CS 747, Autumn 2020: Week 8, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering Indian Institute of Technology Bombay

Autumn 2020

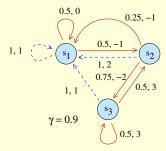
Reinforcement Learning

- 1. Reinforcement Learning problem
 - Prediction, control
 - Assumptions
- 2. Basic algorithm for control
- Prediction with a Monte Carlo method

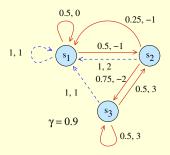
Reinforcement Learning

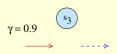
- 1. Reinforcement Learning problem
 - Prediction, control
 - Assumptions
- 2. Basic algorithm for control
- Prediction with a Monte Carlo method

Underlying MDP:

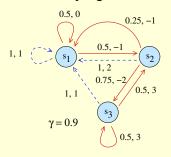


Underlying MDP:

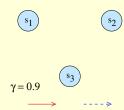




Underlying MDP:

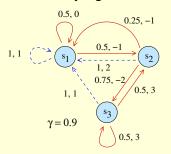


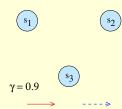
Agent's view:



• From current state, agent takes action.

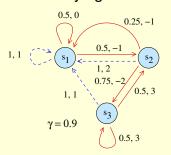
Underlying MDP:

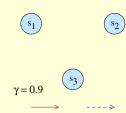




- From current state, agent takes action.
- Environment (MDP) decides next state and reward.

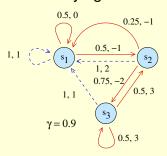
Underlying MDP:

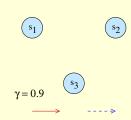




- From current state, agent takes action.
- Environment (MDP) decides next state and reward.
- Possible history: s_2 , RED, -2, s_3 , BLUE, 1, s_1 , RED, 0, s_1 ,

Underlying MDP:





- From current state, agent takes action.
- Environment (MDP) decides next state and reward.
- Possible history: s_2 , RED, -2, s_3 , BLUE, 1, s_1 , RED, 0, s_1 ,
- History conveys information about the MDP to the agent.

• For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history.

- For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history.
- A learning algorithm *L* is a mapping from the set of all histories to the set of all (probability distributions over) arms.

- For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history.
- A learning algorithm *L* is a mapping from the set of all histories to the set of all (probability distributions over) arms.
- Actions are selected by the learning algorithm (agent); next states and rewards by the MDP (environment).

- For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history.
- A learning algorithm *L* is a mapping from the set of all histories to the set of all (probability distributions over) arms.
- Actions are selected by the learning algorithm (agent); next states and rewards by the MDP (environment).
- Control problem: Can we construct *L* such that

$$\lim_{T\to\infty}\frac{1}{T}\left(\sum_{t=0}^{T-1}\mathbb{P}\{a^t\sim L(h^t)\text{ is an optimal action for }s^t\}\right)=1?$$

• We are given a policy π that the agent follows. The aim is to estimate V^{π} .

- We are given a policy π that the agent follows. The aim is to estimate V^{π} .
- For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history (note that $a^t \sim \pi(s^t)$.

- We are given a policy π that the agent follows. The aim is to estimate V^{π} .
- For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history (note that $a^t \sim \pi(s^t)$.
- A learning algorithm L is a mapping from the set of all histories to the set of all mappings of the form $S \to \mathbb{R}$.

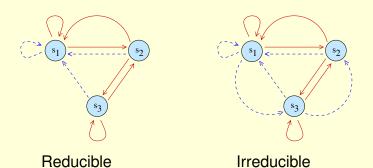
- We are given a policy π that the agent follows. The aim is to estimate V^{π} .
- For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history (note that $a^t \sim \pi(s^t)$.
- A learning algorithm L is a mapping from the set of all histories to the set of all mappings of the form $S \to \mathbb{R}$.
- In other words, at each step t the learning algorithm provides an estimate \hat{V}^t .

