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@ From current state, agent takes action.
@ Environment (MDP) decides next state and reward.

@ Possible history: s,, RED, —2, s3,BLUE, 1, 81, RED, 0, S1, .. ..
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Agent-Environment Interaction

Underlying MDP: Agent’s view:
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@ From current state, agent takes action.

@ Environment (MDP) decides next state and reward.

@ Possible history: s,, RED, —2, s3,BLUE, 1, 81, RED, 0, S1, .. ..
@ History conveys information about the MDP to the agent.
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The Control Problem

@ Fort>0,letht =(s%a° r% s a', r' s ... s") denote a
t-length history.
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The Control Problem

@ Fort>0,letht=(s%a%r% s a' r' s% ..., s') denote a
t-length history.

@ A learning algorithm L is a mapping from the set of all
histories to the set of all (probability distributions over) arms.

@ Actions are selected by the learning algorithm (agent);
next states and rewards by the MDP (environment).

@ Control problem: Can we construct L such that

(& " . . t
T|'—>mo<>7 (; P{a' ~ L(h') is an optimal action for s'} | =17
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The Prediction Problem

@ We are given a policy = that the agent follows.
The aim is to estimate V™.
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The Prediction Problem
@ We are given a policy = that the agent follows.
The aim is to estimate V7.

@ Fort>0,letht =(s%a°% r0 s a',r' s ... s") denote a
t-length history (note that a' ~ =(s?).

@ A learning algorithm L is a mapping from the set of all
histories to the set of all mappings of the form S — R.

@ In other words, at each step ¢ the learning algorithm
provides an estimate V.

@ Prediction problem: Can we construct L such that
lim V= Vv™?

t—o0
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Assumption 1: Irreducibility
@ Fixan MDP M = (S,A, T, R,~) and a policy .
@ Draw a graph with states as vertices and every
non-zero-probability transition under 7 as a directed edge.
@ |s there a directed path from s to s’ for every s,s' € S?
@ If yes, M is irreducible under .
@ If M is irreducible under all = € 1, then M is irreducible.

Reducible Irreducible
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Assumption 2: Aperiodicity

@ Fixan MDP M = (S,A, T, R,~) and a policy .

@ Forse S, t>1, let X(s,t) be the set of all states s’ such
that there is a non-zero probability of reaching s’ in exactly ¢
steps by starting at s and following 7.

@ Forse S, let Y(s) be the set of all t > 1 such that
s e X(s,t); let p(s) = ged(Y(s)).

@ M is aperiodic under r if for all s € S: p(s) = 1.

@ If M is aperiodic under all = € I, then M is aperiodic.

()
B——© O——©

Y(si) = {2,4,6,...}. S = 52080005 )

o Y(s2) =1{2,3,4,...,}.
Periodic. -
Aperiodic.
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Ergodicity
@ An MDP that is irreducible and aperiodic is called an
ergodic MDP.
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@ An MDP that is irreducible and aperiodic is called an
ergodic MDP.

@ In an ergodic MDP, every policy 7 induces a unique

steady state distribution p™ : S — (0, 1), subject to
Y ses 17(8) = 1, which is independent of the start state.
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Ergodicity
@ An MDP that is irreducible and aperiodic is called an
ergodic MDP.

@ In an ergodic MDP, every policy 7 induces a unique

steady state distribution p™ : S — (0, 1), subject to
> ses H(8) = 1, which is independent of the start state.

@ Forse S, t >0, let p(s, t) be the probability of being in
state s at step t, after starting at some (arbitrarily) fixed
state and following 7. Then

p(s) = Jim p(s, t).

@ We'll use ergodicity in some of the later lectures.
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A Model-based Approach

@ A model is an estimate of the MDP, which is usually
updated based on experience.

We keep estimates T and R, and hope to get them to
converge to T and R, respectively.
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A Model-based Approach

@ A model is an estimate of the MDP, which is usually
updated based on experience.

We keep estimates T and R, and hope to get them to
converge to T and R, respectively.

