CS 747, Autumn 2023: Lecture 11

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2023
Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
 - Basic tools
 - Howard’s PI with $k = 2$
 - BSPI with $k = 2$
 - Open problems

3. Review of MDP planning
Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
 - Basic tools
 - Howard’s PI with $k = 2$
 - BSPI with $k = 2$
 - Open problems

3. Review of MDP planning
Policy Iteration Algorithm

\[\pi \leftarrow \text{Arbitrary policy.} \]

While \(\pi \) has improvable states:

\[\pi' \leftarrow \text{PolicyImprovement}(\pi). \]

\[\pi \leftarrow \pi'. \]

Return \(\pi \).
Policy Iteration Algorithm

\[\pi \leftarrow \text{Arbitrary policy.} \]

\textbf{While} \(\pi \) has improvable states:

\[\pi' \leftarrow \text{PolicyImprovement}(\pi). \]

\[\pi \leftarrow \pi'. \]

\textbf{Return} \(\pi \).
Policy Iteration Algorithm

\(\pi \leftarrow \text{Arbitrary policy.} \)

While \(\pi \) has improvable states:

\(\pi' \leftarrow \text{PolicyImprovement}(\pi) \).

\(\pi \leftarrow \pi' \).

Return \(\pi \).
Policy Iteration Algorithm

$$\pi \leftarrow \text{Arbitrary policy.}$$

While $$\pi$$ has improvable states:

$$\pi' \leftarrow \text{PolicyImprovement}(\pi).$$

$$\pi \leftarrow \pi'.$$

Return $$\pi.$$
Policy Iteration Algorithm

\[\pi \leftarrow \text{Arbitrary policy.} \]

While \(\pi \) has improvable states:

\[\pi' \leftarrow \text{PolicyImprovement}(\pi). \]

\[\pi \leftarrow \pi'. \]

Return \(\pi. \)
Policy Iteration Algorithm

\[\pi \leftarrow \text{Arbitrary policy.} \]

While \(\pi \) has improvable states:

\[\pi' \leftarrow \text{PolicyImprovement}(\pi). \]

\[\pi \leftarrow \pi'. \]

Return \(\pi. \)
Policy Iteration Algorithm

\[\pi \leftarrow \text{Arbitrary policy.} \]

While \(\pi \) has improvable states:

\[\pi' \leftarrow \text{PolicyImprovement}(\pi). \]

\[\pi \leftarrow \pi'. \]

Return \(\pi \).
Policy Iteration Algorithm

\[\pi \leftarrow \text{Arbitrary policy.} \]

While \(\pi \) has improvable states:

\[\pi' \leftarrow \text{PolicyImprovement}(\pi). \]

\[\pi \leftarrow \pi'. \]

Return \(\pi \).

Path taken (and hence the number of iterations) in general depends on the **switching strategy**.
Howard’s Policy Iteration

- Greedy; switch all improvable states.
Random Policy Iteration

- Switch a non-empty subset of improvable states chosen uniformly at random.
Random Policy Iteration

- Switch a non-empty subset of improvable states chosen uniformly at random.
Random Policy Iteration

- Switch a non-empty subset of improvable states chosen uniformly at random.
Simple Policy Iteration

- Assume a fixed indexing of states.
- Switch the improvable state with the highest index.
Upper and Lower Bounds

$U(n, k)$ is an upper bound applicable to a set of PI variants \mathcal{L} if

- for each n-state, k-action MDP $M = (S, A, T, R, \gamma)$,
- for each policy $\pi : S \rightarrow A$,
- for each algorithm $L \in \mathcal{L}$,

the expected number of policy evaluations performed by L on M if initialised at π is at most $U(n, k)$.
Upper and Lower Bounds

$U(n, k)$ is an upper bound applicable to a set of PI variants \mathcal{L} if

- for each n-state, k-action MDP $M = (S, A, T, R, \gamma)$,
- for each policy $\pi : S \rightarrow A$,
- for each algorithm $L \in \mathcal{L}$,
the expected number of policy evaluations performed by L on M if initialised at π is at most $U(n, k)$.

