CS 747, Autumn 2022: Lecture 7

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2022
Markov Decision Problems

1. Alternative formulations of MDPs

2. Some applications of MDPs
Markov Decision Problems

1. Alternative formulations of MDPs

2. Some applications of MDPs
We had assumed

\[T : S \times A \times S \rightarrow [0, 1], \quad R : S \times A \times S \rightarrow [-R_{\text{max}}, R_{\text{max}}]. \]
Reward and Transition Functions

- We had assumed

\[T : S \times A \times S \rightarrow [0, 1], \quad R : S \times A \times S \rightarrow [-R_{\text{max}}, R_{\text{max}}]. \]

- You might encounter alternative definitions of \(R, T \).
We had assumed

\[T : S \times A \times S \rightarrow [0, 1], \ R : S \times A \times S \rightarrow [-R_{\text{max}}, R_{\text{max}}]. \]

You might encounter alternative definitions of \(R, T \).

Sometimes the reward for \((s, a, s')\) is taken as a random variable bounded in \([-R_{\text{max}}, R_{\text{max}}]\), with expectation \(R(s, a, s') \).
Reward and Transition Functions

- We had assumed
 \[T : S \times A \times S \rightarrow [0, 1], \ R : S \times A \times S \rightarrow [-R_{\text{max}}, R_{\text{max}}]. \]

- You might encounter alternative definitions of \(R, T \).
- Sometimes the reward for \((s, a, s')\) is taken as a random variable bounded in \([-R_{\text{max}}, R_{\text{max}}]\), with expectation \(R(s, a, s') \).
- Sometimes there is a reward \(R(s, a) \) given on taking action \(a \) from state \(s \), regardless of next state \(s' \).
Reward and Transition Functions

- We had assumed
 \[T : S \times A \times S \rightarrow [0, 1], \quad R : S \times A \times S \rightarrow [-R_{\text{max}}, R_{\text{max}}]. \]

- You might encounter alternative definitions of \(R, T \).
- Sometimes the reward for \((s, a, s')\) is taken as a random variable bounded in \([-R_{\text{max}}, R_{\text{max}}]\), with expectation \(R(s, a, s') \).
- Sometimes there is a reward \(R(s, a) \) given on taking action \(a \) from state \(s \), regardless of next state \(s' \).
- Sometimes there is a reward \(R(s') \) given on reaching next state \(s' \), regardless of start state \(s \) and action \(a \).
Reward and Transition Functions

- We had assumed
 \[T : S \times A \times S \rightarrow [0, 1], \quad R : S \times A \times S \rightarrow [-R_{\text{max}}, R_{\text{max}}]. \]

- You might encounter alternative definitions of \(R, T \).
- Sometimes the reward for \((s, a, s')\) is taken as a random variable bounded in \([-R_{\text{max}}, R_{\text{max}}]\), with expectation \(R(s, a, s') \).
- Sometimes there is a reward \(R(s, a) \) given on taking action \(a \) from state \(s \), regardless of next state \(s' \).
- Sometimes there is a reward \(R(s') \) given on reaching next state \(s' \), regardless of start state \(s \) and action \(a \).
- Sometimes \(T \) and \(R \) are combined into a single function \(\mathbb{P}\{s', r|s, a\} \) for \(s' \in S, r \in [-R_{\text{max}}, R_{\text{max}}] \).
Reward and Transition Functions

- We had assumed
 \[T : S \times A \times S \rightarrow [0, 1], \quad R : S \times A \times S \rightarrow [-R_{\text{max}}, R_{\text{max}}]. \]

- You might encounter alternative definitions of \(R, T \).
- Sometimes the reward for \((s, a, s')\) is taken as a random variable bounded in \([-R_{\text{max}}, R_{\text{max}}]\), with expectation \(R(s, a, s') \).
- Sometimes there is a reward \(R(s, a) \) given on taking action \(a \) from state \(s \), regardless of next state \(s' \).
- Sometimes there is a reward \(R(s') \) given on reaching next state \(s' \), regardless of start state \(s \) and action \(a \).
- Sometimes \(T \) and \(R \) are combined into a single function \(\mathbb{P}\{s', r|s, a\} \) for \(s' \in S, r \in [-R_{\text{max}}, R_{\text{max}}] \).
- Some authors minimise cost rather than maximise reward.
Reward and Transition Functions

- We had assumed
 \[T : S \times A \times S \rightarrow [0, 1], \quad R : S \times A \times S \rightarrow [-R_{\text{max}}, R_{\text{max}}]. \]

- You might encounter alternative definitions of \(R, T \).
- Sometimes the reward for \((s, a, s')\) is taken as a random variable bounded in \([-R_{\text{max}}, R_{\text{max}}]\), with expectation \(R(s, a, s') \).
- Sometimes there is a reward \(R(s, a) \) given on taking action \(a \) from state \(s \), regardless of next state \(s' \).
- Sometimes there is a reward \(R(s') \) given on reaching next state \(s' \), regardless of start state \(s \) and action \(a \).
- Sometimes \(T \) and \(R \) are combined into a single function \(\mathbb{P}\{s', r|s, a\} \) for \(s' \in S, r \in [-R_{\text{max}}, R_{\text{max}}] \).
- Some authors minimise cost rather than maximise reward.

It is relatively straightforward to handle all these variations.
Episodic Tasks

- We considered *continuing* tasks, in which trajectories are infinitely long.
Episodic Tasks

- **We** considered **continuing** tasks, in which trajectories are infinitely long.
- **Episodic tasks** have a special **sink/terminal state** s_T from which there are no outgoing transitions on rewards.

