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Reinforcement Learning

1. Policy gradient methods
2. Variance reduction in policy gradient methods

3. Batch reinforcement learning
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Stochastic Policies

@ Single state; actions ay, a..

@ R(as) =5; R(a2) = 10.
@ Policy 7; parameter 6.

(a) 1 if6<0.6,
T =
1 0 otherwise.

J(0) = m(ay)-5+(az)-10.
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Stochastic Policies

@ Single state; actions ay, a..

()] R(a1) = 5; R(ag) =10.
@ Policy 7; parameter 6.

(a) 1 if6<0.6,
T =
1 0 otherwise.

J(0) = m(ay)-5+(az)-10.

@ Policy n'; parameter 6.

, 1
@) = g

J'(0) = 7'(a1)-5+7'(az2)-10.
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ldea
o If = is differentiable w.r.t. 4, so is (scalar) “policy value” J.
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|dea

o If = is differentiable w.r.t. 4, so is (scalar) “policy value” J.
@ We can “search” for “good” 6 by iterating:

Onew < Bold + avaJ(eold)-
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|dea

@ If 7 is differentiable w.r.t. 6, so is (scalar) “policy value” J.
@ We can “search” for “good” 6 by iterating:

Onew < Bold + aVGJ(eold)-

@ Example. If we have features x(s,a) e R? for s € S, a € A,
a common template for 7 is:
ee-x(s,a)

> pea €7 XD

where 0 € RY is the vector of policy parameters.

n(s,a) =
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ldea
@ If 7 is differentiable w.r.t. 6, so is (scalar) “policy value” J.
@ We can “search” for “good” 6 by iterating:

Onew < Bold + aVGJ(eold)-

@ Example. If we have features x(s,a) e R? for s € S, a € A,
a common template for 7 is:
ee-x(s,a)

> pea €7 XD

where 0 € RY is the vector of policy parameters.
In this case, work out that

Vor(s,a) = (x(s, a)— Y (s b)x(s, b)) (s, a).

beB

n(s,a) =
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ldea
@ If 7 is differentiable w.r.t. 6, so is (scalar) “policy value” J.
@ We can “search” for “good” 6 by iterating:

Onew < Bold + aVGJ(eold)-

@ Example. If we have features x(s,a) e R? for s € S, a € A,
a common template for 7 is:
ee-x(s,a)

> pea €7 XD

where 0 € RY is the vector of policy parameters.
In this case, work out that

Vor(s,a) = (x(s, a)— Y (s b)x(s, b)) (s, a).

beB

n(s,a) =

@ But what'’s the connection between V,J and Vyr(-,-)?
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Policy Gradient Theorem

@ For simplicity assume episodic task with v = 1.

@ Assume there is a fixed start state s°.

@ We leave it implicit that = is fixed by parameter vector 6.

@ J(0) = V™(s?).

@ We shall derive the connection between V,J and Vyr (-, -).
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Policy Gradient Theorem

Forse S,VyV™(s) =V, »_7(s,a)Q@(s,a)

acA
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Policy Gradient Theorem

Forse S,VyV™(s) =V, »_7(s,a)Q@(s,a)

acA

= Z Vor(s,a)Q"(s, a)

acA

+) m(s,a)Vs > _T(s as)(R(s,as)+ V(s

acA s'eS
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Policy Gradient Theorem

Forse S,VyV™(s) =V, »_7(s,a)Q@(s,a)

acA

= Z Vor(s,a)Q"(s, a)

acA

+Y w(s,a)Vy Yy T(s as)(R(s,as)+ V(s))

acA s'eS

=> | Vor(s,a)Q"(s,a) + 7(s.a) Y  T(s,a,8)VyV"(s)

acA s'eS
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Policy Gradient Theorem

Forse S,VyV™(s) =V, »_7(s,a)Q@(s,a)

acA

= Z Vor(s,a)Q"(s, a)

acA

+Y w(s,a)Vy Yy T(s as)(R(s,as)+ V(s))

acA s'eS

=> | Vor(s,a)Q"(s,a) + 7(s.a) Y  T(s,a,8)VyV"(s)

acA s'eS

— = ZiP{s — X, k,W}ZVeW(X, a)Q(x, a),

xeS k=0 acA
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Policy Gradient Theorem

Forse S,VyV™(s) =V, »_7(s,a)Q@(s,a)

acA

= Z VQW(S, a)QW(S7 a)

acA

+ Z (s, a)Vsy Z T(s,a, s)(R(s,a,s)+ V(s))

acA s'eS

=> | Vor(s,a)Q"(s,a) + 7(s.a) Y  T(s,a,8)VyV"(s)

acA s’'eS
L Z Z[P{s — X, k, 7} Z Ver(x,a)Q"(x, a),
X€S k=0 acA

where P{s — x, k, 7} is the probability of reaching x from sin k
steps if following .
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Policy Gradient Theorem

e Recall that J(6) = V7(s?).

