
1/21

CS 747, Autumn 2020: Week 8, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2020

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 1 / 21



2/21

Reinforcement Learning

1. Reinforcement Learning problem
I Prediction, control
I Assumptions

2. Basic algorithm for control

3. Prediction with a Monte Carlo method

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 21



2/21

Reinforcement Learning

1. Reinforcement Learning problem
I Prediction, control
I Assumptions

2. Basic algorithm for control

3. Prediction with a Monte Carlo method

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 21



3/21

Agent-Environment Interaction

Underlying MDP:

s s1 2

s3

0.5, 0

1, 1

0.5, 3

0.25, −1

1, 1
0.5, −1

1, 2

0.5, 3

0.75, −2

γ = 0.9

Agent’s view:

s s
1 2

s
3

γ = 0.9

From current state, agent takes action.
Environment (MDP) decides next state and reward.
Possible history: s2, RED,−2, s3, BLUE,1, s1, RED,0, s1, . . . .
History conveys information about the MDP to the agent.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 21



3/21

Agent-Environment Interaction

Underlying MDP:

s s1 2

s3

0.5, 0

1, 1

0.5, 3

0.25, −1

1, 1
0.5, −1

1, 2

0.5, 3

0.75, −2

γ = 0.9

Agent’s view:

s s
1 2

s
3

γ = 0.9

From current state, agent takes action.
Environment (MDP) decides next state and reward.
Possible history: s2, RED,−2, s3, BLUE,1, s1, RED,0, s1, . . . .
History conveys information about the MDP to the agent.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 21



3/21

Agent-Environment Interaction

Underlying MDP:

s s1 2

s3

0.5, 0

1, 1

0.5, 3

0.25, −1

1, 1
0.5, −1

1, 2

0.5, 3

0.75, −2

γ = 0.9

Agent’s view:

s s
1 2

s
3

γ = 0.9

From current state, agent takes action.

Environment (MDP) decides next state and reward.
Possible history: s2, RED,−2, s3, BLUE,1, s1, RED,0, s1, . . . .
History conveys information about the MDP to the agent.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 21



3/21

Agent-Environment Interaction

Underlying MDP:

s s1 2

s3

0.5, 0

1, 1

0.5, 3

0.25, −1

1, 1
0.5, −1

1, 2

0.5, 3

0.75, −2

γ = 0.9

Agent’s view:

s s
1 2

s
3

γ = 0.9

From current state, agent takes action.
Environment (MDP) decides next state and reward.

Possible history: s2, RED,−2, s3, BLUE,1, s1, RED,0, s1, . . . .
History conveys information about the MDP to the agent.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 21



3/21

Agent-Environment Interaction

Underlying MDP:

s s1 2

s3

0.5, 0

1, 1

0.5, 3

0.25, −1

1, 1
0.5, −1

1, 2

0.5, 3

0.75, −2

γ = 0.9

Agent’s view:

s s
1 2

s
3

γ = 0.9

From current state, agent takes action.
Environment (MDP) decides next state and reward.
Possible history: s2, RED,−2, s3, BLUE,1, s1, RED,0, s1, . . . .

History conveys information about the MDP to the agent.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 21



3/21

Agent-Environment Interaction

Underlying MDP:

s s1 2

s3

0.5, 0

1, 1

0.5, 3

0.25, −1

1, 1
0.5, −1

1, 2

0.5, 3

0.75, −2

γ = 0.9

Agent’s view:

s s
1 2

s
3

γ = 0.9

From current state, agent takes action.
Environment (MDP) decides next state and reward.
Possible history: s2, RED,−2, s3, BLUE,1, s1, RED,0, s1, . . . .
History conveys information about the MDP to the agent.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 21



4/21

The Control Problem
For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a
t-length history.

A learning algorithm L is a mapping from the set of all
histories to the set of all (probability distributions over) arms.