$X(n, k)$ is a lower bound applicable to a set of PI variants \mathcal{L} if

- there exists an n-state, k-action MDP $M = (S, A, T, R, \gamma)$,
- there exists a policy $\pi : S \rightarrow A$,
- there exists an algorithm $L \in \mathcal{L}$,
such that the expected number of policy evaluations performed by L on M if initialised at π is at least $X(n, k)$.
Switching Strategies and Bounds

Upper bounds on number of iterations

<table>
<thead>
<tr>
<th>PI Variant</th>
<th>Type</th>
<th>$k = 2$</th>
<th>General k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Howard’s (Greedy) PI [H60, MS99]</td>
<td>Deterministic</td>
<td>$O\left(\frac{2^n}{n}\right)$</td>
<td>$O\left(\frac{k^n}{n}\right)$</td>
</tr>
<tr>
<td>Mansour and Singh’s Random PI [MS99]</td>
<td>Randomised</td>
<td>1.7172^n</td>
<td>$O\left(\frac{k^n}{2}\right)$</td>
</tr>
<tr>
<td>Mansour and Singh’s Random PI [HPZ14]</td>
<td>Randomised</td>
<td>$\text{poly}(n) \cdot 1.5^n$</td>
<td>–</td>
</tr>
</tbody>
</table>
Switching Strategies and Bounds

Upper bounds on number of iterations

<table>
<thead>
<tr>
<th>PI Variant</th>
<th>Type</th>
<th>General k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Howard’s (Greedy) PI [H60, MS99]</td>
<td>Deterministic</td>
<td>$O\left(\frac{2^n}{n}\right)$</td>
</tr>
<tr>
<td>Mansour and Singh’s Random PI [MS99]</td>
<td>Randomised</td>
<td>1.7172^n</td>
</tr>
<tr>
<td>Mansour and Singh’s Random PI [HPZ14]</td>
<td>Randomised</td>
<td>$\text{poly}(n) \cdot 1.5^n$</td>
</tr>
</tbody>
</table>

Lower bounds on number of iterations

$\Omega(n)$: Howard’s PI on n-state, 2-action MDPs [HZ10].
Switching Strategies and Bounds

Upper bounds on number of iterations

<table>
<thead>
<tr>
<th>PI Variant</th>
<th>Type</th>
<th>Type</th>
<th>General k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Howard’s (Greedy) PI [H60, MS99]</td>
<td>Deterministic</td>
<td>$O\left(\frac{2^n}{n}\right)$</td>
<td>$O\left(\frac{k^n}{n}\right)$</td>
</tr>
<tr>
<td>Mansour and Singh’s Random PI [MS99]</td>
<td>Randomised</td>
<td>1.7172^n</td>
<td>$\approx O\left(\frac{k^n}{2}\right)$</td>
</tr>
<tr>
<td>Mansour and Singh’s Random PI [HPZ14]</td>
<td>Randomised</td>
<td>poly$(n) \cdot 1.5^n$</td>
<td>–</td>
</tr>
</tbody>
</table>

Lower bounds on number of iterations

- $\Omega(n)$ Howard’s PI on n-state, 2-action MDPs [HZ10].
- $\Omega(2^n)$ Simple PI on n-state, 2-action MDPs [MC94].
PI: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)
Pl: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

- Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479^n for $k = 2$.
Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479^n for $k = 2$.

Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound $k^{0.7207n}$. Taraviya and Kalyanakrishnan (2019) improve to $k^{0.7019n}$.

Ashutosh, Consul, Dedhia, Khirwadkar, Shah, and Kalyanakrishnan (2020) show a lower bound of $\sqrt{k}n$ iterations for a deterministic variant of PI.
Pi: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

- Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of 1.6479^n for $k = 2$.
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound $k^{0.7207n}$. Taraviya and Kalyanakrishnan (2019) improve to $k^{0.7019n}$.
- Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of $(2 + \ln(k - 1))^n$ for a randomised PI variant.
PI: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

- Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of \(1.6479^n\) for \(k = 2\).
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound \(k^{0.7207n}\). Taraviya and Kalyanakrishnan (2019) improve to \(k^{0.7019n}\).

- Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of \((2 + \ln(k - 1))^n\) for a randomised PI variant.
- Taraviya and Kalyanakrishnan (2019) show an upper bound of \((O(\sqrt{k \log(k)}))^n\) for a randomised variant of Howard’s PI.
Pi: Some Recent Results

(Polynomial factors ignored. Authors with names underlined once took CS 747!)

- Kalyanakrishnan, Mall, and Goyal (2016) devise the Batch-switching PI algorithm (deterministic), and show an upper bound of \(1.6479^n\) for \(k = 2\).
- Gupta and Kalyanakrishnan (2017) give a deterministic PI variant with upper bound \(k^{0.7207n}\). Taraviya and Kalyanakrishnan (2019) improve to \(k^{0.7019n}\).

