMX is a function that maps technical
indicators to trading signals with 1 representing a strong buying signal and -1 representing a strong selling signal. AC
is used to learn the optimal value of a threshold utilised to predict whether stock prices will go up or down based on
IMX values. AC is used because it can handle continuous actions. The best solution obtained in the validation period
is used for testing on 20 stocks from the Tokyo stock exchange and it demonstrates superior performance than the
buy-and-hold baseline on 14 stocks. Chen et al. [29] combine GNP with SARSA for stock trading. Candlestick charts
[139] are incorporated alongside technical indicators. Sub-nodes are introduced within GNP nodes and each of them is
mapped to a technical indicator or candlestick pattern. Each sub-node comprises a next node, a corresponding delay, and
a threshold for buying or selling. GNP-SARSA [27] uses time delays for determining the suitable number of technical
indicators and candlestick patterns to be selected for making decisions of buying or selling in the processing nodes. The
role of SARSA is to select the optimal sub-node in an e-greedy manner. Crossover and mutation (defined in Section 2.2)
are used to evolve GNP graph structures. The hybrid technique [28] performs better than the buy-and-hold strategy on
14 out of 16 Tokyo exchange stocks. Chen et al. [32] also incorporate a method for adapting IMX functions through
evolution and extend their work to make it real-time by using a sliding window approach [33].

GNP has also been used to tackle PO. In traditional GNP, there is a possibility of some nodes never getting used as it
is not necessary to transition back to the start node. Chen et al. [31, 34, 35] introduce genetic network programming
with control nodes (GNP-CN) by incorporating a set of control nodes for each asset in the portfolio. Node transitions
start from control nodes and when a certain number of processing nodes have been executed, the transition happens to

another control node. GNP control nodes represent the breadth of the search space while the depth of the search space
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Table 3. Summary of approaches where RL improves EC in a tightly coupled manner for financial problems

RL Component EC Component Improved Aspect

Actor-critic GNP Dynamic indicator selection [112, 113]

SARSA GNP Dynamic indicator selection [27-29, 32]

SARSA GNP-RA Dynamic indicator selection [114, 116, 117]

SARSA GNP Dynamic indicator selection in real-time [33]

SARSA GNP-CN Dynamic indicator selection for PO [31, 34, 35]

SARSA TA-GNP Dynamic indicator selection for PO in real-time [26, 30]
RL GA Generating signals for portfolio assets [24]

Recurrent RL PSO Handling constraints in portfolio optimisation [7]

A3C PSO Multi-objective portfolio optimisation [138]

is represented by the processing nodes activated by each control node. The proposed method is tested on 10 stocks
from the Tokyo stock exchange and the portfolio approach generates more profits than the combined profits generated
by applying traditional GNP-RL to the 10 stocks individually. This is because the capital gets redistributed in such a
way that more capital is assigned to stocks generating more profits. Chen et al. further extend their work on PO by
proposing time adapting genetic network programming (TA-GNP) [26, 30]. TA-GNP focuses on adapting the trading
system to the changing market through a sliding window approach.

Mabu et al. [114, 116, 117] propose genetic network programming with rule accumulation (GNP-RA) by incorporating
the concept of rule accumulation in GNP-RL trading systems. In GNP-RA, trading rules generated during evolution are
stored and buying or selling decisions are made by taking contributions from rules produced across all generations instead
of just the rules present in the last generation. This helps in controlling overfitting. Li et al. [68, 101, 196, 198] introduce
the concept of subroutines where each subroutine behaves as a miniature version of GNP-RL. These subroutines can be
executed parallelly during the evolution of the main GNP. This helps in improving the efficiency of GNP-RL trading
systems. Xu et al. [194] incorporate pruning of redundant nodes in GNP-RL systems. Yang et al. [197] evolve a group
of cooperating trading agents to improve the robustness of GNP-RL systems. Li et al. [102] utilise an estimation of
distribution algorithm (EDA) to improve the scalability of stock trading systems. Chen et al. [36] integrate a statistical
model with GNP-RL for stock trading. Bahar et al. [10] integrate fuzzy concepts in GNP-RL systems to generate trading
signals. One major limitation of most of these works is ignoring transaction costs (¢ = 0). Also, since technical indicators
are selected frequently, heavy computation is involved. However, effective parallelisation can be done to reduce training

time.