Actions are selected by the learning algorithm (agent);
next states and rewards by the MDP (environment).

Control problem: Can we construct L such that

lim
T→∞

1
T

(
T−1∑
t=0

P{at ∼ L(ht) is an optimal action for st}

)
= 1?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 21



4/21

The Control Problem
For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a
t-length history.

A learning algorithm L is a mapping from the set of all
histories to the set of all (probability distributions over) arms.

Actions are selected by the learning algorithm (agent);
next states and rewards by the MDP (environment).

Control problem: Can we construct L such that

lim
T→∞

1
T

(
T−1∑
t=0

P{at ∼ L(ht) is an optimal action for st}

)
= 1?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 21



4/21

The Control Problem
For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a
t-length history.

A learning algorithm L is a mapping from the set of all
histories to the set of all (probability distributions over) arms.

Actions are selected by the learning algorithm (agent);
next states and rewards by the MDP (environment).

Control problem: Can we construct L such that

lim
T→∞

1
T

(
T−1∑
t=0

P{at ∼ L(ht) is an optimal action for st}

)
= 1?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 21



4/21

The Control Problem
For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a
t-length history.

A learning algorithm L is a mapping from the set of all
histories to the set of all (probability distributions over) arms.

Actions are selected by the learning algorithm (agent);
next states and rewards by the MDP (environment).

Control problem: Can we construct L such that

lim
T→∞

1
T

(
T−1∑
t=0

P{at ∼ L(ht) is an optimal action for st}

)
= 1?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 21



5/21

The Prediction Problem
We are given a policy π that the agent follows.
The aim is to estimate V π.

For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a
t-length history (note that at ∼ π(st ).

A learning algorithm L is a mapping from the set of all
histories to the set of all mappings of the form S → R.

In other words, at each step t the learning algorithm
provides an estimate V̂ t .

Prediction problem: Can we construct L such that

lim
t→∞

V̂ t = V π?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 21



5/21

The Prediction Problem
We are given a policy π that the agent follows.
The aim is to estimate V π.

For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a
t-length history (note that at ∼ π(st ).

A learning algorithm L is a mapping from the set of all
histories to the set of all mappings of the form S → R.

In other words, at each step t the learning algorithm
provides an estimate V̂ t .

Prediction problem: Can we construct L such that

lim
t→∞

V̂ t = V π?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 21



5/21

The Prediction Problem
We are given a policy π that the agent follows.
The aim is to estimate V π.

For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a
t-length history (note that at ∼ π(st ).

A learning algorithm L is a mapping from the set of all
histories to the set of all mappings of the form S → R.

In other words, at each step t the learning algorithm
provides an estimate V̂ t .

Prediction problem: Can we construct L such that

lim
t→∞

V̂ t = V π?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 21



5/21

The Prediction Problem
We are given a policy π that the agent follows.
The aim is to estimate V π.

For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a
t-length history (note that at ∼ π(st ).

A learning algorithm L is a mapping from the set of all
histories to the set of all mappings of the form S → R.

In other words, at each step t the learning algorithm
provides an estimate V̂ t .

Prediction problem: Can we construct L such that

lim
t→∞

V̂ t = V π?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 21



5/21

The Prediction Problem
We are given a policy π that the agent follows.
The aim is to estimate V π.

For t ≥ 0, let ht = (s0,a0, r 0, s1,a1, r 1, s2, . . . , st) denote a
t-length history (note that at ∼ π(st ).

A learning algorithm L is a mapping from the set of all
histories to the set of all mappings of the form S → R.

In other words, at each step t the learning algorithm
provides an estimate V̂ t .