@ At convergence, acting optimally for MDP (S,

AT R~
must be optimal for the original MDP (S, A, T, R, v

), too.
@ We must visit every state-action pair infinitely often.

@ Remember GLIE?
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Algorithm
Model-based RL

/lnitialisation

Fors,se S,ac A:
T[s][a][s'] < 0; R][s][a][s'] + O.
modelValid + False.

Fors,se S,ac A:
totalTransitions[s][a][s'] + O;
fotalReward|s|[a][s'] < O.

Forse S,ac A:
totalVisits[s|[a] < 0.

Assume that the agent is born in state s°.

(Continued on next slide.)
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Algorithm

(Continued from previous slide.)

Assume that the agent is born in state s°.

//For ever
Fort=0,1,2,...:
If modelValid:
7Pt « MDPPlan(S,A, T, R, ~).
al + _
UniformRandom(A)  w. p. .
Else:
a' <+ UniformRandom(A).

UpdateModel(s!, &, r!, s'*1).

ToPl(st) w. p. 1 —¢,

Take action a'; obtain reward r!, next state st*'.
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Algorithm

UpdateModel(s,a,r,s’)

totalTransitions[s][a][s'] + totalTransitions[s][a][s'] + 1.
fotalVisits[s|[a] < totalVisits[s][a] + 1.
totalReward([s][a][s] < totalReward[s][a][s'] + r.

Fors’' € S:

A totalTransitions|s][a][s"
Tlsllalls”] « e,

s totalReward([s][a][s’]
R [s][a][s’] — total Transitions|s][a][s’] *

If =modelValid:
If vs” € S,Va" € A totalVisits[s"][&’] > 1:
modelValid < True.
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Discussion

@ Algorithm takes a sub-linear number of sub-optimal actions.
Can still be optimised in many ways (computational
complexity, exploration, etc.).
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Discussion

@ Algorithm takes a sub-linear number of sub-optimal actions.
Can still be optimised in many ways (computational
complexity, exploration, etc.).

@ For convergence to optimal behaviour, does the algorithm
need irreducibility and aperiodicity?
Needs irreducibility, not aperiodicity.

@ Why is this a “model-based” algorithm?

Uses 0(|S[?|A|) memory. Will soon see a “model-free”
method that needs 6(|S||A|) memory.
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Prediction

@ Assume we have an episodic task. S = {sy, sp, 83}, v = 1.
On each episode, start state picked uniformly at random.
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Prediction

@ Assume we have an episodic task. S = {si, 2, 83}, v = 1.
On each episode, start state picked uniformly at random.

@ Here are the first 5 episodes.

Episode 1: s51,5,51,2,55,3, 82,1, 57.
Episode 2: s,,2,83,1,83,1,83,2,8,,1, S7.
Episode 3: 54,2, 5,,2,5¢,5,51,1, s7.
Episode 4: s3,1, s7.

Episode 5: 5,3, 5,3, 51,1, 87
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Prediction

@ Assume we have an episodic task. S = {si, 2, 83}, v = 1.
On each episode, start state picked uniformly at random.

@ Here are the first 5 episodes.

Episode 1: s51,5,51,2,55,3, 82,1, 57.
Episode 2: s,,2,83,1,83,1,83,2,8,,1, S7.
Episode 3: 54,2, 5,,2,5¢,5,51,1, s7.
Episode 4: s3,1, s7.

Episode 5: 5,3, 5,3, 51,1, 87

@ What is your estimate of V™ (call it /5)?
Monte Carlo methods estimate based on sample averages.
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Defining Relevant Quantities
@ ForseS,i>1,j>1,let
- 1(s,i,j) be 1 if sis visited at least j times on episode i is s
(else 1(s,i,j) = 0), and
- G(s,1,j) be the discounted long-term reward starting from
the j-th visit of s on episode /,
- Taking G(s,i,j) =0if 1(s,/,j) = 0; also 0/0 = 0.