- We are given a policy π that the agent follows. The aim is to estimate V^{π} .
- For $t \ge 0$, let $h^t = (s^0, a^0, r^0, s^1, a^1, r^1, s^2, \dots, s^t)$ denote a t-length history (note that $a^t \sim \pi(s^t)$.
- A learning algorithm L is a mapping from the set of all histories to the set of all mappings of the form $S \to \mathbb{R}$.
- In other words, at each step t the learning algorithm provides an estimate \hat{V}^t .
- Prediction problem: Can we construct L such that

$$\lim_{t\to\infty} \hat{V}^t = V^{\pi}?$$

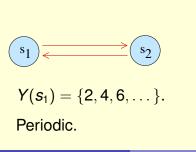
Assumption 1: Irreducibility

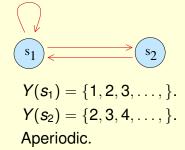
- Fix an MDP $M = (S, A, T, R, \gamma)$ and a policy π .
- Draw a graph with states as vertices and every non-zero-probability transition under π as a directed edge.
- Is there a directed path from s to s' for every $s, s' \in S$?
- If yes, M is irreducible under π .
- If M is irreducible under all $\pi \in \Pi$, then M is irreducible.



Assumption 2: Aperiodicity

- Fix an MDP $M = (S, A, T, R, \gamma)$ and a policy π .
- For $s \in S$, $t \ge 1$, let X(s,t) be the set of all states s' such that there is a non-zero probability of reaching s' in exactly t steps by starting at s and following π .
- For $s \in S$, let Y(s) be the set of all $t \ge 1$ such that $s \in X(s,t)$; let $p(s) = \gcd(Y(s))$.
- *M* is aperiodic under π if for all $s \in S$: p(s) = 1.
- If M is aperiodic under all $\pi \in \Pi$, then M is aperiodic.





 An MDP that is irreducible and aperiodic is called an ergodic MDP.

- An MDP that is irreducible and aperiodic is called an ergodic MDP.
- In an ergodic MDP, every policy π induces a unique steady state distribution $\mu^{\pi}: S \to (0,1)$, subject to $\sum_{s \in S} \mu^{\pi}(s) = 1$, which is independent of the start state.

- An MDP that is irreducible and aperiodic is called an ergodic MDP.
- In an ergodic MDP, every policy π induces a unique steady state distribution $\mu^{\pi}: S \to (0,1)$, subject to $\sum_{s \in S} \mu^{\pi}(s) = 1$, which is independent of the start state.
- For $s \in S$, $t \ge 0$, let p(s,t) be the probability of being in state s at step t, after starting at some (arbitrarily) fixed state and following π .

- An MDP that is irreducible and aperiodic is called an ergodic MDP.
- In an ergodic MDP, every policy π induces a unique steady state distribution $\mu^{\pi}: S \to (0,1)$, subject to $\sum_{s \in S} \mu^{\pi}(s) = 1$, which is independent of the start state.
- For $s \in S$, $t \ge 0$, let p(s,t) be the probability of being in state s at step t, after starting at some (arbitrarily) fixed state and following π . Then

$$\mu^{\pi}(s) = \lim_{t \to \infty} p(s, t).$$

- An MDP that is irreducible and aperiodic is called an ergodic MDP.
- In an ergodic MDP, every policy π induces a unique steady state distribution $\mu^{\pi}: S \to (0,1)$, subject to $\sum_{s \in S} \mu^{\pi}(s) = 1$, which is independent of the start state.
- For $s \in S$, $t \ge 0$, let p(s,t) be the probability of being in state s at step t, after starting at some (arbitrarily) fixed state and following π . Then

$$\mu^{\pi}(s) = \lim_{t \to \infty} p(s, t).$$

We'll use ergodicity in some of the later lectures.

Reinforcement Learning

- Reinforcement Learning problem
 - Prediction, control
 - Assumptions
- 2. Basic algorithm for control
- Prediction with a Monte Carlo method

- A model is an estimate of the MDP, which is usually updated based on experience.
 - We keep estimates \hat{T} and \hat{R} , and hope to get them to converge to T and R, respectively.

- A model is an estimate of the MDP, which is usually updated based on experience.
 We keep estimates T and R, and hope to get them to converge to T and R, respectively.
- At convergence, acting optimally for MDP $(S, A, \hat{T}, \hat{R}, \gamma)$ must be optimal for the original MDP (S, A, T, R, γ) , too.