5.2 Generating signals for EC algorithms

Chang et al. [24] use RL to generate trading signals for different stocks. These trading signals are used by GA to determine
appropriate portfolio allocation (wf , wé, ., w}’\,). In the real world, PO involves many constraints. A portfolio is often
restricted to having a maximum of N assets. This is known as the cardinality constraint and is imposed as it becomes

difficult to manage a portfolio with a large number of assets. Quantity constraint imposes limits on the possible asset
N

proportions: for each period 1 < ¢t < T, maxjy; W' < Wpayx, Where Wpqx € (0, 1] denotes the maximum proportion of
capital assigned to any asset in the portfolio. These limits help in maintaining diversity within the portfolio. Round-lot
constraint restricts the number of shares of an asset to be an integer. This is necessary because there is no provision
for buying a fractional quantity of an asset. Pre-assignment constraint means that the investor puts an asset into the
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portfolio for the entire investment horizon. Quite often, there are assets whose value is expected to rise for a long time
and investors want such assets in their portfolio. Class constraint places restrictions on each asset class to promote
diversity. Solving constrained PO problems is quite challenging. Some researchers have used existing algorithms like
GA, PSO, etc. while others have proposed novel EC algorithms specifically for constrained PO. Empirical studies claim
that PSO works better for constrained PO [43]. However, PSO has been used to solve constrained PO for long-only
portfolios that do not involve short selling by allowing negative weights. In short selling [153], when the price of a
financial asset is high, its shares are borrowed and sold. Later, when the price of the asset comes down, the shares are
purchased and returned to the lender. This entire process results in significant profits. It is worth noting that short
selling is not allowed for fund managers in various countries.

Almahdi et al. [6] extend the traditional version of RRL for PO. However, their approach is meant for unconstrained
PO. In their subsequent work, Almahdi et al. [7] use RRL in conjunction with 4 variants of PSO to tackle constrained
PO: standard PSO, improved particle swarm optimisation (IPSO), drift particle swarm optimisation (DPSO), many
optimisation liaisons particle swarm optimisation (MOLPSO). Different variants of PSO are used as each of them
provides a different way of finding solutions. In all four PSO algorithms, the Calmar ratio is used as the fitness function
because it is empirically found to be performing better. Calmar ratio is also used as the objective function for RRL instead
of the usual Sharpe ratio. RRL is used to assist PSO in handling negative weights by generating short or long signals.
The proposed constrained PO system achieves better performance than multiple benchmark constrained PO systems on
S&P 100 stocks, especially when the transaction costs are high. EC algorithms are black-box optimisation approaches
that ignore the structure of the problem while searching for solutions. Solving constrained PO is a challenging task
and EC algorithms can face convergence-related issues. Nigatu [138] uses A3C in conjunction with PSO to deal with
multi-objective PO. PSO is used to fine-tune the portfolio weights produced by A3C according to investors’ needs. The
authors consider the objectives of maximising returns and minimising risk. This is a departure from the majority of

proposed works that use single-objective formulation to optimise risk-adjusted return metrics like the Sharpe ratio.

6 RL IMPROVING EC IN FINANCE - LOOSELY COUPLED APPROACHES

This section surveys approaches where RL improves the performance of EC in a loosely coupled manner for financial
applications (Fig. 3). RL has been used to adapt hyperparameters of EC algorithms. Unlike the previous 3 categories,
research conducted in this category is scarce. Possible reasons for limited research are the abundance of handcrafted
hyperparameter adaptation strategies and the heavy computational demand imposed by RL algorithms for supplying
hyperparameter values at each time step. The performance of EC algorithms depends on the choice of their hyperpa-
rameters. Coming up with the optimal hyperparameter values of EC algorithms is challenging. These hyperparameters
are often problem-sensitive resulting in poor generalisation capability of EC algorithms. On the other hand, RL offers
good generalisation but its performance deteriorates in the absence of domain knowledge [166]. There is an incentive in
combining EC and RL to get the best of both worlds. Jia et al. [89] use PG to adapt the hyperparameters of PSO and the
resulting PG-PSO hybrid is used for PO. In the case of the original PSO algorithm, hyperparameters are fixed initially.
However, this often leads to premature convergence and the problem of getting stuck in local optima. To balance the
exploration-exploitation better, many variants of PSO have been introduced which adjust the hyperparameters of PSO
based on some predetermined criteria. PG enables PSO to modify its hyperparameters automatically without fixing
the adjustment criteria in advance. Jia et al. [89] utilise a policy network to interact with a PSO-based environment.
The policy network input comprises a 2-dimensional state while the action space consists of six actions based on

addition or subtraction of 0.05 from each of the 3 PSO hyperparameters. For every generation of PSO, the 2-dimensional
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state consists of the sum of the differences of candidate solutions from their personal best solution and the global best
solution respectively. A reward of +1 is given if the fitness improves in the next generation while a reward of -1 is
provided if the fitness deteriorates. The fitness function for PSO is formulated as the Sharpe ratio of the entire portfolio.
PG-PSO hybrid is shown to be superior to three PSO-based algorithms on six benchmarks. Also, the PG-PSO hybrid
produces a better Sharpe ratio on a portfolio with N = 20 assets. Although the authors incorporate risk in their work,
they ignore transaction costs (¢ = 0). Adapting hyperparameters of EC algorithms improves performance in dynamic

environments but computation becomes expensive.