Prediction problem: Can we construct L such that

lim
t→∞

V̂ t = V π?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 21



6/21

Assumption 1: Irreducibility
Fix an MDP M = (S,A,T ,R, γ) and a policy π.
Draw a graph with states as vertices and every
non-zero-probability transition under π as a directed edge.
Is there a directed path from s to s′ for every s, s′ ∈ S?
If yes, M is irreducible under π.
If M is irreducible under all π ∈ Π, then M is irreducible.

s s
1 2

s
3

s s
1 2

s
3

Reducible Irreducible

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6 / 21



7/21

Assumption 2: Aperiodicity
Fix an MDP M = (S,A,T ,R, γ) and a policy π.
For s ∈ S, t ≥ 1, let X (s, t) be the set of all states s′ such
that there is a non-zero probability of reaching s′ in exactly t
steps by starting at s and following π.
For s ∈ S, let Y (s) be the set of all t ≥ 1 such that
s ∈ X (s, t); let p(s) = gcd(Y (s)).
M is aperiodic under π if for all s ∈ S: p(s) = 1.
If M is aperiodic under all π ∈ Π, then M is aperiodic.

s s
1 2

Y (s1) = {2,4,6, . . . }.

Periodic.

s s
1 2

Y (s1) = {1,2,3, . . . , }.
Y (s2) = {2,3,4, . . . , }.
Aperiodic.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7 / 21



8/21

Ergodicity
An MDP that is irreducible and aperiodic is called an
ergodic MDP.

In an ergodic MDP, every policy π induces a unique
steady state distribution µπ : S → (0,1), subject to∑

s∈S µ
π(s) = 1, which is independent of the start state.

For s ∈ S, t ≥ 0, let p(s, t) be the probability of being in
state s at step t , after starting at some (arbitrarily) fixed
state and following π. Then

µπ(s) = lim
t→∞

p(s, t).

We’ll use ergodicity in some of the later lectures.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 21



8/21

Ergodicity
An MDP that is irreducible and aperiodic is called an
ergodic MDP.

In an ergodic MDP, every policy π induces a unique
steady state distribution µπ : S → (0,1), subject to∑

s∈S µ
π(s) = 1, which is independent of the start state.

For s ∈ S, t ≥ 0, let p(s, t) be the probability of being in
state s at step t , after starting at some (arbitrarily) fixed
state and following π. Then

µπ(s) = lim
t→∞

p(s, t).

We’ll use ergodicity in some of the later lectures.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 21



8/21

Ergodicity
An MDP that is irreducible and aperiodic is called an
ergodic MDP.

In an ergodic MDP, every policy π induces a unique
steady state distribution µπ : S → (0,1), subject to∑

s∈S µ
π(s) = 1, which is independent of the start state.

For s ∈ S, t ≥ 0, let p(s, t) be the probability of being in
state s at step t , after starting at some (arbitrarily) fixed
state and following π.

Then

µπ(s) = lim
t→∞

p(s, t).

We’ll use ergodicity in some of the later lectures.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 21



8/21

Ergodicity
An MDP that is irreducible and aperiodic is called an
ergodic MDP.

In an ergodic MDP, every policy π induces a unique
steady state distribution µπ : S → (0,1), subject to∑

s∈S µ
π(s) = 1, which is independent of the start state.

For s ∈ S, t ≥ 0, let p(s, t) be the probability of being in
state s at step t , after starting at some (arbitrarily) fixed
state and following π. Then

µπ(s) = lim
t→∞

p(s, t).

We’ll use ergodicity in some of the later lectures.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 21



8/21

Ergodicity
An MDP that is irreducible and aperiodic is called an
ergodic MDP.

In an ergodic MDP, every policy π induces a unique
steady state distribution µπ : S → (0,1), subject to∑

s∈S µ
π(s) = 1, which is independent of the start state.

For s ∈ S, t ≥ 0, let p(s, t) be the probability of being in
state s at step t , after starting at some (arbitrarily) fixed
state and following π. Then

µπ(s) = lim
t→∞

p(s, t).