- A model is an estimate of the MDP, which is usually updated based on experience.
 We keep estimates T and R, and hope to get them to converge to T and R, respectively.
- At convergence, acting optimally for MDP $(S, A, \hat{T}, \hat{R}, \gamma)$ must be optimal for the original MDP (S, A, T, R, γ) , too.
- We must visit every state-action pair infinitely often.

- A model is an estimate of the MDP, which is usually updated based on experience.
 We keep estimates T and R, and hope to get them to converge to T and R, respectively.
- At convergence, acting optimally for MDP $(S, A, \hat{T}, \hat{R}, \gamma)$ must be optimal for the original MDP (S, A, T, R, γ) , too.
- We must visit every state-action pair infinitely often.
- Remember GLIE?

Algorithm

Model-based RL

```
//Initialisation
```

For $s, s' \in S, a \in A$: $\hat{T}[s][a][s'] \leftarrow 0$; $\hat{R}[s][a][s'] \leftarrow 0$. $modelValid \leftarrow False$.

For $s, s' \in S, a \in A$: $totalTransitions[s][a][s'] \leftarrow 0;$ $totalReward[s][a][s'] \leftarrow 0.$ For $s \in S, a \in A$: $totalVisits[s][a] \leftarrow 0.$

Assume that the agent is born in state s^0 .

(Continued on next slide.)

Algorithm

(Continued from previous slide.)

Assume that the agent is born in state s^0 .

```
//For ever
For t = 0, 1, 2, \ldots:
If modelValid:
\pi^{opt} \leftarrow MDPPlan(S, A, \hat{T}, \hat{R}, \gamma).
a^t \leftarrow \begin{cases} \pi^{opt}(s^t) & \text{w. p. } 1 - \epsilon_t, \\ UniformRandom(A) & \text{w. p. } \epsilon_t. \end{cases}
Else:
a^t \leftarrow UniformRandom(A).
```

Take action a^t ; obtain reward r^t , next state s^{t+1} . *UpdateModel*(s^t , a^t , r^t , s^{t+1}).

Algorithm

UpdateModel(s, a, r, s')

 $totalTransitions[s][a][s'] \leftarrow totalTransitions[s][a][s'] + 1.$ $totalVisits[s][a] \leftarrow totalVisits[s][a] + 1.$ $totalReward[s][a][s'] \leftarrow totalReward[s][a][s'] + r.$

For
$$s'' \in S$$
:
$$\hat{T}[s][a][s''] \leftarrow \frac{\textit{totalTransitions}[s][a][s'']}{\textit{totalVisits}[s][a]}.$$

$$\hat{R}[s][a][s'] \leftarrow rac{\textit{totalReward}[s][a][s']}{\textit{totalTransitions}[s][a][s']}.$$

If ¬modelValid:

If
$$\forall s'' \in S, \forall a'' \in A : totalVisits[s''][a''] \ge 1$$
: modelValid \leftarrow True.

Discussion

Algorithm takes a sub-linear number of sub-optimal actions.
 Can still be optimised in many ways (computational complexity, exploration, etc.).

Discussion

- Algorithm takes a sub-linear number of sub-optimal actions.
 Can still be optimised in many ways (computational complexity, exploration, etc.).
- For convergence to optimal behaviour, does the algorithm need irreducibility and aperiodicity?

Discussion

- Algorithm takes a sub-linear number of sub-optimal actions.
 Can still be optimised in many ways (computational complexity, exploration, etc.).
- For convergence to optimal behaviour, does the algorithm need irreducibility and aperiodicity?
 Needs irreducibility, not aperiodicity.

Discussion

- Algorithm takes a sub-linear number of sub-optimal actions.
 Can still be optimised in many ways (computational complexity, exploration, etc.).
- For convergence to optimal behaviour, does the algorithm need irreducibility and aperiodicity?
 Needs irreducibility, not aperiodicity.
- Why is this a "model-based" algorithm?

