Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD(λ)
Half Field Offense

Decision-making restricted to offense player with ball. Based on state, choose among Dribble, Pass, Shoot.

How many states are there? An infinite number!

Shivaram Kalyanakrishnan (2023)
Half Field Offense

- Decision-making restricted to offense player with ball.
- Based on state, choose among Dribble, Pass, Shoot.
Half Field Offense

- Decision-making restricted to offense player with ball.
- Based on state, choose among DRIBBLE, PASS, SHOOT.
- How many states are there?
Half Field Offense

- Decision-making restricted to offense player with ball.
- Based on state, choose among DRIBBLE, PASS, SHOOT.
- How many states are there? An infinite number!
Half Field Offense

- Decision-making restricted to offense player with ball.
- Based on state, choose among Dribble, Pass, Shoot.
- How many states are there? An infinite number!
- What to do?
Features

State s is defined by positions and velocities of players, ball.

$x_1(s)$: Distance to teammate.

$x_2(s)$: Distance to nearest opponent.

$x_3(s)$: Largest open angle to goal.

$x_4(s)$: Distance of teammate to goal.
Features

- State s is defined by positions and velocities of players, ball.
- Velocities might not be important for decision making.
- Position coordinates might not generalise well.

Define features $x: S \rightarrow \mathbb{R}$. Idea is that states with similar features will have similar consequences of actions, values.

- $x_1(s)$: Distance to teammate.
- $x_2(s)$: Distance to nearest opponent.
- $x_3(s)$: Largest open angle to goal.
- $x_4(s)$: Distance of teammate to goal.
Features

- State s is defined by positions and velocities of players, ball.
- Velocities might not be important for decision making.
- Position coordinates might not generalise well.
- Define features $x : S \rightarrow \mathbb{R}$. Idea is that states with similar features will have similar consequences of actions, values.

- $x_1(s)$: Distance to teammate.
- $x_2(s)$: Distance to nearest opponent.
- $x_3(s)$: Largest open angle to goal.
- $x_4(s)$: Distance of teammate to goal.
Compact Representation of \hat{Q}

- Illustration of \hat{Q} approximated using a neural network.
- Input: (features of) state. One output for each action.
- Similar states will have similar Q-values.
- Can we learn weights w so that $\hat{Q}(s, a) \approx Q^*(s, a)$?

\[
\begin{align*}
\hat{Q}(s, a_1) & = \sigma^1 \left(\sum_{x_1(s)} w \right) \\
\hat{Q}(s, a_2) & = \sigma^2 \left(\sum_{x_2(s)} w \right) \\
\hat{Q}(s, a_3) & = \sigma^3 \left(\sum_{x_3(s)} w \right) \\
\hat{Q}(s, a) & = \sigma^4 \left(\sum_{x_4(s)} w \right)
\end{align*}
\]
Compact Representation of \hat{Q}

- Illustration of \hat{Q} approximated using a neural network.
- Input: (features of) state. One output for each action.
- Similar states will have similar Q-values.
- Can we learn weights w so that $\hat{Q}(s, a) \approx Q^*(s, a)$?

Might not be able to represent Q^*!

Unlike supervised learning, convergence not obvious!

Even if convergent, might induce sub-optimal behaviour!
Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD(λ)
Prediction with a Linear Architecture

- Suppose we are to evaluate π on MDP (S, A, T, R, γ).
- Say we choose to approximate V^π by \hat{V}: for $s \in S$,

$$\hat{V}(w, s) = w \cdot x(s),$$

where

- $x : S \to \mathbb{R}^d$ is a d-dimensional feature vector, and
- $w \in \mathbb{R}^d$ is the weight/coefficients vector.
Prediction with a Linear Architecture

- Suppose we are to evaluate \(\pi \) on MDP \((S, A, T, R, \gamma)\).
- Say we choose to approximate \(V^\pi \) by \(\hat{V} \): for \(s \in S \),

\[
\hat{V}(w, s) = w \cdot x(s), \quad \text{where}
\]

\(x : S \rightarrow \mathbb{R}^d \) is a \(d \)-dimensional feature vector, and \(w \in \mathbb{R}^d \) is the weight/coefficient vector.