7 RESEARCH GAPS AND OPEN PROBLEMS

Researchers have used various EC+RL hybrids to model financial applications like trading and PO. However, there are
some limitations to these approaches too. This section discusses research gaps in existing works and mentions some

open problems identified through this survey.

7.1 Unrealistic assumptions

Many existing works make unrealistic assumptions that do not hold in the real world [152]. Some prominent ones are

mentioned below:

o Transaction costs have often been ignored (¢ = 0) in existing works [44, 88, 89, 119]. This is a simplistic assumption

as the absence of transaction costs encourages frequent trades.

Some existing works [21, 22, 50, 88] focus on maximising returns without incorporating risk. In reality, most

practitioners are risk-averse and try to maximise risk-adjusted returns [128].

Many works [13, 44, 82, 111] assume that traders take long, neutral or short positions of fixed size (A, is
constant). However, this does not hold in the real world as quite often traders buy varying amounts of assets

depending on their current wealth.

Most trading and PO systems proposed in the literature use continuous time formulations. However, trades are
placed in specified windows of around 6-7 hours on working days. The continuous time formulations ignore

slippage in prices as the next day’s opening price need not be the same as the current day’s closing price.

Most works assume liquidity of assets at all times. This is quite unrealistic as assets are not always available for
placing trades [8].
e Another common assumption is that the trading actions do not affect prices. However, the prices are impacted

by trading decisions, especially in small markets [93].

Existing works often ignore the delays in order placements which are not very uncommon in financial markets.

This also contributes to slippage in prices. Quite often, the prices at which the algorithm performs the calculations

are different from the prices realised in real-world financial markets due to order placement delays.

e Most works concerning PO assume the problem to be unconstrained by ignoring many real-world constraints
(discussed in detail in Section 5.2).

o Normal distributions are assumed for returns in many works that use analytical approaches. However, it has

been shown that returns exhibit fat tails as big losses are quite likely [152].

Due to all these assumptions, most existing trading and PO systems do not port well to the real world. There is a
need to develop more realistic trading and PO systems that do not make unrealistic assumptions for simplicity.
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7.2 Aspects related to modelling of RL and EC components

In Appendix E, we outline the different ways existing works have modelled the RL and EC components in the solutions
proposed for financial problems like trading and PO. However, there is still a large scope for enhancement as discussed
below:

State features. Existing works using RL for financial applications have focused on close prices of assets as state
features. However, the use of open, high, and low prices of financial assets is mostly unexplored. Another possibility is
to use a combination of all 4 components of open-high-low-close (OHLC) data like arithmetic mean. Trading volumes
and ticks data can also be incorporated as part of the state. Jamali et al. [88] incorporate forecasts obtained through
multiple regression in the state representation. A significant amount of development has been seen in time series
forecasting techniques [123, 144, 151]. Forecasts obtained from state-of-the-art techniques are yet to be tried out as
state features for RL algorithms. Practitioners identify trading opportunities using econometric, mathematical, and
statistical models for price movement. Incorporation of the output of such models as state features could result in better
performance. The use of candlestick patterns is quite common in the analysis done by practitioners. However, the
exploration of candlestick patterns in RL-based solutions is very limited. The usage of other sophisticated indicators as
state features is also worth studying. Existing works [82] have focused on using boolean indicators. Efforts can be made
to utilise more fine-grained indicators which contain relatively more information.

Choice of actions. Many trading systems proposed in literature [13, 44, 82, 111] focus on generating discrete
trading signals {buy, hold, sell} at different time steps. Trading quantity is either considered to be of fixed size (A, is
constant) or left at the discretion of human traders using the system. Very few works model trading quantities as actions
[201]. However, using trading quantities as actions increases computational complexity. There is a need to develop
trading systems that handle this trade-off effectively. Most works dealing with PO model actions as a vector of portfolio
allocation (w!, w5, ..., wf\,) [203] instead of actual trading quantities of portfolio assets [195]. The focus is mainly on
the portfolio rebalancing component and determining actual trades, placed after each rebalancing, is an overhead [22].
PO systems should also incorporate mechanisms to monitor portfolio assets by replacing poorly performing assets with
potentially profitable assets. Lastly, negative weights can be allowed to model short selling (refer Section 5.2).

Reward formulation. The finance domain comprises a wide variety of utility functions [61] like constant absolute
risk aversion (CARA), constant relative risk aversion (CRRA), etc. for modelling risk-aversion. The study of these utility
functions as rewards is a potential research direction. Most risk-adjusted return metrics like the Sharpe ratio are defined
as ratios. Penalty-based risk-adjusted return metrics [59] can also be tried out as reward functions. Recently, risk has
been modelled in terms of the probability of achieving preset goals by investors [45]. Similar ideas can be incorporated
to formulate novel reward functions.