- Kalyanakrishnan, Misra, and Gopalan (2016) show an upper bound of \((2 + \ln(k - 1))^n\) for a randomised PI variant.
- Taraviya and Kalyanakrishnan (2019) show an upper bound of \((O(\sqrt{k \log(k)}))^n\) for a randomised variant of Howard’s PI.

- Ashutosh, Consul, Dedhia, Khirwadkar, Shah, and Kalyanakrishnan (2020) show a lower bound of \(\sqrt{k}^n\) iterations for a deterministic variant of PI.
Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
 - Basic tools
 - Howard’s PI with $k = 2$
 - BSPI with $k = 2$
 - Open problems

3. Review of MDP planning
1. Policy Improvement and Policy “Deprovement”

\[\pi' \succeq \pi. \]

Policy Improvement

Shivaram Kalyanakrishnan (2023)
1. Policy Improvement and Policy “Deprovement”

\[\pi' \succ \pi \]

\[\pi \geq \pi'' \]
2. Improvement sets in 2-action MDPs

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.
2. Improvement sets in 2-action MDPs

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1
2. Improvement sets in 2-action MDPs

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

1 1 0 0 0 1 1 0

\succ

1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1
Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
\succ
\end{array}
\]

\[
\begin{array}{ccccccccc}
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
\succeq
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
\end{array}
\]
2. Improvement sets in 2-action MDPs

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

\[
\begin{array}{cccccccccccccc}
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
\checkmark & \checkmark \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
\checkmark \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}
\]
2. Improvement sets in 2-action MDPs

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

\[
\begin{array}{cccccccccccccc}
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\
\triangleright & & & & & & & & & & & & & \\
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\
\triangleright & \triangleright & & & & & & & & & & & & & \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}
\]

Contradiction!
2. Improvement sets in 2-action MDPs

Non-optimal policies $\pi, \pi' \in \Pi$ cannot have the same set of improvable states.

Contradiction!
Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
 - Basic tools
 - Howard’s PI with $k = 2$
 - BSPI with $k = 2$
 - Open problems

3. Review of MDP planning
Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.
Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

\[\pi \]

\[
\begin{array}{cccccccc}
\pi_0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\pi_1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\pi_2 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\pi_3 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\pi_4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{array}
\]
Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

\[
\pi' \quad 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1
\]

\[
\pi \quad 0 \ 0
\]
Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

Possible?

\[
\begin{array}{ccccccc}
\pi' & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
\pi & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

\[\pi' = \begin{array}{ccccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{array} \]

\[\pi = \begin{array}{ccccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array} \]
Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

\[
\begin{align*}
\pi' & : 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \\
\pi_1 & : 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \\
\pi & : 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
\end{align*}
\]
Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

\[
\begin{align*}
\pi' & : 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \\
\pi_1 & : 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 0 \\
\pi_2 & : 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \\
\pi & : 0 \quad 0
\end{align*}
\]
Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

<table>
<thead>
<tr>
<th>π'</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>π_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>π_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>π</td>
<td>0</td>
</tr>
</tbody>
</table>
Howard’s Policy Iteration (2-action MDPs)

Switch actions in **every** improvable state.

<table>
<thead>
<tr>
<th></th>
<th>π'</th>
<th>π_1</th>
<th>π_2</th>
<th>π_3</th>
<th>π_4</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

If π has m improvable states and $\pi \xrightarrow{Howard’s PI} \pi'$, then there exist m policies π'' such that $\pi' \succeq \pi'' \succ \pi$.

Shivaram Kalyanakrishnan (2023)
Howard’s Policy Iteration (2-action MDPs)

Switch actions in every improvable state.

If π has m improvable states and $\pi \xrightarrow{\text{Howard's PI}} \pi'$, then there exist m policies π'' such that $\pi' \succeq \pi'' \succ \pi$.

$$
\begin{align*}
\pi' &= 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \\
\pi_1 &= 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \\
\pi_2 &= 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0 \ 0 \\
\pi_3 &= 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \\
\pi_4 &= 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \\
\pi &= 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0
\end{align*}
$$
Howard’s Policy Iteration (2-action MDPs)

- Take $m^* = \frac{n}{3}$.

Number of policies with $m^* \text{ or more improvable states visited} \leq 2^n m^* = 2^n \frac{n}{3}$.

Number of policies with fewer than $m^* \text{ improvable states visited} \leq n^0 + n^1 + n^2 + \cdots + n^{m^* - 1} \leq 32^n n^n$.