- Usually \(d \ll |S| \).
- Illustration with \(|S| = 3, d = 2 \). Take \(w = (w_1, w_2) \).

<table>
<thead>
<tr>
<th>(s)</th>
<th>(V^\pi(s))</th>
<th>(x_1(s))</th>
<th>(x_2(s))</th>
<th>(\hat{V}(w, s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>7</td>
<td>2</td>
<td>-1</td>
<td>(2w_1 - w_2)</td>
</tr>
<tr>
<td>(s_2)</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>(4w_1)</td>
</tr>
<tr>
<td>(s_3)</td>
<td>-4</td>
<td>2</td>
<td>3</td>
<td>(2w_1 + 3w_2)</td>
</tr>
</tbody>
</table>
The Best Approximation

<table>
<thead>
<tr>
<th>s</th>
<th>$V^\pi(s)$</th>
<th>$x_1(s)$</th>
<th>$x_2(s)$</th>
<th>$\hat{V}(w, s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>7</td>
<td>2</td>
<td>-1</td>
<td>$2w_1 - w_2$</td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>$4w_1$</td>
</tr>
<tr>
<td>s_3</td>
<td>-4</td>
<td>2</td>
<td>3</td>
<td>$2w_1 + 3w_2$</td>
</tr>
</tbody>
</table>

- Observe that for all $w \in \mathbb{R}^2$, $\hat{V}(w, s_2) = \frac{3\hat{V}(w, s_1) + \hat{V}(w, s_3)}{2}$.
- In general, \hat{V} cannot be made equal to V^π.
The Best Approximation

<table>
<thead>
<tr>
<th>s</th>
<th>$V^\pi(s)$</th>
<th>$x_1(s)$</th>
<th>$x_2(s)$</th>
<th>$\hat{V}(w, s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>7</td>
<td>2</td>
<td>-1</td>
<td>$2w_1 - w_2$</td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>$4w_1$</td>
</tr>
<tr>
<td>s_3</td>
<td>-4</td>
<td>2</td>
<td>3</td>
<td>$2w_1 + 3w_2$</td>
</tr>
</tbody>
</table>

- Observe that for all $w \in \mathbb{R}^2$, $\hat{V}(w, s_2) = \frac{3\hat{V}(w, s_1) + \hat{V}(w, s_3)}{2}$.
- In general, \hat{V} cannot be made equal to V^π.
- Which w provides the best approximation?
The Best Approximation

<table>
<thead>
<tr>
<th>s</th>
<th>$V^\pi(s)$</th>
<th>$x_1(s)$</th>
<th>$x_2(s)$</th>
<th>$\hat{V}(w, s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>7</td>
<td>2</td>
<td>-1</td>
<td>$2w_1 - w_2$</td>
</tr>
<tr>
<td>s_2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>$4w_1$</td>
</tr>
<tr>
<td>s_3</td>
<td>-4</td>
<td>2</td>
<td>3</td>
<td>$2w_1 + 3w_2$</td>
</tr>
</tbody>
</table>

- Observe that for all $w \in \mathbb{R}^2$, $\hat{V}(w, s_2) = \frac{3\hat{V}(w, s_1) + \hat{V}(w, s_3)}{2}$.
- In general, \hat{V} cannot be made equal to V^π.
- Which w provides the best approximation?
- A common choice is

$$w^* = \arg\min_{w \in \mathbb{R}^d} MSVE(w),$$

where

$$MSVE(w) \overset{\text{def}}{=} \frac{1}{2} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w, s) \}^2,$$

and $\mu^\pi : S \rightarrow [0, 1]$ is the stationary distribution of π.
Geometric View

$(\mu^\pi\text{-scaling not explicitly shown.})$
Geometric View

V^π

\mathbf{w}^*

$(\mu^\pi\text{-scaling not explicitly shown.})$
Geometric View

How to find w^*?