We’ll use ergodicity in some of the later lectures.
Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 21



9/21

Reinforcement Learning

1. Reinforcement Learning problem
I Prediction, control
I Assumptions

2. Basic algorithm for control

3. Prediction with a Monte Carlo method

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9 / 21



10/21

A Model-based Approach

A model is an estimate of the MDP, which is usually
updated based on experience.
We keep estimates T̂ and R̂, and hope to get them to
converge to T and R, respectively.

At convergence, acting optimally for MDP (S,A, T̂ , R̂, γ)
must be optimal for the original MDP (S,A,T ,R, γ), too.

We must visit every state-action pair infinitely often.

Remember GLIE?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10 / 21



10/21

A Model-based Approach

A model is an estimate of the MDP, which is usually
updated based on experience.
We keep estimates T̂ and R̂, and hope to get them to
converge to T and R, respectively.

At convergence, acting optimally for MDP (S,A, T̂ , R̂, γ)
must be optimal for the original MDP (S,A,T ,R, γ), too.

We must visit every state-action pair infinitely often.

Remember GLIE?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10 / 21



10/21

A Model-based Approach

A model is an estimate of the MDP, which is usually
updated based on experience.
We keep estimates T̂ and R̂, and hope to get them to
converge to T and R, respectively.

At convergence, acting optimally for MDP (S,A, T̂ , R̂, γ)
must be optimal for the original MDP (S,A,T ,R, γ), too.

We must visit every state-action pair infinitely often.

Remember GLIE?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10 / 21



10/21

A Model-based Approach

A model is an estimate of the MDP, which is usually
updated based on experience.
We keep estimates T̂ and R̂, and hope to get them to
converge to T and R, respectively.

At convergence, acting optimally for MDP (S,A, T̂ , R̂, γ)
must be optimal for the original MDP (S,A,T ,R, γ), too.

We must visit every state-action pair infinitely often.

Remember GLIE?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10 / 21



11/21

Algorithm
Model-based RL

//Initialisation
For s, s′ ∈ S,a ∈ A :

T̂ [s][a][s′]← 0; R̂[s][a][s′]← 0.
modelValid ← False.

For s, s′ ∈ S,a ∈ A :
totalTransitions[s][a][s′]← 0;
totalReward [s][a][s′]← 0.

For s ∈ S,a ∈ A :
totalVisits[s][a]← 0.

Assume that the agent is born in state s0.

(Continued on next slide.)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 21



12/21

Algorithm
(Continued from previous slide.)

Assume that the agent is born in state s0.

//For ever
For t = 0,1,2, . . . :

If modelValid :
πopt ← MDPPlan(S,A, T̂ , R̂, γ).

at ←

{
πopt(st) w. p. 1− εt ,

UniformRandom(A) w. p. εt .

Else:
at ← UniformRandom(A).

Take action at ; obtain reward r t , next state st+1.
UpdateModel(st ,at , r t , st+1).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 21



13/21

Algorithm

UpdateModel(s,a, r,s′)

totalTransitions[s][a][s′]← totalTransitions[s][a][s′] + 1.
totalVisits[s][a]← totalVisits[s][a] + 1.
totalReward [s][a][s′]← totalReward [s][a][s′] + r .

For s′′ ∈ S :
T̂ [s][a][s′′]← totalTransitions[s][a][s′′]

totalVisits[s][a] .

R̂[s][a][s′]← totalReward [s][a][s′]
totalTransitions[s][a][s′] .

If ¬modelValid :
If ∀s′′ ∈ S,∀a′′ ∈ A : totalVisits[s′′][a′′] ≥ 1:

modelValid ← True.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 21



14/21

Discussion

Algorithm takes a sub-linear number of sub-optimal actions.
Can still be optimised in many ways (computational
complexity, exploration, etc.).

For convergence to optimal behaviour, does the algorithm
need irreducibility and aperiodicity?
Needs irreducibility, not aperiodicity.