Discussion

- Algorithm takes a sub-linear number of sub-optimal actions.
 Can still be optimised in many ways (computational complexity, exploration, etc.).
- For convergence to optimal behaviour, does the algorithm need irreducibility and aperiodicity?
 Needs irreducibility, not aperiodicity.
- Why is this a "model-based" algorithm? Uses $\theta(|S|^2|A|)$ memory. Will soon see a "model-free" method that needs $\theta(|S||A|)$ memory.

Reinforcement Learning

- 1. Reinforcement Learning problem
 - Prediction, control
 - Assumptions
- 2. Basic algorithm for control
- 3. Prediction with a Monte Carlo method

• Assume we have an episodic task. $S = \{s_1, s_2, s_3\}, \gamma = 1$. On each episode, start state picked uniformly at random.

- Assume we have an episodic task. $S = \{s_1, s_2, s_3\}, \gamma = 1$. On each episode, start state picked uniformly at random.
- Here are the first 5 episodes.

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.
```

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_T .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: $s_3, 1, s_{\top}$.

Episode 5: $s_2, 3, s_2, 3, s_1, 1, s_{\top}$

• Assume we have an episodic task. $S = \{s_1, s_2, s_3\}, \gamma = 1$. On each episode, start state picked uniformly at random.

Here are the first 5 episodes.

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$. Episode 2: $s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}$. Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$. Episode 4: $s_3, 1, s_{\top}$. Episode 5: $s_2, 3, s_2, 3, s_1, 1, s_{\top}$

• What is your estimate of V^{π} (call it \hat{V}^{5})?

- Assume we have an episodic task. $S = \{s_1, s_2, s_3\}, \gamma = 1$. On each episode, start state picked uniformly at random.
- Here are the first 5 episodes.

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.

Episode 2: s_2, 2, s_3, 1, s_3, 1, s_3, 2, s_2, 1, s_{\top}.

Episode 3: s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}.

Episode 4: s_3, 1, s_{\top}.

Episode 5: s_2, 3, s_2, 3, s_1, 1, s_{\top}
```

• What is your estimate of V^{π} (call it \hat{V}^{5})?

Monte Carlo methods estimate based on sample averages.

Defining Relevant Quantities

- For $s \in S$, $i \ge 1, j \ge 1$, let
- $\mathbf{1}(s, i, j)$ be 1 if s is visited at least j times on episode i is s (else $\mathbf{1}(s, i, j) = 0$), and
- G(s, i, j) be the discounted long-term reward starting from the j-th visit of s on episode i,
- Taking G(s, i, j) = 0 if $\mathbf{1}(s, i, j) = 0$; also 0/0 = 0.

```
Episode 1: s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}.
```

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: s_3 , 1, s_{\top} .

Episode 5: $s_2, 3, s_2, 3, s_1, 1, s_{\top}$

Defining Relevant Quantities

- For $s \in S$, $i \ge 1, j \ge 1$, let
- $\mathbf{1}(s, i, j)$ be 1 if s is visited at least j times on episode i is s (else $\mathbf{1}(s, i, j) = 0$), and
- G(s, i, j) be the discounted long-term reward starting from the j-th visit of s on episode i,
- Taking G(s, i, j) = 0 if $\mathbf{1}(s, i, j) = 0$; also 0/0 = 0.

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} .

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: s_3 , 1, s_{\top} .

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_{\top}

- $\mathbf{1}(s_1, 1, 1) = 1$, $G(s_1, 1, 1) = 5 + \gamma \cdot 2 + \gamma^2 \cdot 3 + \gamma^3 \cdot 1 = 11$.
- $\mathbf{1}(s_1, 1, 3) = 0.$
- $\mathbf{1}(s_2,5,1)=1$, $G(s_2,5,1)=3+\gamma\cdot 3+\gamma^2\cdot 1=7$.
- $\mathbf{1}(s_2, 5, 2) = 1$, $G(s_2, 5, 2) = 3 + \gamma \cdot 1 = 4$.

Some Standard Estimates of $V^{\pi}(s)$

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$.

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: $s_3, 1, s_{\top}$.

Episode 5: $s_2, 3, s_2, 3, s_1, 1, s_{\top}$

Let \hat{V}^T denote estimate after T episodes.