Fitness functions. Extension ideas similar to reward functions can be applied to fitness functions as well. Utility

functions like CARA, CRRA, etc. can be tried out alongside penalty-based risk-adjusted return metrics.

7.3 Aspects related to enhancement of solution approaches

This section discusses some ideas that can be used to enhance the solution approaches for financial problems like
trading and PO.

Adversarial concepts. Quite often, adversarial traders generate false triggers in financial markets leading to
suboptimal actions by victim traders [146]. Modelling of adversarial attacks and defences on intelligent trading and PO

systems is another potential area of research that can greatly improve robustness in real-world financial markets.
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Multi-objective reinforcement learning (MORL). Financial problems involve multiple objectives like maximising
returns, minimising risk, minimising transaction costs, etc. Some of these objectives conflict with each other. Currently,
the trade-off is captured by using metrics like the Sharpe ratio, Calmar ratio, etc. Some approaches use a weighted
approach to reconcile multiple objectives into one single objective [143]. However, this requires extensive hyperparam-
eter tuning to get the optimal weights for a given problem. MORL [72, 105] has the capability of dealing with multiple
objectives. The use of MORL techniques for financial applications is another potential avenue for research.

Planning approaches. Most works surveyed in this paper have focused on using model-free RL approaches like
Q-learning, SARSA, etc. Monte Carlo tree search (MCTS) and its variants have achieved significant success in playing
complex games like chess and Go [161-163]. However, the use of such approaches in financial problems is less explored
[143, 182]. The application of planning approaches to financial problems could prove to be another interesting area of
research. However, planning approaches require a good enough model of the environment, which is difficult to obtain
due to the non-stationary nature of financial markets.

Modelling using POMDP. Partially observable MDPs are used when the agent cannot observe the underlying state
completely. This is often the case in the finance world as a common trader or portfolio manager might not be aware of
all the underlying factors governing the evolution of prices of financial assets. Although it makes perfect sense to use
POMDPs for modelling financial problems, their usage has been explored very little [77].

Novel solution approaches. RL is evolving rapidly and many novel algorithms have been proposed recently. Also,
there’s a plethora of EC algorithms available in the literature. Attempts can be made to develop novel EC+RL hybrids
and analyse their performance for financial applications. There are various ways of hybridising RL and EC for financial
applications such that one improves the performance of the other as discussed in Sections 3-6. EC algorithms can
also be tried out in the framework of RL where the improvement in fitness function serves as the reward. In such
a scenario, RL acts as an evolutionary search paradigm. Recently, researchers have shown interest in solving hard
combinatorial optimisation problems using RL [124]. Similar ideas could be used to address the PO problem. Another
possible research direction could be learning the choice of algorithms (in an algorithm portfolio scenario [65]), rather

than their hyperparameters.

7.4 Aspects related to intricacies of finance domain

Apart from the unrealistic assumptions discussed in Section 7.1, various issues have not been addressed properly in the
existing works. Some prominent ones are discussed below:

Turbulent scenarios. Unexpected scenarios like pandemics, wars, etc. lead to turbulence in financial markets
resulting in huge losses for traders and PO managers [52, 87]. There is a requirement for approaches that avoid or limit
losses in such scenarios.

Short selling. Most existing works have not incorporated the concept of short selling (refer Section 5.2) while
designing trading and PO systems. Incorporating short selling adds to the realism of intelligent trading and PO systems.

Integrating fundamental analysis for low-frequency trading. Technical indicators have been extensively used
in existing trading and PO systems but the usage of fundamental indicators is explored very little. Technical indicators
are suited for high-frequency trading while fundamental indicators are used for long-term investment decisions. Zhang
et al. [201] incorporate fundamental indicators as part of their state representation. Fundamental analysis through the
use of natural language processing (NLP) on news articles and blogs to detect the public perception of financial assets is

another potential research area.
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Tuning technical indicators. Many existing works simply use technical indicators with default parameters or
as suggested by financial experts [50]. Butler et al. [21] study ways of tuning Bollinger Bands. With the advances in
computing capacity, it is possible to tune the parameters of indicators rather than relying on conventionally accepted
values.

Explainability. One of the biggest reasons behind the non-acceptance of intelligent decision-making systems in
finance is the lack of explainability. The development of more explainable and interpretable approaches that justify
financial intuition can help in addressing this issue.

Transaction costs. The presence of transaction costs in financial markets discourages frequent trades and portfolio
rebalancing. This increases the importance of hold/neutral action in RL-based trading systems. Many works [44, 88, 89,
119] have simply ignored the transaction costs for simplicity. Thresholds can also be introduced to reduce spurious
movements from the neutral position arising due to insignificant fluctuations in financial markets.

