1. Policy gradient methods

2. Variance reduction

3. Actor-critic methods
Reinforcement Learning

1. Policy gradient methods

2. Variance reduction

3. Actor-critic methods
A Variety of Applications

- Learning to Trade via Direct Reinforcement
 Moody and Saffell (2001)

- Reinforcement learning of motor skills with policy gradients

- Mastering the game of Go with deep neural networks and tree search
 Silver et al. (2016)

- Deep Reinforcement Learning for Autonomous Driving: A Survey
 Ravi Kiran et al. (2021)
Stochastic Policies

- Single state; actions a_1, a_2.
- $R(a_1) = 5; R(a_2) = 10$.
- Policy π; parameter θ.

$$\pi(a_1) = \begin{cases} 1 & \text{if } \theta < 0.6, \\ 0 & \text{otherwise}. \end{cases}$$

$$J(\theta) = \pi(a_1) \cdot 5 + \pi(a_2) \cdot 10.$$
Stochastic Policies

- Single state; actions a_1, a_2.
- $R(a_1) = 5; R(a_2) = 10$.
- Policy π; parameter θ.

$$\pi(a_1) = \begin{cases} 1 & \text{if } \theta < 0.6, \\ 0 & \text{otherwise.} \end{cases}$$

$$J(\theta) = \pi(a_1) \cdot 5 + \pi(a_2) \cdot 10.$$

Policy π'; parameter θ.

$$\pi'(a_1) = \frac{1}{1 + e^{\theta - 0.6}}.$$

$$J'(\theta) = \pi'(a_1) \cdot 5 + \pi'(a_2) \cdot 10.$$
Idea

- If π is differentiable w.r.t. θ, so is (scalar) “policy value” J.

Example. If we have features $x(s,a) \in \mathbb{R}^d$ for $s \in S$, $a \in A$, a common template for π is:

$$\pi(s,a) = e^{\theta \cdot x(s,a)} P_{b \in A} e^{\theta \cdot x(s,b)}$$

where $\theta \in \mathbb{R}^d$ is the vector of policy parameters.

In this case, work out that $\nabla_{\theta} \pi(s,a) = x(s,a) - \sum_{b \in B} \pi(s,b) x(s,b)$.

But what's the connection between $\nabla_{\theta} J$ and $\nabla_{\theta} \pi(s,a)$?
Idea

- If π is differentiable w.r.t. θ, so is (scalar) “policy value” J.
- We can “search” for “good” θ by iterating:

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + \alpha \nabla_\theta J(\theta_{\text{old}}).$$

Example. If we have features $x(s, a) \in \mathbb{R}^d$ for $s \in S, a \in A$, a common template for π is:

$$\pi(s, a) = e^{\theta \cdot x(s, a)} \prod_{b \in A \setminus \{a\}} e^{\theta \cdot x(s, b)}.$$
Idea

- If π is differentiable w.r.t. θ, so is (scalar) “policy value” J.
- We can “search” for “good” θ by iterating:

 $$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + \alpha \nabla_\theta J(\theta_{\text{old}}).$$

- **Example.** If we have features $x(s, a) \in \mathbb{R}^d$ for $s \in S$, $a \in A$, a common template for π is:

 $$\pi(s, a) = \frac{e^{\theta \cdot x(s, a)}}{\sum_{b \in A} e^{\theta \cdot x(s, b)},}$$

 where $\theta \in \mathbb{R}^d$ is the vector of policy parameters.
Idea

- If \(\pi \) is differentiable w.r.t. \(\theta \), so is (scalar) “policy value” \(J \).
- We can “search” for “good” \(\theta \) by iterating:
 \[
 \theta_{\text{new}} \leftarrow \theta_{\text{old}} + \alpha \nabla_\theta J(\theta_{\text{old}}).
 \]

Example. If we have features \(x(s, a) \in \mathbb{R}^d \) for \(s \in S, a \in A \), a common template for \(\pi \) is:

\[
\pi(s, a) = \frac{e^{\theta \cdot x(s, a)}}{\sum_{b \in A} e^{\theta \cdot x(s, b)}},
\]

where \(\theta \in \mathbb{R}^d \) is the vector of policy parameters. In this case, work out that

\[
\nabla_\theta \pi(s, a) = \left(x(s, a) - \sum_{b \in B} \pi(s, b) x(s, b) \right) \pi(s, a).
\]
Idea