Additionally, from every non-terminal state and for every policy, there is a non-zero probability of reaching the terminal state in a finite number of steps. Hence, trajectories or episodes almost surely terminate after a finite number of steps.
Episodic Tasks

- We considered **continuing** tasks, in which trajectories are infinitely long.
- Episodic tasks have a special sink/terminal state s_T from which there are no outgoing transitions on rewards.

Additionally, from every non-terminal state and for every policy, there is a non-zero probability of reaching the terminal state in a finite number of steps. Hence, trajectories or episodes almost surely terminate after a finite number of steps.
Episodic Tasks

- We considered continuing tasks, in which trajectories are infinitely long.
- Episodic tasks have a special sink/terminal state s_T from which there are no outgoing transitions on rewards.

Additionally, from every non-terminal state and for every policy, there is a non-zero probability of reaching the terminal state in a finite number of steps.
Episodic Tasks

- We considered **continuing** tasks, in which trajectories are infinitely long.
- Episodic tasks have a special sink/terminal state s_T from which there are no outgoing transitions on rewards.

Additionally, from every non-terminal state and for every policy, there is a non-zero probability of reaching the terminal state in a finite number of steps.

Hence, trajectories or **episodes** almost surely terminate after a finite number of steps.
Definition of Values

- We defined $V^\pi(s)$ as **Infinite discounted reward**:
 \[
 V^\pi(s) \overset{\text{def}}{=} \mathbb{E}_\pi [r^0 + \gamma r^1 + \gamma^2 r^2 + \ldots | s^0 = s].
 \]
Definition of Values

- We defined $V^\pi(s)$ as **Infinite discounted reward**:
 \[
 V^\pi(s) \overset{\text{def}}{=} \mathbb{E}_\pi [r^0 + \gamma r^1 + \gamma^2 r^2 + \ldots | s^0 = s].
 \]
 There are other choices.

- **Total reward**:
 \[
 V^\pi(s) \overset{\text{def}}{=} \mathbb{E}_\pi [r^0 + r^1 + r^2 + \ldots | s^0 = s].
 \]
 Can only be used on episodic tasks.
Definition of Values

- We defined $V^\pi(s)$ as **Infinite discounted reward**:
 $$V^\pi(s) \stackrel{\text{def}}{=} \mathbb{E}_\pi[r^0 + \gamma r^1 + \gamma^2 r^2 + \ldots | s^0 = s].$$
 There are other choices.

- **Total reward**:
 $$V^\pi(s) \stackrel{\text{def}}{=} \mathbb{E}_\pi[r^0 + r^1 + r^2 + \ldots | s^0 = s].$$
 Can only be used on episodic tasks.

- **Finite horizon reward**:
 $$V^\pi(s) \stackrel{\text{def}}{=} \mathbb{E}_\pi[r^0 + r^1 + r^2 + \ldots + r^{H-1} | s^0 = s].$$
 Horizon $H \geq 1$ specified, rather than γ.
 Optimal policies for this setting need not be stationary.
Definition of Values

- We defined $V^\pi(s)$ as **Infinite discounted reward**:
 $$V^\pi(s) \overset{\text{def}}{=} \mathbb{E}_\pi[r^0 + \gamma r^1 + \gamma^2 r^2 + \ldots | s^0 = s].$$
 There are other choices.

- **Total reward**:
 $$V^\pi(s) \overset{\text{def}}{=} \mathbb{E}_\pi[r^0 + r^1 + r^2 + \ldots | s^0 = s].$$
 Can only be used on episodic tasks.

- **Finite horizon reward**:
 $$V^\pi(s) \overset{\text{def}}{=} \mathbb{E}_\pi[r^0 + r^1 + r^2 + \ldots + r^{H-1} | s^0 = s].$$
 Horizon $H \geq 1$ specified, rather than γ.
 Optimal policies for this setting need not be stationary.

- **Average reward** (withholding some technical details):
 $$V^\pi(s) \overset{\text{def}}{=} \mathbb{E}_\pi[\lim_{m \to \infty} \frac{r^0 + r^1 + \ldots + r^{m-1}}{m} | s^0 = s].$$
Markov Decision Problems

1. Alternative formulations of MDPs

2. Some applications of MDPs
Controlling a Helicopter (Ng et al., 2003)

- Episodic or continuing task? What are S, A, T, R, γ?

[1]

Winning at Chess

Episodic or continuing task? What are S, A, T, R, γ?

[1]

Preventing Forest Fires (Lauer et al., 2017)

Episodic or continuing task? What are S, A, T, R, γ?

A Familiar MDP?

- Single state. k actions.
- For $a \in A$, treat reward of (s, a, s') as a random variable.

Annotation: "probability, reward distribution".
A Familiar MDP?

- Single state. \(k \) actions.
- For \(a \in A \), treat reward of \((s, a, s') \) as a \textit{random} variable.

\[\gamma = 0.5 \]

Such an MDP is called a multi-armed bandit!

Annotation: "probability, reward distribution".

Shivaram Kalyanakrishnan (2022)
CS 747, Autumn 2022
A Familiar MDP?

- Single state. \(k \) actions.
- For \(a \in A \), treat reward of \((s, a, s')\) as a random variable.

Such an MDP is called a **multi-armed bandit**!
Markov Decision Problems

- MDP, policy, value function
- MDP planning problem
- Policy evaluation

- Alternative formulations of MDPs
- Some applications of MDPs

- Banach’s fixed point theorem
- Bellman optimality operator
- Value iteration
- Linear Programming
- Policy iteration