Number of iterations taken by Howard’s PI: $O(2^n n^n)$ [MS99, HGDJ14].
Howard’s Policy Iteration (2-action MDPs)

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited
Howard’s Policy Iteration (2-action MDPs)

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited

$$\leq \frac{2^n}{m^*} = \frac{2^n}{n/3}.$$
Howard’s Policy Iteration (2-action MDPs)

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited

$$\leq \frac{2^n}{m^*} = \frac{2^n}{n/3}.$$

- Number of policies with fewer than m^* improvable states visited
Howard’s Policy Iteration (2-action MDPs)

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited

 \[
 \leq \frac{2^n}{m^*} = \frac{2^n}{n/3}.
 \]

- Number of policies with fewer than m^* improvable states visited

 \[
 \leq \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{m^* - 1}
 \]
Howard’s Policy Iteration (2-action MDPs)

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited
 \[
 \leq \frac{2^n}{m^*} = \frac{2^n}{n/3}.
 \]
- Number of policies with fewer than m^* improvable states visited
 \[
 \leq \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{m^* - 1} \leq 3 \frac{2^n}{n}.
 \]
Howard’s Policy Iteration (2-action MDPs)

- Take $m^* = \frac{n}{3}$.
- Number of policies with m^* or more improvable states visited

$$\leq \frac{2^n}{m^*} = \frac{2^n}{n/3}.$$

- Number of policies with fewer than m^* improvable states visited

$$\leq \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{m^* - 1} \leq 3 \frac{2^n}{n}.$$

Number of iterations taken by Howard’s PI: $O\left(\frac{2^n}{n}\right)$ [MS99, HGDJ14].
Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
 - Basic tools
 - Howard’s PI with $k = 2$
 - BSPI with $k = 2$
 - Open problems

3. Review of MDP planning
Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

Howard’s Policy Iteration takes at most ____ iterations on a 2-state MDP!
Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

Howard’s Policy Iteration takes at most 3 iterations on a 2-state MDP!
Batch-Switching Policy Iteration (BSPI) (2-action MDPs)

Howard’s Policy Iteration takes at most _3_ iterations on a 2-state MDP!
Batch-Switching Policy Iteration (BSPI)
Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.
Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

$$\pi_1 \begin{array}{c|c|c|c|c|c|c|c} 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ S_1 & S_2 & S_3 & S_4 & S_5 & S_6 & S_7 & S_8 \end{array}$$

Left-most batch can change only when all other columns are non-improvable.

Left-most batch can change at most 3 times (following previous result).

$$T(n) \leq 3 \times T(n-2) \leq \sqrt{3} n.$$
Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right.
Given a policy, improve the rightmost set containing an improvable state.
Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

\(\pi_3\) 0 1 1 0 1 1 1 0 1 0

\(\pi_2\) 0 1 1 0 0 0 1 0 1 0

\(\pi_1\) 0 1 1 0 0 0 1 0 0 0

Left-most batch can change only when all other columns are non-improvable.

Left-most batch can change at most 3 times (following previous result).

\[T(n) \leq 3 \times T(n-2) \leq \sqrt{3} n. \]
Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

<table>
<thead>
<tr>
<th>(\pi_4)</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi_3)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\pi_2)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(\pi_1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Left-most batch can change only when all other columns are non-improvable.

Left-most batch can change at most 3 times (following previous result).

\[T(n) \leq 3 \times T(n - 2) \leq \sqrt{3n} \]
Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the **rightmost** set containing an **improvable** state.

<table>
<thead>
<tr>
<th>States</th>
<th>π_1</th>
<th>π_2</th>
<th>π_3</th>
<th>π_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>s_7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s_{10}</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Left-most batch can change only when all other columns are non-improvable.
Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

<table>
<thead>
<tr>
<th>π_4</th>
<th>π_3</th>
<th>π_2</th>
<th>π_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>s_2</td>
<td>s_3</td>
<td>s_4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Left-most batch can change only when all other columns are non-improvable.
- Left-most batch can change at most 3 times (following previous result).
Batch-Switching Policy Iteration (BSPI)

Partition the states into 2-sized batches; arranged from left to right. Given a policy, improve the rightmost set containing an improvable state.

- \(\pi_4 \):
 - 0 1 1 0 1 1 1 1 1 0

- \(\pi_3 \):
 - 0 1 1 0 1 1 1 0 1 0

- \(\pi_2 \):
 - 0 1 1 0 0 0 1 0 1 0

- \(\pi_1 \):
 - 0 1 1 0 0 0 1 0 0 0

Observations
- Left-most batch can change only when all other columns are non-improvable.
- Left-most batch can change at most 3 times (following previous result).
- \(T(n) \leq 3 \times T(n - 2) \leq \sqrt{3}^n \).
Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most 5 iterations on a 3-state MDP!
Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most 5 iterations on a 3-state MDP!
Batch-Switching Policy Iteration (BSPI)

Howard’s Policy Iteration takes at most 5 iterations on a 3-state MDP!

