Recall What a “Model” is

- MDP \((S, A, T, R, \gamma)\).
Recall What a “Model” is

- MDP \((S, A, T, R, \gamma)\).

- **Model** \((\hat{T}, \hat{R})\) is agent’s estimate of \((T, R)\).
Recall What a “Model” is

- MDP \((S, A, T, R, \gamma)\).

Model \((\hat{T}, \hat{R})\) is agent’s estimate of \((T, R)\).

Distributional models store \(T(s, a, s')\) for \(s, s' \in S, a \in A\).
Recall What a “Model” is

- MDP \((S, A, T, R, \gamma)\).

- **Model** \((\hat{T}, \hat{R})\) is agent’s estimate of \((T, R)\).
- **Distributional models** store \(T(s, a, s')\) for \(s, s' \in S, a \in A\).
- **Sample models** generate \(s' \sim T(s, a)\) for \(s \in S, a \in A\).
Models in RL

1. Dyna-Q algorithm

2. Model-based RL for helicopter control
Models in RL

1. Dyna-Q algorithm

2. Model-based RL for helicopter control
Learning and Using Models

Value/Policy
Acting
Planning
Direct RL
Model
Experience
Supervised learning

Figure from Section 8.2, Sutton and Barto (2018).

What are pluses and minuses of model-based learning?

+ Fewer environmental interactions (but more computation).
+ Adapting to changes in the environment.
- Being misled by an incorrect/biased model.

Shivaram Kalyanakrishnan (2022)
Learning and Using Models

Figure from Section 8.2, Sutton and Barto (2018).

+ Fewer environmental interactions (but more computation).
- Being misled by an incorrect/biased model.
Learning and Using Models

Figure from Section 8.2, Sutton and Barto (2018).

- What are pluses and minuses of model-based learning?
 - **+** Fewer environmental interactions (but more computation).
 - **+** Adapting to changes in the environment.
 - **-** Being misled by an incorrect/biased model.
Learning and Using Models

Figure from Section 8.2, Sutton and Barto (2018).

What are pluses and minuses of model-based learning?

+ Fewer environmental interactions (but more computation).
+ Adapting to changes in the environment.

- Being misled by an incorrect/biased model.
Learning and Using Models

Figure from Section 8.2, Sutton and Barto (2018).

What are pluses and minuses of model-based learning?
What are pluses and minuses of model-based learning?

+ Fewer environmental interactions (but more computation).
+ Adapting to changes in the environment.
- Being misled by an incorrect/biased model.

Figure from Section 8.2, Sutton and Barto (2018).
Dyna-Q Algorithm

Initialise Q, $Model$.

Loop forever:

- $s \leftarrow$ current state.
- $a \leftarrow \epsilon$-greedy(s, Q).

 Take action a; get next state s', reward r.

 $$Q(s, a) \leftarrow Q(s, a) + \alpha \{r + \gamma \max_{a' \in A} \ Q(s', a') - Q(s, a)\}.$$

UpdateModel$(Model, s, a, r, s').$

Loop N times:

- $\bar{s} \leftarrow$ Random previously observed state.
- $\bar{a} \leftarrow$ Random previously taken action from \bar{s}.
- $\bar{s}', \bar{r} \sim \text{Model}(\bar{s}, \bar{a})$.

 $$Q(\bar{s}, \bar{a}) \leftarrow Q(\bar{s}, \bar{a}) + \alpha \{\bar{r} + \gamma \max_{\bar{a}' \in A} \ Q(\bar{s}', \bar{a}') - Q(\bar{s}, \bar{a})\}.$$
Dyna-Q Algorithm

Initialise Q, $Model$.

Loop forever:

$s \leftarrow$ current state.
$a \leftarrow \epsilon$-greedy(s, Q).

Take action a; get next state s', reward r.

$Q(s, a) \leftarrow Q(s, a) + \alpha \{r + \gamma \max_{a' \in A} Q(s', a') - Q(s, a)\}$.

UpdateModel($Model, s, a, r, s'$).

Loop N times: //Simulation using model.

$\tilde{s} \leftarrow$ Random previously observed state.
$\tilde{a} \leftarrow$ Random previously taken action from \tilde{s}.

$\tilde{s}', \tilde{r} \sim Model(\tilde{s}, \tilde{a})$.

