Artificial Intelligence: A Natural Pursuit

Shivaram Kalyanakrishnan
shivaram@cse.iitb.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

January 2019
Overview

What is AI?

What recently happened to AI?

Topics in AI

- Machine Learning (Supervised, Unsupervised, Reinforcement)
- Neural Networks and Deep Learning
- Computer Vision and Robotics
- Speech and Natural Language Processing
- Multiagent Systems: Game Theory and Mechanism Design
- Crowdsourcing
- Planning and Scheduling
Overview

What is AI?

What recently happened to AI?

Topics in AI
- Machine Learning (Supervised, Unsupervised, Reinforcement)
- Neural Networks and Deep Learning
- Computer Vision and Robotics
- Speech and Natural Language Processing
- Multiagent Systems: Game Theory and Mechanism Design
- Crowdsourcing
- Planning and Scheduling
Imagination and Reality

From the Mahabharata[1]

Imagination and Reality

From the Mahabharata[1]

Modern-day videoconferencing[2]
The Urge to Replicate Human Behaviour and Thought

Automaton, Swiss CIMA Museum[1]

Babbage’s Difference Engine (1830s)[2]

AI: Definitions

“It may even be proposed, as a rule of thumb, that any activity computers are able to perform and people once performed should be counted as an instance of intelligence.”

AI: Definitions

“It may even be proposed, as a rule of thumb, that any activity computers are able to perform and people once performed should be counted as an instance of intelligence.”

“Artificial intelligence is that activity devoted to making machines intelligent, and intelligence is that quality that enables an entity to function appropriately and with foresight in its environment.”

AI: Definitions

“It may even be proposed, as a rule of thumb, that any activity computers are able to perform and people once performed should be counted as an instance of intelligence.”

“Artificial intelligence is that activity devoted to making machines intelligent, and intelligence is that quality that enables an entity to function appropriately and with foresight in its environment.”

AI Paradox: Once we understand how X works, X is no longer AI!
Dartmouth Summer Research Project on Artificial Intelligence (1956)

John McCarthy (1927–2011)[1]

Marvin Minsky (1927–2016)[2]

Allen Newell (1927–1992)[3]

Herbert Simon (1916–2001)[4]

1950’s–1980’s

Theorem proving: Logic Theorist (Newell and Simon).
Mobile robotics: Shakey (Rosen).
Pattern recognition: Pandemonium (Selfridge).
Speech processing: Spoken language systems (Reddy).
Expert systems: Dendral (Feigenbaum).

[1] https://upload.wikimedia.org/wikipedia/commons/thumb/0/0c/SRI_Shakey_with_callouts.jpg/250px-SRI_Shakey_with_callouts.jpg

[2] https://upload.wikimedia.org/wikipedia/commons/7/79/More_A’s.jpg
1950’s–1980’s

Theorem proving: **Logic Theorist** (Newell and Simon).
Mobile robotics: **Shakey** (Rosen).
Pattern recognition: **Pandemonium** (Selfridge).
Speech processing: **Spoken language systems** (Reddy).
Expert systems: **Dendral** (Feigenbaum).

1980’s: AI Winter!

[1] https://upload.wikimedia.org/wikipedia/commons/thumb/0/0c/SRI_Shakey_with_callouts.jpg/250px-SRI_Shakey_with_callouts.jpg

[2] https://upload.wikimedia.org/wikipedia/commons/7/79/More_A’s.jpg
Overview

What is AI?

What recently happened to AI?

Topics in AI
- Machine Learning (Supervised, Unsupervised, Reinforcement)
- Neural Networks and Deep Learning
- Computer Vision and Robotics
- Speech and Natural Language Processing
- Multiagent Systems: Game Theory and Mechanism Design
- Crowdsourcing
- Planning and Scheduling
AI in Life Today

[4] https://media.licdn.com/mpr/mpr/AAEAAQAAAAAARQAAAAJGZmMGZhYWMxLTE0NDQtNDQ1Ni1iNWE3LTJ1NWVkYWFhMmJjNg.jpg
Internet

Growth of Data

Amount of global digital information created & shared
- from documents to pictures to tweets -
grew 9x in five years to nearly 2 zettabytes* in 2011, per IDC.

Global Digital Information Created & Shared, 2005 – 2015E

KPCB

Note: * 1 zettabyte = 1 trillion gigabytes. Source: IDC report “Extracting Value from Chaos” 6/11.
Cheaper Hardware and Sensors

[1] https://smist08.files.wordpress.com/2012/09/clouddevices.png
Machine Learning

Learn a model

Face recognition, Credit-card fraud discovery, Sentiment analysis, ...