Why is this a “model-based” algorithm?
Uses θ(|S|2|A|) memory. Will soon see a “model-free”
method that needs θ(|S||A|) memory.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14 / 21



14/21

Discussion

Algorithm takes a sub-linear number of sub-optimal actions.
Can still be optimised in many ways (computational
complexity, exploration, etc.).

For convergence to optimal behaviour, does the algorithm
need irreducibility and aperiodicity?

Needs irreducibility, not aperiodicity.

Why is this a “model-based” algorithm?
Uses θ(|S|2|A|) memory. Will soon see a “model-free”
method that needs θ(|S||A|) memory.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14 / 21



14/21

Discussion

Algorithm takes a sub-linear number of sub-optimal actions.
Can still be optimised in many ways (computational
complexity, exploration, etc.).

For convergence to optimal behaviour, does the algorithm
need irreducibility and aperiodicity?
Needs irreducibility, not aperiodicity.

Why is this a “model-based” algorithm?
Uses θ(|S|2|A|) memory. Will soon see a “model-free”
method that needs θ(|S||A|) memory.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14 / 21



14/21

Discussion

Algorithm takes a sub-linear number of sub-optimal actions.
Can still be optimised in many ways (computational
complexity, exploration, etc.).

For convergence to optimal behaviour, does the algorithm
need irreducibility and aperiodicity?
Needs irreducibility, not aperiodicity.

Why is this a “model-based” algorithm?

Uses θ(|S|2|A|) memory. Will soon see a “model-free”
method that needs θ(|S||A|) memory.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14 / 21



14/21

Discussion

Algorithm takes a sub-linear number of sub-optimal actions.
Can still be optimised in many ways (computational
complexity, exploration, etc.).

For convergence to optimal behaviour, does the algorithm
need irreducibility and aperiodicity?
Needs irreducibility, not aperiodicity.

Why is this a “model-based” algorithm?
Uses θ(|S|2|A|) memory. Will soon see a “model-free”
method that needs θ(|S||A|) memory.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14 / 21



15/21

Reinforcement Learning

1. Reinforcement Learning problem
I Prediction, control
I Assumptions

2. Basic algorithm for control

3. Prediction with a Monte Carlo method

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15 / 21



16/21

Prediction
Assume we have an episodic task. S = {s1, s2, s3}, γ = 1.
On each episode, start state picked uniformly at random.

Here are the first 5 episodes.

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

What is your estimate of V π (call it V̂ 5)?
Monte Carlo methods estimate based on sample averages.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16 / 21



16/21

Prediction
Assume we have an episodic task. S = {s1, s2, s3}, γ = 1.
On each episode, start state picked uniformly at random.

Here are the first 5 episodes.

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

What is your estimate of V π (call it V̂ 5)?
Monte Carlo methods estimate based on sample averages.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16 / 21



16/21

Prediction
Assume we have an episodic task. S = {s1, s2, s3}, γ = 1.
On each episode, start state picked uniformly at random.

Here are the first 5 episodes.

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

What is your estimate of V π (call it V̂ 5)?

Monte Carlo methods estimate based on sample averages.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16 / 21



16/21

Prediction
Assume we have an episodic task. S = {s1, s2, s3}, γ = 1.
On each episode, start state picked uniformly at random.

Here are the first 5 episodes.

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

What is your estimate of V π (call it V̂ 5)?
Monte Carlo methods estimate based on sample averages.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16 / 21



17/21

Defining Relevant Quantities
For s ∈ S, i ≥ 1, j ≥ 1, let

- 1(s, i , j) be 1 if s is visited at least j times on episode i is s
(else 1(s, i , j) = 0), and

- G(s, i , j) be the discounted long-term reward starting from
the j-th visit of s on episode i ,

- Taking G(s, i , j) = 0 if 1(s, i , j) = 0; also 0/0 = 0.