$Q(\tilde{s}, \tilde{a}) \leftarrow Q(\tilde{s}, \tilde{a}) + \alpha \{\tilde{r} + \gamma \max_{a' \in A} Q(\tilde{s}', \tilde{a}') - Q(\tilde{s}, \tilde{a})\}$.
Dyna-Q Algorithm

Initialise Q, $Model$.
Loop forever:

- $s \leftarrow$ current state.
- $a \leftarrow \epsilon$-greedy(s, Q).
 Take action a; get next state s', reward r.
 $Q(s, a) \leftarrow Q(s, a) + \alpha \{r + \gamma \max_{a' \in A} Q(s', a') - Q(s, a)\}$.
 $UpdateModel(Model, s, a, r, s')$.
Loop N times: //Simulation using model.
- $\bar{s} \leftarrow$ Random previously observed state.
- $\bar{a} \leftarrow$ Random previously taken action from \bar{s}.
- $\bar{s}', \bar{r} \sim Model(\bar{s}, \bar{a})$.
 $Q(\bar{s}, \bar{a}) \leftarrow Q(\bar{s}, \bar{a}) + \alpha \{\bar{r} + \gamma \max_{a' \in A} Q(\bar{s}', a') - Q(\bar{s}, \bar{a})\}$.

In practice, model and Q implemented using function approximator, rules.
You’ve seen this lots of times.

Effect of Model

Models can lead to more efficient exploration. Model uncertainties can also be maintained. Dyna-Q can be augmented with prioritised sweeping to expedite reconciliation of Q-function with model.
Effect of Model

You’ve seen this lots of times.

Then this happens for the first time.

Models can lead to more efficient exploration.
Model uncertainties can also be maintained.

Dyna-Q can be augmented with prioritised sweeping to expedite reconciliation of Q-function with model.

Shivaram Kalyanakrishnan (2022)
Models can lead to more efficient exploration.

Model uncertainties can also be maintained.

Dyna-Q can be augmented with prioritised sweeping to expedite reconciliation of \(Q \)-function with model.
Models in RL

1. Dyna-Q algorithm

2. Model-based RL for helicopter control
Models in RL

1. Dyna-Q algorithm

2. Model-based RL for helicopter control

Autonomous helicopter flight via Reinforcement Learning.

Controlling a Helicopter

State described by position (x, y, z), orientation (ϕ, θ, ω), velocity (\dot{x}, \dot{y}, \dot{z}), and angular velocity ($\dot{\phi}$, $\dot{\theta}$, $\dot{\omega}$).

Actions: 4-dimensional control of rotor tilts, speeds.

Task: hover in place, or follow a trajectory.

Controlling a Helicopter

Episodic or continuing? What are T, R, γ?

Controlling a Helicopter

- Episodic or continuing? What are T, R, γ?
- How to learn to fly? By trial and error?!
Approach of Ng et al. (2003)

- Have a human pilot fly the helicopter; record trajectory.
- Learn a model using supervised learning on gathered data.
- Run policy search on the model.
- Evaluate learned policy on (real) helicopter.
Data Gathering

- **Human pilot** flies helicopter for a few minutes.

- $s^0, a^0, r^0, s^1, a^1, r^1, s^2, \ldots$ trajectory recorded at 50Hz.

- Trajectory split into separate **train** (339s) and **test** (140s) segments.

- **Domain knowledge** applied to simplify model learning (use of body coordinates, accounting for symmetries, etc.).
Learning the Model

- Given query x, output y is computed as a linear function of state features as well as actions:

$$y = \beta x + \eta,$$

where parameters β and η (noise) are determined mainly by training points in the vicinity of x.

- Example of an instance-based approach yielding a non-linear, distributional model, which is subsequently used as a sample model.

- Some parameters hard-coded based on domain knowledge.

- Design and choices validated by visualising divergence between predicted and actual trajectories.
Policy Search

- **Policy template**: feed-forward neural networks with state (and derived) features as input, and one output for each of four action dimensions \([-1, 1]\). Few tens of parameters.

- For given policy \(\pi\), define \(U(\pi)\) to be the expected long-term reward from start state. Need to find
 \[
 \arg\max_{\pi \in \Pi} U(\pi).
 \]

- Instead find \(\arg\max_{\pi \in \Pi} \hat{U}(\pi)\), estimated using rollouts of \(\pi\) on model.

- Search based on hill-climbing or gradient ascent.