- If π is differentiable w.r.t. θ, so is (scalar) “policy value” J.
- We can “search” for “good” θ by iterating:

$$\theta_{\text{new}} \leftarrow \theta_{\text{old}} + \alpha \nabla_{\theta} J(\theta_{\text{old}}).$$

Example. If we have features $x(s, a) \in \mathbb{R}^d$ for $s \in S$, $a \in A$, a common template for π is:

$$\pi(s, a) = \frac{e^{\theta \cdot x(s, a)}}{\sum_{b \in A} e^{\theta \cdot x(s, b)}},$$

where $\theta \in \mathbb{R}^d$ is the vector of policy parameters. In this case, work out that

$$\nabla_{\theta} \pi(s, a) = \left(x(s, a) - \sum_{b \in B} \pi(s, b) x(s, b) \right) \pi(s, a).$$

- But what’s the connection between $\nabla_{\theta} J$ and $\nabla_{\theta} \pi(\cdot, \cdot)$?
Policy Gradient Theorem

- For simplicity assume episodic task with $\gamma = 1$.

- Assume there is a fixed start state s^0.

- We leave it implicit that π is fixed by parameter vector θ.

- $J(\theta) = V^\pi(s^0)$.

- We shall derive the connection between $\nabla_\theta J$ and $\nabla_\theta \pi(\cdot, \cdot)$.
Policy Gradient Theorem

For $s \in S$, $\nabla_\theta V^\pi(s) = \nabla_\theta \sum_{a \in A} \pi(s, a) Q^\pi(s, a)$
Policy Gradient Theorem

For \(s \in S, \nabla_{\theta} V^\pi(s) = \nabla_{\theta} \sum_{a \in A} \pi(s, a)Q^\pi(s, a) \)

\[= \sum_{a \in A} \nabla_{\theta} \pi(s, a)Q^\pi(s, a) \]

\[+ \sum_{a \in A} \pi(s, a)\nabla_{\theta} \sum_{s' \in S} T(s, a, s')(R(s, a, s') + V^\pi(s')) \]

where \(P\{s \to x, t, \pi\} \) is the probability of reaching \(x \) from \(s \) in \(t \) steps following \(\pi \).
Policy Gradient Theorem

For \(s \in S \), \(\nabla_\theta V^\pi(s) = \nabla_\theta \sum_{a \in A} \pi(s, a)Q^\pi(s, a) \)

\[= \sum_{a \in A} \nabla_\theta \pi(s, a)Q^\pi(s, a) \]

\[+ \sum_{a \in A} \pi(s, a) \nabla_\theta \sum_{s' \in S} T(s, a, s')(R(s, a, s') + V^\pi(s')) \]

\[= \sum_{a \in A} \left[\nabla_\theta \pi(s, a)Q^\pi(s, a) + \pi(s, a) \sum_{s' \in S} T(s, a, s')\nabla_\theta V^\pi(s') \right] \]
For \(s \in S \), \(\nabla_\theta V^\pi(s) = \nabla_\theta \sum_{a \in A} \pi(s, a) Q^\pi(s, a) \)

\[
= \sum_{a \in A} \nabla_\theta \pi(s, a) Q^\pi(s, a) \\
+ \sum_{a \in A} \pi(s, a) \nabla_\theta \sum_{s' \in S} T(s, a, s')(R(s, a, s') + V^\pi(s'))
\]

\[
= \sum_{a \in A} \left[\nabla_\theta \pi(s, a) Q^\pi(s, a) + \pi(s, a) \sum_{s' \in S} T(s, a, s') \nabla_\theta V^\pi(s') \right]
\]

\[
= \cdots = \sum_{x \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s \rightarrow x, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(x, a) Q^\pi(x, a),
\]
Policy Gradient Theorem

For $s \in S$, $\nabla_{\theta} V^\pi(s) = \nabla_{\theta} \sum_{a \in A} \pi(s, a) Q^\pi(s, a)$