(μ^π-scaling not explicitly shown.)
Reinforcement Learning

1. Generalisation and function approximation

2. Linear function approximation

3. Linear TD(λ)
Gradient Descent

- Iteratively take steps in the w space in the direction minimising $MSVE(w)$.

$$\nabla \pi^w$$
Gradient Descent

- Iteratively take steps in the w space in the direction minimising $MSVE(w)$.

Feasible here?
Gradient Descent

- Iteratively take steps in the w space in the direction minimising $MSVE(w)$.

- Feasible here? Sort of.
Gradient Descent

- Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \geq 0$ update as

\[
w^{t+1} \leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \}^2 \right)
\]

\[
eq w^t + \alpha_{t+1} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s).
\]
Gradient Descent

- Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \geq 0$ update as

\[
w^{t+1} \leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \}^2 \right)
= w^t + \alpha_{t+1} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s).
\]

- But we don’t know $\mu^\pi(s)$, $V^\pi(s)$ for all $s \in S$. We’re learning, remember?
Gradient Descent

- Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \geq 0$ update as

$$w^{t+1} \leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \}^2 \right)$$

$$= w^t + \alpha_{t+1} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s).$$

- But we don’t know $\mu^\pi(s)$, $V^\pi(s)$ for all $s \in S$. We’re learning, remember?
- Luckily, stochastic gradient descent allows us to update as

$$w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ V^\pi(s^t) - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t)$$

since $s^t \sim \mu^\pi$ anyway (as $t \to \infty$).
Gradient Descent

- Initialise $w^0 \in \mathbb{R}^d$ arbitrarily. For $t \geq 0$ update as

$$
w^{t+1} \leftarrow w^t - \alpha_{t+1} \nabla_w \left(\frac{1}{2} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \}^2 \right)
$$

$$
= w^t + \alpha_{t+1} \sum_{s \in S} \mu^\pi(s) \{ V^\pi(s) - \hat{V}(w^t, s) \} \nabla_w \hat{V}(w^t, s).
$$

- But we don’t know $\mu^\pi(s)$, $V^\pi(s)$ for all $s \in S$. We’re learning, remember?
- Luckily, stochastic gradient descent allows us to update as

$$
w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ V^\pi(s^t) - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t)
$$

since $s^t \sim \mu^\pi$ anyway (as $t \to \infty$).
- But still, we don’t know $V^\pi(s^t)$! What to do?
Gradient Descent

Although we cannot perform update

\[w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ V^\pi(s^t) - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t), \]

we can do

\[w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ G_{t:\infty} - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t), \]

since \(\mathbb{E}[G_{t:\infty}] = V^\pi(s^t). \)
Gradient Descent

- Although we cannot perform update
 \[w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ V^\pi(s^t) - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t), \]

 we can do
 \[w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ G_{t:\infty} - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t), \]

 since \(\mathbb{E}[G_{t:\infty}] = V^\pi(s^t) \).
- In practice, we also do
 \[w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ G^\lambda_t - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t), \]

 for \(\lambda < 1 \), even if \(\mathbb{E}[G^\lambda_t] \neq V^\pi(s^t) \) in general.
Gradient Descent

- Although we cannot perform update $w_{t+1} \leftarrow w_t + \alpha_{t+1} \{ V^\pi(s^t) - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t)$,

 we can do

 $$w_{t+1} \leftarrow w_t + \alpha_{t+1} \{ G_{t:\infty} - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t),$$

 since $\mathbb{E}[G_{t:\infty}] = V^\pi(s^t)$.

- In practice, we also do

 $$w_{t+1} \leftarrow w_t + \alpha_{t+1} \{ G_t^\lambda - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t),$$

 for $\lambda < 1$, even if $\mathbb{E}[G_t^\lambda] \neq V^\pi(s^t)$ in general. For example, Linear TD(0) performs the update

 $$w_{t+1} \leftarrow w_t + \alpha_{t+1} \{ r^t + \gamma w^t \cdot x(s^{t+1}) - w^t \cdot x(s^t) \} x(s^t).$$
Gradient Descent

Although we cannot perform update

\[w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ V^\pi(s^t) - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t), \]

we can do

\[w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ G_{t: \infty} - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t), \]

since \(\mathbb{E}[G_{t: \infty}] = V^\pi(s^t) \).