- “PEGASUS” trick used to reduce variance across rollouts.
Hovering, Trajectory-following

Hovering at \((x^*, y^*, z^*)\):

\[
R(s, a) = R(s) + R(a), \quad \text{where}
\]

\[
R(s) = -\left[\alpha_x (x - x^*)^2 + \alpha_y (y - y^*)^2 + \alpha_z (z - z^*)^2 + \\
\alpha_x \dot{x}^2 + \alpha_y \dot{y}^2 + \alpha_z \dot{z}^2 + \alpha_\omega \dot{\omega}^2 \right],
\]

\[
R(a) = -\left[\alpha_{a_1} (a_1)^2 + \alpha_{a_2} (a_2)^2 + \alpha_{a_3} (a_3)^2 + \alpha_{a_4} (a_4)^2 \right].
\]
Hovering, Trajectory-following

- Hovering at \((x^*, y^*, z^*)\):

\[
R(s, a) = R(s) + R(a),
\]

where

\[
R(s) = -[\alpha_x (x - x^*)^2 + \alpha_y (y - y^*)^2 + \alpha_z (z - z^*)^2 + \\
\alpha_\dot{x} \dot{x}^2 + \alpha_\dot{y} \dot{y}^2 + \alpha_\dot{z} \dot{z}^2 + \alpha_\dot{\omega} \dot{\omega}^2],
\]

\[
R(a) = -[\alpha_{a_1} (a_1)^2 + \alpha_{a_2} (a_2)^2 + \alpha_{a_3} (a_3)^2 + \alpha_{a_4} (a_4)^2].
\]

- Flying along trajectory \((x_t^*, y_t^*, z_t^*)^T_{t=0} \):
 - “Obvious” idea of using \((x_t^*, y_t^*, z_t^*)\) in place of \((x^*, y^*, z^*)\) can be problematic.
 - Instead decouple deviation and progress.
 - Uses more parameters/connections in neural network-based policy than for hovering.
Discussion

- Why not imitate the human pilot’s policy: that is, learn $S \rightarrow A$ mapping using supervised learning?
Discussion

- Why not imitate the human pilot’s policy: that is, learn \(S \rightarrow A \) mapping using supervised learning?

 Sometimes works! Sometimes does not.
Discussion

- Why not imitate the human pilot’s policy: that is, learn $S \rightarrow A$ mapping using supervised learning?
 - Sometimes works! Sometimes does not.
- (Tabular) model has $\theta(|S|^2|A|)$ float entries, Q function has $\theta(|S||A|)$ float entries, policy has $\theta(|S| \log |A|)$ bits.
Discussion

- Why not imitate the human pilot’s policy: that is, learn $S \rightarrow A$ mapping using supervised learning?
 - Sometimes works! Sometimes does not.
- (Tabular) model has $\theta(|S|^2|A|)$ float entries, Q function has $\theta(|S||A|)$ float entries, policy has $\theta(|S| \log |A|)$ bits.
- Batch RL and model-based RL related. Both involve more computation, but typically improve sample complexity.
Discussion

- Why not imitate the human pilot’s policy: that is, learn $S \rightarrow A$ mapping using supervised learning?
 - Sometimes works! Sometimes does not.
- (Tabular) model has $\theta(|S|^2|A|)$ float entries, Q function has $\theta(|S||A|)$ float entries, policy has $\theta(|S| \log |A|)$ bits.
- Batch RL and model-based RL related. Both involve more computation, but typically improve sample complexity.
- Models can benefit from domain knowledge (physics, games, etc.).
Discussion

- Why not imitate the human pilot’s policy: that is, learn $S \rightarrow A$ mapping using supervised learning?
 Sometimes works! Sometimes does not.
- (Tabular) model has $\theta(|S|^2|A|)$ float entries, Q function has $\theta(|S||A|)$ float entries, policy has $\theta(|S| \log |A|)$ bits.
- Batch RL and model-based RL related. Both involve more computation, but typically improve sample complexity.
- Models can benefit from domain knowledge (physics, games, etc.).
- Gaussian Processes often used for model-learning in many robotic tasks (where samples are expensive).
Discussion

- Why not **imitate** the human pilot’s policy: that is, learn $S \rightarrow A$ mapping using supervised learning?

 Sometimes works! Sometimes does not.

- (Tabular) model has $\theta(|S|^2|A|)$ float entries, Q function has $\theta(|S||A|)$ float entries, policy has $\theta(|S| \log |A|)$ bits.

- Batch RL and model-based RL related. Both involve *more computation*, but typically improve *sample complexity*.

- Models can benefit from **domain knowledge** (physics, games, etc.).

- **Gaussian Processes** often used for model-learning in many robotic tasks (where samples are expensive).

> “Essentially, all models are wrong, but some are useful.”

> —George Box