$= \sum_{a \in A} \nabla_{\theta} \pi(s, a) Q^\pi(s, a)$

$+ \sum_{a \in A} \pi(s, a) \nabla_{\theta} \sum_{s' \in S} T(s, a, s')(R(s, a, s') + V^\pi(s'))$

$= \sum_{a \in A} \left[\nabla_{\theta} \pi(s, a) Q^\pi(s, a) + \pi(s, a) \sum_{s' \in S} T(s, a, s') \nabla_{\theta} V^\pi(s') \right]$

$= \cdots = \sum_{x \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s \rightarrow x, t, \pi\} \sum_{a \in A} \nabla_{\theta} \pi(x, a) Q^\pi(x, a)$,

where $\mathbb{P}\{s \rightarrow x, t, \pi\}$ is the probability of reaching x from s in t steps following π.
Recall that $J(\theta) = V^\pi(s^0)$.

\[\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) Q^\pi(s, a). \]
Policy Gradient Theorem

- Recall that $J(\theta) = V^\pi(s^0)$.

\[
\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) Q^\pi(s, a).
\]

- But how to do gradient ascent? We don't know $\mathbb{P}\{s^0 \rightarrow s, t, \pi\}$, $Q^\pi(s, a)$!
Policy Gradient Theorem

- Recall that $J(\theta) = V^\pi(s^0)$.

\[
\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^\infty \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) Q^\pi(s, a).
\]

- But how to do gradient ascent? We don't know $\mathbb{P}\{s^0 \rightarrow s, t, \pi\}$, $Q^\pi(s, a)$!
- We perform stochastic gradient ascent.
- We use the following fact. For any discrete, real-valued random variable X with pmf $p : X \rightarrow [0, 1]$,

\[
\sum_{x \in X} p(x)x = \mathbb{E}[X].
\]
Towards Gradient Ascent

- Generate episode $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots, s^T = s_T$ by acting according to π, parameterised by θ.
Towards Gradient Ascent

Generate episode $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots, s^T = s_\top$ by acting according to π, parameterised by θ. Now consider:

$$
\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} P\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) Q^\pi(s, a)
$$
Towards Gradient Ascent

Generate episode $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots, s^T = s_T$ by acting according to π, parameterised by θ. Now consider:

$$\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a)Q^\pi(s, a)$$

$$= \sum_{t=0}^{\infty} \sum_{s \in S} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a)Q^\pi(s, a)$$
Towards Gradient Ascent

- Generate episode $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots, s^T = s_T$ by acting according to π, parameterised by θ. Now consider:

$$
\nabla_{\theta} J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_{\theta} \pi(s, a) Q^\pi(s, a)
$$

$$
= \sum_{t=0}^{\infty} \sum_{s \in S} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_{\theta} \pi(s, a) Q^\pi(s, a)
$$

$$
= \sum_{t=0}^{\infty} \mathbb{E}_\pi \left[\sum_{a \in A} \nabla_{\theta} \pi(s^t, a) Q^\pi(s^t, a) \right]
$$
Towards Gradient Ascent

Generate episode $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots, s^T = s_T$ by acting according to π, parameterised by θ. Now consider:

$$\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^\infty \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a)Q^\pi(s, a)$$

$$= \sum_{t=0}^\infty \sum_{s \in S} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a)Q^\pi(s, a)$$

$$= \sum_{t=0}^\infty \mathbb{E}_\pi \left[\sum_{a \in A} \nabla_\theta \pi(s^t, a)Q^\pi(s^t, a) \right]$$

$$= \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \sum_{a \in A} \nabla_\theta \pi(s^t, a)Q^\pi(s^t, a) \right].$$
Towards Gradient Ascent

- Generate episode $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots, s^T = s_T$ by acting according to π, parameterised by θ. Now consider:

$$\nabla_\theta J(\theta) = \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \sum_{a \in A} \nabla_\theta \pi(s^t, a) Q^\pi(s^t, a) \right]$$
Towards Gradient Ascent