Extension to other related problems. Most studies have focused mainly on stocks and currencies (Fig. 6). Efforts
can be made to extend the proposed approaches to highly volatile assets like crypto-currencies [42], derivatives (futures
and options) [79], etc. Although the focus of this study has been on trading and PO, there are other sequential decision-
making problems in finance like market-making [18], hedging [107], pricing [99], etc. which roughly follow the same
core structure. A study of the performance of EC+RL hybrids can be done on such problems. Additionally, sequential

decision-making problems from the banking and insurance domains can be studied.

7.5 Other open issues

This section discusses some other important open issues:

Lack of realistic financial simulators. One of the biggest reasons for the recent success of RL [127, 161, 162] has
been the availability of good simulators that model the dynamics of games, physics, etc. There is a lack of realistic
simulators of financial environments. Most existing works use historical data for training and testing the proposed
methods. Although such methods are fine for academic research and development, they usually do not port well to the
real world due to the ever-changing nature of financial markets. Good financial simulators allow RL-based agents to
learn by interaction instead of relying on historical data.

Lack of established benchmarks and common statistical tests. There is a lack of common and established
benchmarks for comparing different solution approaches. Researchers have tested their proposed approaches on
datasets that differ in terms of assets, time period, frequency, etc. Also, there is no common consensus on baselines
used for comparison. Developing established benchmarks can help significantly in rigorously evaluating the proposed
approaches. Another issue that needs to be addressed is the development of commonly accepted statistical significance
tests with a special emphasis on financial intricacies.

Scalability. In financial environments, the state spaces get quite large due to the availability of a large number of
technical indicators and their enormous number of variants. Existing PO systems work well when operating on small
datasets like Dow Jones, NIFTY 50, etc. However, when it comes to large datasets like the S&P 500, the performance
deteriorates. There is a need to come up with techniques that scale well to larger datasets. Also, the incorporation of an
extra indicator essentially doubles the search space. So, exploring more state features is a computationally heavy job.

However, linear speed-up is still possible by parallelisation which is a speciality of EC algorithms.
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8 CONCLUSION

Although a lot of automation has been accomplished in finance, crucial decision-making is still done by humans. Humans
suffer from various behavioural biases like overreaction [46], overconfidence [63], regret [14], loss aversion [92], etc.
which affect their decisions. There is a need for intelligent systems that not only overcome behavioural biases but also
save time by reducing the workload of practitioners. Trading and portfolio optimisation are two notable sequential
decision-making tasks in the finance world. RL is the most natural approach for such tasks but it has its limitations.
Researchers have shown that EC can be used to improve the performance of RL and vice versa. The hybrids of EC and
RL have been successfully used for solving problems from various domains. In this article, we survey the different
ways of hybridising EC and RL for trading and portfolio optimisation. We propose a novel taxonomy of such hybrid
techniques that classifies the EC+RL hybrid approaches in finance into four major categories. The classification is done
based on whether EC improves RL or RL improves EC and further if the hybrids are tightly coupled or loosely coupled.
We discuss all four categories in great detail. Despite the significant advancements in the development of intelligent
systems for trading and portfolio optimisation, there is still potential for further enhancement. We discover various
research gaps in the existing literature and identify some open problems for future works. These include prevalent
unrealistic assumptions, improvement in solution approaches and incorporating practical considerations from the
finance domain. Addressing these research gaps and open problems would result in better portability to real-world

financial markets and widespread acceptance of intelligent systems in the finance community.
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APPENDICES

A PAPER COLLECTION METHODOLOGY

For this work, more than 50 papers published between 2000 and 2023 have been surveyed (Fig. 9a). These papers have
been collected through keyword searches on web search engines like Google Scholar and important databases like ACM
Digital Library, IEEE Xplore, Science Direct, Springer Link, etc. Additionally, forward citations of important papers in
the research area have also been used for paper collection. Papers published in both conferences and journals have
been used for the survey. Some relevant articles from other sources like arXiv, ProQuest, etc. have also been considered
(Fig. 9b).
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Fig. 9. Distribution of surveyed papers (a) based on year of publication (b) based on their sources.

B TABLE OF ABBREVIATIONS

Table 4 presents the meanings of abbreviations used in the paper, sorted by alphabetical order.

Table 4. Meanings of abbreviations used in the paper

Abbreviation Meaning

ABB Adaptive Bollinger Bands

AC Actor-Critic

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic
bp Basis points (1 bp = 0.01%)

BPTT Back-Propagation Through Time
CARA Constant Absolute Risk Aversion
CNN Convolutional Neural Network
CRRA Constant Relative Risk Aversion
DE Differential Evolution

DJIA Dow Jones Industrial Average
DPSO Drift Particle Swarm Optimisation
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Abbreviation Meaning

DQL
DON
DRL

EC

EDA
ERL

ES

ESG
ETF

FX

GA

GP

GNP
GNP-CN
GNP-RA
HPSO
IMX
IPSO
LCS
LSTM
MACD
MADDPG
MCTS
MDP
MOLPSO
MORL
MV

NLP
NYSE
OHLC
PG

PO
POMDP
PPO
PSO

oL

RL

RRL

Deep Q-Learning

Deep Q-Network

Deep Reinforcement Learning

Evolutionary Computation

Estimation of Distribution Algorithm
Evolutionary Reinforcement Learning
Evolutionary Strategies