The structures above are called Trajectory-bounding Trees (TBTs) [KMG16a] (and correspond to the Order Regularity Problem [H12, GHDJ15]).
Batch-Switching Policy Iteration (BSPI)

Howard's Policy Iteration takes at most 5 iterations on a 3-state MDP!

The structures above are called Trajectory-bounding Trees (TBTs) [KMG16a] (and correspond to the Order Regularity Problem [H12, GHDJ15]).

BSPI with 3-sized batches gives $T(n) \leq 5 \times T(n - 3) \leq 1.71^n$.
Upper Bounds

<table>
<thead>
<tr>
<th>Batch size</th>
<th>Depth of TBT</th>
<th>Bound on number of iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2^n</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1.7321^n</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1.7100^n</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1.6818^n</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>1.6703^n</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>1.6611^n</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>1.6479^n</td>
</tr>
</tbody>
</table>

Depth of TBT for batch size 7 due to Gerencsérl et al. \([\text{GHDJ15}]\).

Will the bound continue to be non-increasing in the batch size? If so, 1.6479^n would be an upper bound for Howard’s Policy Iteration!
Upper Bounds

<table>
<thead>
<tr>
<th>Batch size</th>
<th>Depth of TBT</th>
<th>Bound on number of iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2^n</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1.7321^n</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1.7100^n</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1.6818^n</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>1.6703^n</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>1.6611^n</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>1.6479^n</td>
</tr>
</tbody>
</table>

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].
UpperBounds

<table>
<thead>
<tr>
<th>Batch size</th>
<th>Depth of TBT</th>
<th>Bound on number of iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2^n</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1.7321^n</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1.7100^n</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1.6818^n</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>1.6703^n</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>1.6611^n</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>1.6479^n</td>
</tr>
</tbody>
</table>

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].

Will the bound continue to be non-increasing in the batch size?
Upper Bounds

<table>
<thead>
<tr>
<th>Batch size</th>
<th>Depth of TBT</th>
<th>Bound on number of iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2^n</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1.7321^n</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1.7100^n</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1.6818^n</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>1.6703^n</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>1.6611^n</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>1.6479^n</td>
</tr>
</tbody>
</table>

Depth of TBT for batch size 7 due to Gerencsér et al. [GHDJ15].

Will the bound continue to be non-increasing in the batch size?

If so, 1.6479^n would be an upper bound for Howard’s Policy Iteration!
Averaged over n-state, 2-action MDPs with randomly generated transition and reward functions. Each point is an average over 100 randomly-generated MDP instances and initial policies [KMG16a].
Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
 - Basic tools
 - Howard’s PI with $k = 2$
 - BSPI with $k = 2$
 - Open problems

3. Review of MDP planning
Open Problems

- Is the complexity of Howard’s PI on 2-action MDPs upper-bounded by the Fibonacci sequence ($\approx 1.6181^n$)?
- Is Howard’s PI the most efficient among deterministic PI algorithms (worst case over all MDPs)?
- Is there a super-linear lower bound on the number of iterations taken by Howard’s PI on 2-action MDPs?
- Is Howard’s PI strongly polynomial on deterministic MDPs?
- Is there a variant of PI that can visit all k^n policies in some n-state, k-action MDP—implying an $\Omega(k^n)$ lower bound?
- Is there a strongly polynomial algorithm for MDP planning?
Markov Decision Problems

1. Policy iteration: variants and complexity bounds

2. Analysis of bounds
 - Basic tools
 - Howard’s PI with $k = 2$
 - BSPI with $k = 2$
 - Open problems

3. Review of MDP planning
Summary of MDP Planning

- MDPs are an abstraction of sequential decision making.
- Many applications; many different formulations.
- Essential solution concept: optimal policy (known to exist).

- Three main families of planning algorithms: value iteration, linear programming, policy iteration.
- Have strengths and weaknesses in theory and in practice. Can combine.

- We showed correctness of all three methods.
- Used Banach’s fixed-point theorem, Bellman (optimality) operator.

- What if T, R were not given, but have to be learned from interaction? Can we still learn to act optimally?
- Yes: that’s the reinforcement learning problem. Next class!