- Generate episode $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots, s^T = s_T$ by acting according to π, parameterised by θ. Now consider:

\[
\nabla_{\theta} J(\theta) = \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \sum_{a \in A} \nabla_{\theta} \pi(s^t, a) Q^\pi(s^t, a) \right]
\]

\[
= \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \sum_{a \in A} \pi(s^t, a) \frac{\nabla_{\theta} \pi(s^t, a)}{\pi(s^t, a)} Q^\pi(s^t, a) \right]
\]
Towards Gradient Ascent

Generate episode $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots, s^T = s_T$ by acting according to π, parameterised by θ. Now consider:

$$\nabla_\theta J(\theta) = \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \sum_{a \in A} \nabla_\theta \pi(s^t, a) Q^\pi(s^t, a) \right]$$

$$= \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \sum_{a \in A} \pi(s^t, a) \frac{\nabla_\theta \pi(s^t, a)}{\pi(s^t, a)} Q^\pi(s^t, a) \right]$$

$$= \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \frac{\nabla_\theta \pi(s^t, a^t)}{\pi(s^t, a^t)} Q^\pi(s^t, a^t) \right]$$
Towards Gradient Ascent

Generate episode $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots, s^T = s_T$ by acting according to π, parameterised by θ. Now consider:

$$
\nabla_\theta J(\theta) = \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \sum_{a \in A} \nabla_\theta \pi(s^t, a) Q_\pi(s^t, a) \right]
$$

$$
= \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \sum_{a \in A} \pi(s^t, a) \frac{\nabla_\theta \pi(s^t, a)}{\pi(s^t, a)} Q_\pi(s^t, a) \right]
$$

$$
= \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \frac{\nabla_\theta \pi(s^t, a^t)}{\pi(s^t, a^t)} Q_\pi(s^t, a^t) \right] = \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \frac{\nabla_\theta \pi(s^t, a^t)}{\pi(s^t, a^t)} G_{t:T} \right]
$$
Towards Gradient Ascent

Generate episode \(s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots, s^T = s_T \) by acting according to \(\pi \), parameterised by \(\theta \). Now consider:

\[
\nabla_\theta J(\theta) = \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \sum_{a \in A} \nabla_\theta \pi(s^t, a) Q^\pi(s^t, a) \right]
\]

\[
= \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \sum_{a \in A} \pi(s^t, a) \frac{\nabla_\theta \pi(s^t, a)}{\pi(s^t, a)} Q^\pi(s^t, a) \right]
\]

\[
= \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \frac{\nabla_\theta \pi(s^t, a^t)}{\pi(s^t, a^t)} Q^\pi(s^t, a^t) \right] = \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} \frac{\nabla_\theta \pi(s^t, a^t)}{\pi(s^t, a^t)} G_{t:T} \right]
\]

\[
= \mathbb{E}_\pi \left[\sum_{t=0}^{T-1} (\nabla_\theta \ln \pi(s^t, a^t)) G_{t:T} \right].
\]
REINFORCE Algorithm

- For clarity we show explicit dependence of π on parameter vector $\theta \in \mathbb{R}^d$.

- Assume θ is initialised arbitrarily.

Repeat for ever:

- $\theta_{\text{new}} \leftarrow \theta$.
- Generate episode $s^0, a^0, r^0, s^1, \ldots, s^T = s^T$, following π_θ.
- For $t = 0, 1, \ldots, T - 1$:
 - $G \leftarrow \sum_{k=t}^{T-1} r^k$. //This is $G_{t:T}$.
 - $\theta_{\text{new}} \leftarrow \theta_{\text{new}} + \alpha G \nabla_\theta \ln \pi_\theta(s^t, a^t)$.

- $\theta \leftarrow \theta_{\text{new}}$.
REINFORCE Algorithm

- For clarity we show explicit dependence of π on parameter vector $\theta \in \mathbb{R}^d$.

- Assume θ is initialised arbitrarily.

Repeat for ever:

\[
\theta_{\text{new}} \leftarrow \theta.
\]

Generate episode $s^0, a^0, r^0, s^1, \ldots, s^T = s_T$, following π_θ.