Environmental, Social, and Governance
Exchange Traded Fund

Foreign Exchange

Genetic Algorithm

Genetic Programming

Genetic Network Programming

Genetic Network Programming with Control Nodes
Genetic Network Programming with Rule Accumulation
Heterogeneous Particle Swarm Optimisation
Importance Index

Improved Particle Swarm Optimisation
Learning Classifier System

Long Short-Term Memory

Moving Average Convergence Divergence
Multi-Agent Deep Deterministic Policy Gradient
Monte Carlo Tree Search

Markov Decision Process

Many Optimisation Liaisons Particle Swarm Optimisation
Multi-Objective Reinforcement Learning
Mean-Variance

Natural Language Processing

New York Stock Exchange
Open-High-Low-Close

Policy Gradient

Portfolio Optimisation

Partially Observable Markov Decision Process
Proximal Policy Optimisation

Particle Swarm Optimisation

Q-Learning

Reinforcement Learning

Recurrent Reinforcement Learning

Recurrent Neural Network
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Abbreviation Meaning

RS

RSI

SA

SAC
S&P 500
SARSA
TA-GNP
TRPO
WRDS

Regime Switching

Relative Strength Index

Simulated Annealing

Soft Actor-Critic

Standard and Poor’s 500
State-Action-Reward-State-Action

Time Adapting Genetic Network Programming
Trust Region Policy Optimisation

Wharton Research Data Services

C TABLE OF NOTATIONS

In Table 5, we describe various notations used in the paper, ordered by appearance in the paper.

Table 5. Description of notations used in the paper

Notation Description

NN ™H O

e R

o v R R
)

><»--.

z AR

Set of states in RL

Set of actions in RL

Transition function in RL

Reward function in RL

Discount factor in RL

Policy followed by RL agent

Value function in RL

Action-value function in RL

Policy 7 parameterised by 0

Advantage function in RL

Learning rate

On-policy distribution under policy 7o
Population size in EC

Dimensionality of search space in EC

ith candidate solution in EC

j*" dimension of i*" candidate solution in EC
Fitness function in EC

Number of financial assets in the portfolio
Horizon of trading or PO in terms of number of time-periods
Price of asset i at time ¢

Number of units of asset i in the portfolio for the period ¢

Transaction costs incurred on asset i for the period ¢

Manuscript submitted to ACM

S. Yadav et al.



Hybrids of Reinforcement Learning and Evolutionary Computation in Finance: A Survey 39

Notation Description

c Transaction cost constant (expressed in basis points)
R! Value of portfolio after period ¢

wi Weight of asset i in the portfolio for the period ¢

7 Average return of the portfolio

re Risk-free return rate

Dipax Maximum drawdown

Daog Average drawdown

Ayt Number of units of asset traded in period t

D TAXONOMIES

A taxonomy of RL is depicted in Fig. 10. RL algorithms can be broadly classified into two major categories: model-free
RL and model-based RL. Model-free RL does not require a model of the environment while in model-based RL, a
good enough model of the environment is utilised. However, a good enough model of the environment is not always
available, especially in non-stationary environments like financial markets. Hence, model-free RL has been extensively
used for financial applications. Model-free RL is further classified into 3 categories: value-based, policy-based, and
actor-critic methods. A taxonomy of nature-inspired metaheuristics is depicted in Fig. 11 which can be classified
into two categories based on their source of inspiration: evolutionary algorithms and swarm intelligence algorithms.
Evolutionary algorithms are inspired by biological evolution while swarm-intelligence algorithms are inspired by the
group behaviour of living organisms. It is worth noting that many researchers do not consider a clear distinction
between these two categories due to their similar ways of operation. Quite often, algorithms like particle swarm

optimisation are considered under the umbrella of evolutionary algorithms [54, 90, 167, 204, 205].

REINFORCEMENT LEARNING

)\
( |

MODEL-FREE RL MODEL-BASED RL

MCTS and
its variants

Policy Gradient A2C

."h

Q-learning M~ REINFORCE A3C

TRPO SAC

Fig. 10. Taxonomy of reinforcement learning
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NATURE-INSPIRED METAHEURISTICS

I
( )
‘ Evolutionary Swarm Intelligence
Algorithms Algorithms

Fig. 11. Taxonomy of nature-inspired metaheuristics

E DESIGN CHOICES

We present a compact reference to the design choices made in the literature surveyed in this paper. The choice of state
features, actions and reward functions is crucial for RL. We discuss the various choices made by researchers for state
features (Appendix E.1), actions (Appendix E.2) and reward functions (Appendix E.3). The fitness function is one of the
most important components of EC algorithms. Appendix E.4 discusses the various choices of fitness functions made
in the literature for trading and PO. In Appendix E.5, we mention the various RL and EC algorithms that have been
hybridised for financial applications. We also provide a brief discussion on popular datasets (Appendix E.6), evaluation

metrics (Appendix E.7), baselines and benchmarks (Appendix E.8).