In practice, we also do

\[w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ G^\lambda_t - \hat{V}(w^t, s^t) \} \nabla_w \hat{V}(w^t, s^t), \]

for \(\lambda < 1 \), even if \(\mathbb{E}[G^\lambda_t] \neq V^\pi(s^t) \) in general. For example, Linear TD(0) performs the update

\[w^{t+1} \leftarrow w^t + \alpha_{t+1} \{ r^t + \gamma w^t \cdot x(s^{t+1}) - w^t \cdot x(s^t) \} x(s^t). \]

For \(\lambda < 1 \), the process is not true gradient descent. But it still converges with linear function approximation.
Linear TD(\(\lambda\)) algorithm

- Maintains an eligibility trace \(z \in \mathbb{R}^d\).
- Recall that \(\hat{V}(w, s) = w \cdot x(s)\), hence \(\nabla_w \hat{V}(w, s) = x(s)\).
Linear TD(\(\lambda\)) algorithm

- Maintains an eligibility trace \(z \in \mathbb{R}^d\).
- Recall that \(\hat{V}(w, s) = w \cdot x(s)\), hence \(\nabla_w \hat{V}(w, s) = x(s)\).

Initialise \(w \in \mathbb{R}^d\) arbitrarily.
Repeat for each episode:
 - Set \(z \rightarrow 0\). //Eligibility trace vector.
 - Assume the agent is born in state \(s\).
 - Repeat for each step of episode:
 - Take action \(a\); obtain reward \(r\), next state \(s'\).
 - \(\delta \leftarrow r + \gamma \hat{V}(w, s') - \hat{V}(w, s)\).
 - \(z \leftarrow \gamma \lambda z + \nabla_w \hat{V}(w, s)\).
 - \(w \leftarrow w + \alpha \delta z\).
 - \(s \leftarrow s'\).
Linear TD(\(\lambda\)) algorithm

- Maintains an eligibility trace \(z \in \mathbb{R}^d\).
- Recall that \(\hat{V}(w, s) = w \cdot x(s)\), hence \(\nabla_w \hat{V}(w, s) = x(s)\).

Initialise \(w \in \mathbb{R}^d\) arbitrarily.
Repeat for each episode:

 \[
 \text{Set } z \rightarrow 0. // \text{Eligibility trace vector.}
 \]

 Assume the agent is born in state \(s\).
 Repeat for each step of episode:

 \[
 \begin{align*}
 \delta & \leftarrow r + \gamma \hat{V}(w, s') - \hat{V}(w, s) \\
 z & \leftarrow \gamma \lambda z + \nabla_w \hat{V}(w, s) \\
 w & \leftarrow w + \alpha \delta z \\
 s & \leftarrow s'.
 \end{align*}
 \]

See Sutton and Barto (2018) for variations (accumulating, replacing, and Dutch traces).
Convergence of Linear TD(λ)

$$MSVE(w^\infty_\lambda) \leq \frac{1 - \gamma \lambda}{1 - \gamma} MSVE(w^*) .$$
Convergence of Linear TD(λ)

$$MSVE(w_\lambda^\infty) \leq \frac{1 - \gamma \lambda}{1 - \gamma} MSVE(w^*).$$
Control with Linear Function Approximation

- Linear function approximation is implemented in the control by approximating $Q(s, a) \approx w \cdot x(s, a)$.

- Linear Sarsa(λ) is a very popular algorithm.
RL on Half Field Offense

- Uses Linear Sarsa(0) with **tile coding**.

Reinforcement Learning

1. Generalisation and function approximation
2. Linear function approximation
3. Linear TD(λ)