For $t = 0, 1, \ldots, T - 1$:

\[
G \leftarrow \sum_{k=t}^{T-1} r^k. \quad \text{//This is } G_{t:T}.
\]

\[
\theta_{\text{new}} \leftarrow \theta_{\text{new}} + \alpha G \nabla_\theta \ln \pi_\theta(s^t, a^t).
\]

\[
\text{//REward Increment = Nonnegative Factor } \times
\]

\[
\text{//Offset Reinforcement } \times \text{ Characteristic Eligibility.}
\]

\[
\theta \leftarrow \theta_{\text{new}}.
\]
Reinforcement Learning

1. Policy gradient methods

2. Variance reduction

3. Actor-critic methods
Baseline Subtraction

- **Policy Gradient Theorem**

\[
\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) Q^\pi(s, a).
\]

How come? Observe that

\[
\sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) B(s) = 0.
\]

Shivaram Kalyanakrishnan (2022)
Baseline Subtraction

- Policy Gradient Theorem

\[
\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} P\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) Q^\pi(s, a).
\]

- Let \(B : S \rightarrow \mathbb{R} \) be an *arbitrary* function of state.
Baseline Subtraction

- Policy Gradient Theorem

\[\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) Q^\pi(s, a). \]

- Let \(B : S \rightarrow \mathbb{R} \) be an arbitrary function of state. We claim

\[\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a)(Q^\pi(s, a) - B(s)). \]
Baseline Subtraction

Policy Gradient Theorem

\[\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^\infty \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) Q^\pi(s, a). \]

Let \(B : S \rightarrow \mathbb{R} \) be an arbitrary function of state. We claim

\[\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^\infty \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) (Q^\pi(s, a) - B(s)). \]

How come?
Baseline Subtraction

- Policy Gradient Theorem

\[\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) Q^\pi(s, a). \]

- Let \(B : S \rightarrow \mathbb{R} \) be an arbitrary function of state. We claim

\[\nabla_\theta J(\theta) = \sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) (Q^\pi(s, a) - B(s)). \]

- How come? Observe that

\[
\sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} \sum_{a \in A} \nabla_\theta \pi(s, a) B(s) \\
= \sum_{s \in S} \sum_{t=0}^{\infty} \mathbb{P}\{s^0 \rightarrow s, t, \pi\} B(s) \nabla_\theta \sum_{a \in A} \pi(s, a) = 0.
\]
Baseline Subtraction

- The policy gradient estimate can have high variance.

<table>
<thead>
<tr>
<th>s</th>
<th>$Q^\pi(s, a_1)$</th>
<th>$Q^\pi(s, a_2)$</th>
<th>$Q^\pi(s, a_3)$</th>
<th>$V^\pi(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>105</td>
<td>79</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>s_2</td>
<td>10</td>
<td>6</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>s_3</td>
<td>-50</td>
<td>-60</td>
<td>-50</td>
<td>-55</td>
</tr>
</tbody>
</table>
Baseline Subtraction

- The policy gradient estimate can have high variance.

<table>
<thead>
<tr>
<th></th>
<th>$Q^\pi(s, a_1)$</th>
<th>$Q^\pi(s, a_2)$</th>
<th>$Q^\pi(s, a_3)$</th>
<th>$V^\pi(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>105</td>
<td>79</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>s_2</td>
<td>10</td>
<td>6</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>s_3</td>
<td>-50</td>
<td>-60</td>
<td>-50</td>
<td>-55</td>
</tr>
</tbody>
</table>

- Common to subtract out $V^\pi(s)$—approximated independently as $\hat{V}(s)$.

REINFORCE with baseline: revise pseudocode to

$$
\theta_{\text{new}} \leftarrow \theta_{\text{new}} + \alpha \sum_{t=0}^{T-1} (G_{t:T} - \hat{V}(s^t)) \nabla_{\theta} \ln \pi_{\theta}(s^t, a^t).
$$
Reinforcement Learning

1. Policy gradient methods

2. Variance reduction

3. Actor-critic methods
Actor-critic Methods

- Even for fixed \((s^t, a^t)\), can have high variance in \(G_{t:T}\).

One approach is to do gradient ascent after averaging the gradient from a few episodes. Another approach is to bootstrap: to use \(r^t + \hat{V}(s^{t+1})\) in place of \(G_{t:T}\), where \(\hat{V}(s^{t+1})\) is estimated independently. Called the Actor-Critic architecture.