E.1 State features

In approaches where RL is the driver algorithm, price series of financial assets are often used as state features [130].
Most works focus on closing prices. According to efficient market hypothesis [118], only a few previous observations
contain valuable information. However, the number of valuable past observations is a hyperparameter. Zhang et al.
[202] use the past 60 observations of normalised close price series as state features. They also incorporate returns
generated in the previous month, 2 months, 3 months, and a year as features in the state description. Jamali et al. [88]
include the average prices of the previous week and month in their state description. Some works normalise the price
series data before feeding it as state features. Zhang et al. [201] use the mean and standard deviation of returns from
the training phase for performing standard normalisation. Maree et al. [119] use the wavelet transform on the prices.
Indicators assist traders in detecting trends, reversal of trends, and other swings. Quite often, technical indicators like
moving averages, relative strength index (RSI), etc. are also used as the state features [50]. These technical indicators
are either obtained from financial data sources or calculated manually from price series and other data. The trading
system proposed by Hryshko et al. [82] uses 10 commonly used indicators. Zhang et al. [201] incorporate fundamental
and volatility indicators alongside technical indicators in their trading system. They use ten indicators: RSI 3, RSI
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9, RSI 14, RSI 30, price to earnings ratio, price to cash flow ratio, debt to equity market ratio, positive volume index,
negative volume index, and conditional volatility. Indicators derived from order flow and order book data have also
been incorporated into the state representation as demonstrated by Austin et al. [9]. However, such data is not available
in the public domain. In PO, current holdings in portfolio assets and balance in hand are also used as state features

[195]. GNP-based systems [29] have also incorporated candlestick patterns alongside technical indicators.

E.2 Actions

Most works addressing trading [13, 44, 82, 111] consider fixed position sizes (A, is constant) and model actions in
terms of discrete trading positions: {buy, sell, hold}. Maree et al. [119] use discretised actions to incorporate the quantity
of purchase or sale of assets. Zhang et al. [202] study continuous action spaces where each action can take a value in
the range [-1, 1], with -1 representing the maximally short position and 1 corresponding to the maximally long position.
For PO, most works model actions as a vector of capital allocation ratios among portfolio assets. The allocation vector
(wf , wé, o w][\]) comprises values in the interval [0, 1] summing to 1. Some works model actions as a vector with each
element corresponding to the suitable action for the respective financial asset. Yang et al. [195] use a discretised action
space where each portfolio asset is assigned an integer value k € {-K,—(K - 1),...,-1,0,1,..., K- 1,K},forK > 0. A
positive value of k indicates the purchase of k units of financial assets while a negative value of k indicates the sale of k
units. This approach results in an action space of size (2K + 1)V, with N being the number of assets in the portfolio.
Also, integrity checks need to be done in this approach to ensure that the agent does not buy more than its maximum

capacity.

E.3 Reward functions

Trading and PO systems are usually optimised by maximising utility functions of profit, wealth, etc. As the majority of
traders and portfolio managers are risk-averse, risk-adjusted returns have also been used. Moody et al. [130] propose a
differential version of the Sharpe ratio obtained using exponential moving average and standard deviation of returns. The
differential Sharpe ratio facilitates recursive updating by avoiding the recomputation of mean and standard deviation
of returns for the whole trading period. Also, it assigns more weightage to recent returns compared to older returns.
It is very efficient for trading and PO systems that rely on gradient-based optimisation. The Sterling ratio is used in
scenarios where there is a low tolerance for large losses [82]. Almahdi et al. [6] advocate the use of the Calmar ratio as
the reward for PO. Zhang et al. [202] incorporate volatility scaling in their reward function: position size is increased
when the market is less volatile and reduced when the market is more volatile. Apart from delayed rewards in terms of
risk-adjusted returns, step rewards have also been used. The difference in the portfolio value at consecutive time steps,
R! — R'™1, is used as a reinforcement signal by Dempster et al. [48]. Sometimes, there are convergence issues when
using raw returns as the reward. This happens because the agent tries to minimise loss by maintaining the hold position.
Costa et al. [44] introduce a negative reward for the hold action to deal with this issue. Apart from risk, sustainability
is another factor that has been incorporated into the reward function. Maree et al. [119] use ESG score [37] to model

sustainability.