Deep learning can find highly non-linear patterns in visual, audio data.
Learn a model

Face recognition, Credit-card fraud discovery, Sentiment analysis, …

Deep learning can find highly non-linear patterns in visual, audio data.
Machine Learning

Deep learning can find highly non-linear patterns in visual, audio data.

Face recognition, Credit-card fraud discovery, Sentiment analysis, . . .
Machine Learning

Learn a model

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>-4</td>
<td>20</td>
<td>+</td>
</tr>
<tr>
<td>-15</td>
<td>-2</td>
<td>+</td>
</tr>
<tr>
<td>-4</td>
<td>-4</td>
<td>–</td>
</tr>
<tr>
<td>15</td>
<td>-6</td>
<td>–</td>
</tr>
</tbody>
</table>

Face recognition, Credit-card fraud discovery, Sentiment analysis, . . .

Deep learning can find highly non-linear patterns in visual, audio data.
Machine Learning

Face recognition, Credit-card fraud discovery, Sentiment analysis, . . .

Learn a model

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>-4</td>
<td>20</td>
<td>+</td>
</tr>
<tr>
<td>-15</td>
<td>-2</td>
<td>+</td>
</tr>
<tr>
<td>-4</td>
<td>-4</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>-6</td>
<td>-</td>
</tr>
</tbody>
</table>

| 16 | -7 | ? |
Machine Learning

Face recognition, Credit-card fraud discovery, Sentiment analysis, . . .
Machine Learning

Learn a model

Face recognition, Credit-card fraud discovery, Sentiment analysis, . . .
Face recognition, Credit-card fraud discovery, Sentiment analysis,

Deep learning can find highly non-linear patterns in visual, audio data.
Overview

What is AI?

What recently happened to AI?

Topics in AI
- Machine Learning (Supervised, Unsupervised, Reinforcement)
- Neural Networks and Deep Learning
- Computer Vision and Robotics
- Speech and Natural Language Processing
- Multiagent Systems: Game Theory and Mechanism Design
- Crowdsourcing
- Planning and Scheduling
Machine Learning: Supervised Learning

Given labeled data, produce model to predict labels for unseen data.

Machine Learning: Unsupervised Learning (Clustering)

Given unlabeled data, produce model to assign to clusters.

[1] https://qph.ec.quoracdn.net/main-qimg-3bed74bc6559f62e6bbc2cdeea74f1dc
Machine Learning: Reinforcement Learning

Question: How must an agent in an unknown environment act so as to maximise its long-term reward?

Answer: Reinforcement Learning (RL).

[Video 1](https://www.youtube.com/watch?v=TmPfTpjtdgg)
Question: How must an agent in an unknown environment act so as to maximise its long-term reward?

Answer: Reinforcement Learning (RL).
Question: How must an agent in an unknown environment act so as to maximise its long-term reward?

Answer: Reinforcement Learning (RL).

Answer: Reinforcement Learning (RL).
Question: How must an agent in an *unknown* environment act so as to maximise its long-term reward?

Answer: Reinforcement Learning (RL).
Question: How must an agent in an *unknown* environment act so as to maximise its long-term reward?

Answer: Reinforcement Learning (RL).

Learning to play breakout [Video¹]

[¹] https://www.youtube.com/watch?v=TmPfTpjtdgg
Neural Networks and Deep Learning

Computer Vision and Robotics

Objective: Integrate Sensing, Thinking, and Acting to perform task.

[Video of task 1]

1. https://www.youtube.com/watch?v=-mOS5FknyLo
Objective: Integrate Sensing, Thinking, and Acting to perform task.

[Video of task 1]
[Video of task 2]

1. https://www.youtube.com/watch?v=-mOS5FknyLo
2. https://www.youtube.com/watch?v=LdQw8PSV2P8
Objective: Integrate Sensing, Thinking, and Acting to perform task.

[Video of task 1]
[Video of task 2]
[Video of task 3]

1. https://www.youtube.com/watch?v=-mOS5FknyLo
2. https://www.youtube.com/watch?v=LdQw8PSV2P8
3. https://www.youtube.com/watch?v=0d8qwrGHPR8
Speech and Natural Language Processing

Topics: Text summarisation, Sentiment analysis, Machine translation, etc.

Security and game theory: algorithms, deployed systems, lessons learned,

Crowdsourcing

Indian Pond-Heron is the 5th most commonly encountered bird in India, appearing in 35% of bird lists.

Planning and Scheduling

[1] https://ak.jogurucdn.com/media/image/p15/media_gallery-2015-12-16-7-fotor_delhi_3dd7a445519e5fc50a3459bc558a24f3.jpg