- Actor updates \(\theta\) and hence \(\pi_{\theta}\).
- Critic evaluates \(\pi_{\theta}\) (say using TD(0)) and provides input for the gradient ascent update.

\[
\theta_{\text{new}} \leftarrow \theta_{\text{new}} + \alpha \sum_{t=0}^{T-1} \left(r^t + \hat{V}(s^{t+1}) - \hat{V}(s^t) \right) \nabla_{\theta} \ln \pi_{\theta}(s^t, a^t).
\]

Not always provably convergent, but widely used in practice.

Shivaram Kalyanakrishnan (2022)
Actor-critic Methods

- Even for fixed \((s^t, a^t)\), can have high variance in \(G_{t:T}\).
- One approach is to do gradient ascent after averaging the gradient from a few episodes.

\[\theta_{new} \leftarrow \theta_{new} + \alpha \sum_{t=0}^{T-1} (r_t + \hat{V}(s_{t+1}) - \hat{V}(s_t)) \nabla \theta \ln \pi_{\theta}(s_t, a_t) \]

Not always provably convergent, but widely used in practice.
Actor-critic Methods

- Even for fixed \((s^t, a^t)\), can have high variance in \(G_{t:T}\).
- One approach is to do gradient ascent after averaging the gradient from a few episodes.
- Another approach is to **bootstrap**: to use \(r^t + \hat{V}(s^{t+1})\) in place of \(G_{t:T}\), where \(\hat{V}(s^{t+1})\) is estimated independently.

Called the Actor-Critic architecture.
- Actor updates \(\theta\) and hence \(\pi_{\theta}\).
- Critic evaluates \(\pi_{\theta}\) (say using TD(0)) and provides input for the gradient ascent update.

\[
\theta_{\text{new}} \leftarrow \theta_{\text{new}} + \alpha \sum_{t=0}^{T-1} (r^t + \hat{V}(s^{t+1}) - \hat{V}(s^t)) \nabla \ln \pi_{\theta}(s^t, a^t)
\]

Not always provably convergent, but widely used in practice.
Actor-critic Methods

- Even for fixed \((s^t, a^t)\), can have high variance in \(G_t:T\).
- One approach is to do gradient ascent after averaging the gradient from a few episodes.
- Another approach is to bootstrap: to use \(r^t + \hat{V}(s^{t+1})\) in place of \(G_t:T\), where \(\hat{V}(s^{t+1})\) is estimated independently.
- Called the Actor-Critic architecture.
 - Actor updates \(\theta\) and hence \(\pi_\theta\).
 - Critic evaluates \(\pi_\theta\) (say using TD(0)) and provides input for the gradient ascent update.

\[
\theta_{\text{new}} \leftarrow \theta_{\text{new}} + \alpha \sum_{t=0}^{T-1} (r^t + \hat{V}(s^{t+1}) - \hat{V}(s^t)) \nabla_\theta \ln \pi_\theta(s^t, a^t).
\]

Not always provably convergent, but widely used in practice.

Shivaram Kalyanakrishnan (2022)
Actor-critic Methods

- Even for fixed \((s^t, a^t)\), can have high variance in \(G_{t:T}\).
- One approach is to do gradient ascent after averaging the gradient from a few episodes.
- Another approach is to bootstrap: to use \(r^t + \hat{V}(s^{t+1})\) in place of \(G_{t:T}\), where \(\hat{V}(s^{t+1})\) is estimated independently.
- Called the Actor-Critic architecture.
 - **Actor** updates \(\theta\) and hence \(\pi_\theta\).
 - **Critic** evaluates \(\pi_\theta\) (say using TD(0)) and provides input for the gradient ascent update.

\[
\theta_{\text{new}} \leftarrow \theta_{\text{new}} + \alpha \sum_{t=0}^{T-1} (r^t + \hat{V}(s^{t+1}) - \hat{V}(s^t)) \nabla_\theta \ln \pi_\theta(s^t, a^t).
\]

- Not always provably convergent, but widely used in practice.
Reinforcement Learning

1. Policy gradient methods

2. Variance reduction

3. Actor-critic methods
Reinforcement Learning

1. Policy gradient methods
2. Variance reduction
3. Actor-critic methods

Next class: Batch reinforcement learning