Episode 1: 51,5,51,2,55,3, 85,1, 57.
Episode 2: s,,2,83,1,83,1,83,2,8,,1, s7.
Episode 3: 54,2, 5,,2,5¢,5,51, 1, s7.
Episode 4: s3,1, s7.

Episode 5: 55,3, 5,,3, 51,1, 57
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Defining Relevant Quantities
@ ForseS,i>1,j>1,let
- 1(s,i,j) be 1 if sis visited at least j times on episode i is s
(else 1(s,i,j) = 0), and
- G(s,1,j) be the discounted long-term reward starting from
the j-th visit of s on episode /,
- Taking G(s,i,j) =0if 1(s,/,j) = 0; also 0/0 = 0.

Episode 1: 51,5,51,2, 82,3, 52,1, s7.
Episode 2: s55,2,583,1,83,1,83,2,8,1, 57.
Episode 3: 51,2, 5,2, 51,5, 81,1, S7.
Episode 4: s;3,1, s7.

Episode 5: s,,3,5,,3,81, 1,57

° 1(31’1’1):1= G(S17171):5+7'2+’72‘3+73'1 =11.
(] 1(31,1,3)20.
° 1(32’571):1! G(527571):3+")/3+")/21 =7.
® 1(5,5,2) =1, G(s2,5,2) =3 +7-1=4.
17121




Some Standard Estimates of V™(s)
Episode 1: 51,5,51,2,55,3,8,, 1, s7.
Episode 2: s5,2,53,1,83,1,83,2,55,1, 57.
Episode 3: 54,2, 55,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,3, 51,1, 87

Let V7 denote estimate after T episodes.

First-visit Monte Carlo: Average the G’s of every first
occurrence of s in an episode.

T .

" . G(s,i,1

Vizi-rst—visit(s) = 217__1 ( . )
> iz (s 0, 1)

4474847
- =
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Some Standard Estimates of V™(s)

Episode 1: 51,5,51,2,55,3,8,, 1, s7.
Episode 2: s5,2,53,1,83,1,83,2,55,1, 57.
Episode 3: 54,2, 55,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,3, 51,1, 87

Let V7 denote estimate after T episodes.

Every-visit Monte Carlo: Average the G’s of every
occurrence of s in an episode.

Sl 2 Gs,i)

\A/Tv visit\S .

Every st( ) Z, 1 ZOO 1(8 7 j)

Hence
o 44+1)+(7+1)+8+(7+4
ngery—visit(SZ) - ( ) ( ) ( ) ~ 4.57.
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Some Not-so-standard Estimates of V7(s)
Episode 1: 51,5,51,2,55,3, 8., 1, S7.
Episode 2: s5,2,53,1,83,1,83,2,55,1, 57.
Episode 3: 54,2, 55,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,3, 51,1, 87

Let V7 denote estimate after T episodes.

Second-visit Monte Carlo: Average the G’s of every second
occurrence of s in an episode.

> G(s,i,2)
V -VISI S = o
Second- st( ) Z, 11(3, i, 2)
Hence 14
VSecond V|sn(32) = T =2.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19/21



Some Not-so-standard Estimates of V7(s)
Episode 1: 51,5,51,2,55,3, 8., 1, S7.
Episode 2: s5,2,53,1,83,1,83,2,55,1, 57.
Episode 3: 54,2, 55,2, 51,5, 51,1, s7.
Episode 4: s3,1, s7.

Episode 5: 55,3, 55,3, 51,1, 87

Let V7 denote estimate after T episodes.

Last-visit Monte Carlo: Average the G’s of every last
occurrence of s in episode i (assume times(s, i) visits).

_ > G(s, i, times(s, )

v visit{S) = )
bl S°T,1(s, i, times(s, i))
Hence P
VEast-visit(SZ) = f = 3.5.
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Question

@ Recall that we generate T episodes.
@ Which claims below are true?

. vai _ T
lim VFirst-visit = V7.
T— oo
lim VI viet = V7.
Tyoo Every-visit

. vai o T
Tl'm VSecond-visit =V
—00

. vai _ o\
lim VLast-visit =V
T—o0
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