E.4 Fitness functions

The choice of fitness functions in EC is similar to that of the reward functions in RL. Hryshko et al. [82] use the Sterling
ratio as the fitness function while Almahdi et al. [7] advocate the use of Calmar ratio as the fitness function. Zhang

et al. [201] use a variant of the Sharpe ratio as the fitness function. Dempster et al. [50] use returns generated by the
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RL evaluator as fitness values. The combined profit generated by the portfolio assets has also been used as the fitness

function [22]. Jia et al. [89] formulate the fitness function as the Sharpe ratio of the entire portfolio.

E.5 Choice of algorithms
Fig. 12 depicts the different choices of EC and RL algorithms in approaches where EC helps RL (in both tightly and

loosely coupled manner) for financial applications like trading and PO. RL is the final decision-making component here
and EC helps in improving RL. QL and RRL are the most common RL approaches in this regime while some works are
based on PG and other RL techniques. GA is the most commonly used EC algorithm while some works use DE, ES and
other EC algorithms. Fig. 13 depicts the different choices of RL and EC algorithms in approaches where RL helps EC (in
both tightly and loosely coupled manner) to tackle trading and PO. EC is the main decision-making component here
and RL helps in improving EC. In this regime, GNP and its variants are the most commonly used EC algorithms while
some works use PSO and other EC algorithms. SARSA is the most heavily used RL algorithm while some researchers
use AC and other RL algorithms.

*QL *RRL - Others « PG « DQL *GA + Others - ES «DE

3 (15.0%)

°

(a) Choice of RL algorithms (b) Choice of EC algorithms

Fig. 12. Choice of algorithms in approaches where RL is improved by EC in finance.

* GNP ¢ Others - GNP-CN « TA-GNP « GNP-RA « PSO AC + SARSA - Others

3 (11.1%)

(a) Choice of EC algorithms (b) Choice of RL algorithms

Fig. 13. Choice of algorithms in approaches where EC is improved by RL in finance.

E.6 Popular datasets

Although there is a wide variety of datasets available in the finance domain, we mention some prominent ones.

Researchers have used data corresponding to various classes of financial assets like stocks, currencies, commodities, etc.
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Yahoo Finance is one of the best public sources of freely available financial data. It also provides a Python library that
can be used to extract data with much ease. Data of the S&P 500 companies is available at the Bloomberg Terminal.
Although Bloomberg offers paid service, it also provides data about indicators. Dow Jones’ stock data can be obtained
from Wharton Research Data Services (WRDS). Historical data for foreign exchange markets can be obtained from CQG
Data Factory. It also provides tick data which covers individual trades. Quandl is another source of financial datasets.
Table 6 presents some popular data sources. The majority of the existing works have used real-world financial data (Fig.
6). Nonetheless, some works have used simulated financial time series data [182]. Butler et al. [21] simulate data as a
random walk with auto-regressive trend processes [132]. Geometric Brownian motion is often used for simulating the

prices of financial assets [1].

Table 6. Popular sources of financial data

Data Source Website

Yahoo Finance https://finance.yahoo.com

Bloomberg Terminal https://www.bloomberg.com/professional/solution/bloomberg-terminal
WRDS https://wrds-www.wharton.upenn.edu

CQG Data Factory https://www.cqg.com/

Quandl https://demo.quandl.com/

Binance API https://www.binance.com/en/binance-api

Trading View https://www.tradingview.com

E.7 Evaluation metrics

Cumulative returns and annualised returns are two popular evaluation metrics in financial applications like trading
and PO. Annual volatility in terms of the standard deviation of returns over a year is often used as a metric of risk.
Maximum drawdown and average drawdown are some other metrics that have been used to capture risk. Since the
majority of traders and PO managers are risk averse, risk-adjusted return metrics like the Sharpe ratio, Sterling ratio,
Calmar ratio, etc. have been used for comparison in many works. One noteworthy point is that due to the involvement
of stochasticity in most of the proposed approaches, the evaluation metrics should be computed as an average over

multiple runs.

E.8 Baselines and benchmarks

Buy-and-hold is a hard-to-beat baseline in markets with strong upward trends. Classical time series momentum
strategies have also been used as baselines for comparing the performance of proposed approaches [202]. Some works
have also used a zero intelligence random trading strategy as a baseline for comparison [201]. Trend-following and
mean-reverting strategies used by practitioners can also be used as baselines for trading. Popular market indices like
DJIA, S&P 500, etc. are often used as benchmarks for comparing the performance of portfolios. Some baselines used
by researchers for PO include fixed allocation ratio, maximum diversification, uniform buy-and-hold, etc. The fixed
allocation ratio strategy focuses on maintaining preset allocation ratios among assets by rebalancing the portfolio
from time to time. The maximum diversification strategy focuses on incorporating minimally correlated assets in the
portfolio to minimise the risk of losses through diversification. Uniform buy-and-hold allocates the funds uniformly to
portfolio assets and holds the bought assets until the investment horizon. Although a wide variety of baselines have

been used by researchers for trading and PO, there is a lack of commonly established benchmarks for comparison.
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