First-visit Monte Carlo: Average the G's of every first occurrence of *s* in an episode.

$$\hat{V}_{\mathsf{First-visit}}^{\mathsf{T}}(s) = \frac{\sum_{i=1}^{\mathsf{T}} G(s,i,1)}{\sum_{i=1}^{\mathsf{T}} \mathbf{1}(s,i,1)}.$$

$$\hat{V}_{\mathsf{First-visit}}^{5}(s_2) = \frac{4+7+8+7}{4} = 6.5.$$

Some Standard Estimates of $V^{\pi}(s)$

Episode 1: s_1 , 5, s_1 , 2, s_2 , 3, s_2 , 1, s_{\top} .

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: $s_3, 1, s_{\top}$.

Episode 5: $s_2, 3, s_2, 3, s_1, 1, s_{\top}$

Let \hat{V}^T denote estimate after T episodes.

Every-visit Monte Carlo: Average the G's of every occurrence of *s* in an episode.

$$\hat{V}_{\mathsf{Every\text{-}visit}}^{\mathsf{T}}(s) = \frac{\sum_{i=1}^{\mathsf{T}} \sum_{j=1}^{\infty} G(s,i,j)}{\sum_{i=1}^{\mathsf{T}} \sum_{j=1}^{\infty} \mathbf{1}(s,i,j)}.$$

$$\hat{V}_{\mathsf{Every\text{-}visit}}^5(s_2) = \frac{(4+1)+(7+1)+8+(7+4)}{7} pprox 4.57.$$

Some Not-so-standard Estimates of $V^{\pi}(s)$

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$.

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: s_3 , 1, s_{\top} .

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_{\top}

Let \hat{V}^T denote estimate after T episodes.

Second-visit Monte Carlo: Average the G's of every second occurrence of *s* in an episode.

$$\hat{V}_{\mathsf{Second-visit}}^{\mathsf{T}}(s) = rac{\sum_{i=1}^{\mathsf{T}} G(s,i,2)}{\sum_{i=1}^{\mathsf{T}} \mathbf{1}(s,i,2)}.$$

$$\hat{V}_{\mathsf{Second\text{-}visit}}^{5}(s_2) = rac{1+1+4}{3} = 2.$$

Some Not-so-standard Estimates of $V^{\pi}(s)$

Episode 1: $s_1, 5, s_1, 2, s_2, 3, s_2, 1, s_{\top}$.

Episode 2: s_2 , 2, s_3 , 1, s_3 , 1, s_3 , 2, s_2 , 1, s_{\top} .

Episode 3: $s_1, 2, s_2, 2, s_1, 5, s_1, 1, s_{\top}$.

Episode 4: $s_3, 1, s_{\top}$.

Episode 5: s_2 , 3, s_2 , 3, s_1 , 1, s_{\top}

Let \hat{V}^T denote estimate after T episodes.

Last-visit Monte Carlo: Average the G's of every last occurrence of s in episode i (assume times(s, i) visits).

$$\hat{V}_{\mathsf{Last-visit}}^{\mathsf{T}}(s) = \frac{\sum_{i=1}^{\mathsf{T}} G(s, i, \mathsf{times}(s, i))}{\sum_{i=1}^{\mathsf{T}} \mathbf{1}(s, i, \mathsf{times}(s, i))}.$$

$$\hat{V}_{\text{Last-visit}}^{5}(s_2) = \frac{1+1+8+4}{4} = 3.5.$$

Question

- Recall that we generate T episodes.
- Which claims below are true?

$$\begin{split} & \lim_{T \to \infty} \hat{V}_{\text{First-visit}}^T = V^\pi. \\ & \lim_{T \to \infty} \hat{V}_{\text{Every-visit}}^T = V^\pi. \\ & \lim_{T \to \infty} \hat{V}_{\text{Second-visit}}^T = V^\pi. \\ & \lim_{T \to \infty} \hat{V}_{\text{Last-visit}}^T = V^\pi. \end{split}$$

Reinforcement Learning

- Reinforcement Learning problem
 - Prediction, control
 - Assumptions
- 2. Basic algorithm for control
- Prediction with a Monte Carlo method