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

1(s1,1,1) = 1, G(s1,1,1) = 5 + γ · 2 + γ2 · 3 + γ3 · 1 = 11.
1(s1,1,3) = 0.
1(s2,5,1) = 1, G(s2,5,1) = 3 + γ · 3 + γ2 · 1 = 7.
1(s2,5,2) = 1, G(s2,5,2) = 3 + γ · 1 = 4.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17 / 21



17/21

Defining Relevant Quantities
For s ∈ S, i ≥ 1, j ≥ 1, let

- 1(s, i , j) be 1 if s is visited at least j times on episode i is s
(else 1(s, i , j) = 0), and

- G(s, i , j) be the discounted long-term reward starting from
the j-th visit of s on episode i ,

- Taking G(s, i , j) = 0 if 1(s, i , j) = 0; also 0/0 = 0.

Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

1(s1,1,1) = 1, G(s1,1,1) = 5 + γ · 2 + γ2 · 3 + γ3 · 1 = 11.
1(s1,1,3) = 0.
1(s2,5,1) = 1, G(s2,5,1) = 3 + γ · 3 + γ2 · 1 = 7.
1(s2,5,2) = 1, G(s2,5,2) = 3 + γ · 1 = 4.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17 / 21



18/21

Some Standard Estimates of V π(s)
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

Let V̂ T denote estimate after T episodes.

First-visit Monte Carlo: Average the G’s of every first
occurrence of s in an episode.

V̂ T
First-visit(s) =

∑T
i=1 G(s, i ,1)∑T
i=1 1(s, i ,1)

.

Hence
V̂ 5

First-visit(s2) =
4 + 7 + 8 + 7

4
= 6.5.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 18 / 21



18/21

Some Standard Estimates of V π(s)
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

Let V̂ T denote estimate after T episodes.

Every-visit Monte Carlo: Average the G’s of every
occurrence of s in an episode.

V̂ T
Every-visit(s) =

∑T
i=1

∑∞
j=1 G(s, i , j)∑T

i=1

∑∞
j=1 1(s, i , j)

.

Hence

V̂ 5
Every-visit(s2) =

(4 + 1) + (7 + 1) + 8 + (7 + 4)

7
≈ 4.57.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 18 / 21



19/21

Some Not-so-standard Estimates of V π(s)
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

Let V̂ T denote estimate after T episodes.

Second-visit Monte Carlo: Average the G’s of every second
occurrence of s in an episode.

V̂ T
Second-visit(s) =

∑T
i=1 G(s, i ,2)∑T
i=1 1(s, i ,2)

.

Hence
V̂ 5

Second-visit(s2) =
1 + 1 + 4

3
= 2.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19 / 21



19/21

Some Not-so-standard Estimates of V π(s)
Episode 1: s1,5, s1,2, s2,3, s2,1, s>.
Episode 2: s2,2, s3,1, s3,1, s3,2, s2,1, s>.
Episode 3: s1,2, s2,2, s1,5, s1,1, s>.
Episode 4: s3,1, s>.
Episode 5: s2,3, s2,3, s1,1, s>

Let V̂ T denote estimate after T episodes.

Last-visit Monte Carlo: Average the G’s of every last
occurrence of s in episode i (assume times(s, i) visits).

V̂ T
Last-visit(s) =

∑T
i=1 G(s, i , times(s, i))∑T
i=1 1(s, i , times(s, i))

.

Hence
V̂ 5

Last-visit(s2) =
1 + 1 + 8 + 4

4
= 3.5.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19 / 21



20/21

Question

Recall that we generate T episodes.
Which claims below are true?

lim
T→∞

V̂ T
First-visit = V π.

lim
T→∞

V̂ T
Every-visit = V π.

lim
T→∞

V̂ T
Second-visit = V π.

lim
T→∞

V̂ T
Last-visit = V π.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 21



21/21

Reinforcement Learning

1. Reinforcement Learning problem
I Prediction, control
I Assumptions

2. Basic algorithm for control

3. Prediction with a Monte Carlo method

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 21 / 21