Vod(0) = Z i P{s® — s, k, 7} Z Vor(s,a)Q"(s, a).

seS k=0 acA
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Policy Gradient Theorem

@ Recall that J(0) = V7(s°).

Vod(0 ZZP{S — s, k,7} Y Ver(s,a)Q@(s, a).

seS k=0 acA

@ But how to do gradient ascent? We do not know
P{s® — s k,7} and Q" (s, a)!
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Policy Gradient Theorem

@ Recall that J(0) = V7(s°).

Vod(0 ZZ]P’{S — s, k,7} Y Ver(s,a)Q@(s, a).

seS k=0 acA

@ But how to do gradient ascent? We do not know
P{s® — s, k,7} and Q"(s, a)!
@ We perform stochastic gradient ascent.

@ We use the following fact. For any discrete, real-valued
random variable X with pmf p : X — [0, 1],

> p(x)x =E[X].

xeX
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Towards Gradient Ascent
@ Generate episode s°,a%,r%, s', a',r',s?,....,s" =s' by
acting according to «, parameterised by 6.
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Towards Gradient Ascent
@ Generate episode s°,a%,r%, s', a',r',s?,....,s" =s' by

acting according to 7, parameterised by . Now observe:

Vod(0) =) > P{s® = s, k,1} > Ver(s,a)Q (s, a)

seS k=0 acA
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Towards Gradient Ascent
@ Generate episode s°,a%,r%, s', a',r',s?,....,s" =s' by

acting according to 7, parameterised by . Now observe:

Vod(0) =) > P{s® = s, k,1} > Ver(s,a)Q (s, a)

seS k=0 acA
T—1
=E. [>_ Y V(s a)Q(s',a)
t=0 acA
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Towards Gradient Ascent
@ Generate episode s°,a%,r%, s', a',r',s?,....,s" =s' by
acting according to «, parameterised by 6. Now observe:

Vod(0) =) > P{s® = s, k,1} > Ver(s,a)Q (s, a)

seS k=0 acA
71
=E. |) Y Von(s',a)Q (s, a)]
L =0 acA

>
= Egea o
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Towards Gradient Ascent

@ Generate episode s°,a%,r%, s', a', r',s2, ..
acting according to «, parameterised by 6. Now observe:
o0

Vod(0) =) > P{s® = s, k,1} > Ver(s,a)Q (s, a)

seS k=0 acA
(71
=E. |) Y Von(s',a)Q (s, a)]
L t=0 acA
[T—1
Vor(s!, a)
=E, s',a)————-Q(s
Yy rie.0 T Do >]
[T-1 t ot
g, |3 Y 8) e gt g
—~ 7(s'a)

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020

.,sT =sT by

8/20



Towards Gradient Ascent
@ Generate episode s°,a%,r%, s', a',r',s?,....,s" =s' by
acting according to «, parameterised by 6. Now observe:

Vod(0) =) > P{s® = s, k,1} > Ver(s,a)Q (s, a)

seS k=0 acA
[T-1
=E. |) Y Von(s',a)Q (s, a)]
L t=0 acA
L Vor(s!, a)
=E, ZZW(St,Q)M— ]
L t=0 acA 7r(
T—1 T—1
Vor(st, a') . Vor(st, a')
—E, > (s, an Q (s, a)| =E, ; S ) GtT]
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Towards Gradient Ascent
@ Generate episode s°,a%,r%, s', a',r',s?,....,s" =s' by
acting according to «, parameterised by 6. Now observe:

Vod(0) =) > P{s® = s, k,1} > Ver(s,a)Q (s, a)

seS k=0 acA
[T-1
=E. |) Y Von(s',a)Q (s, a)]
L t=0 acA
[ Vor(s!, a)
—E, ZZw(st,a)o— ]
t=0 acA W(
Vor(s!, a') L Vor(st, a')
e E B — 3
m (st a) (s, )| Ak tz_; st. al) GtT

1T 1T
~ 'ﬁ* ~
Lol JL

(Vg In 7T(St, at)) Gt:T] .
L =0



REINFORCE Algorithm
@ Reference: Williams (1992).

@ For clarity we show explicit dependence of = on parameter
vector § € R,

@ Assume 6 is initialised arbitrarily.

Repeat for ever:
Onew < 0.
Generate episode s°, &° r%,s",...,sT = sT, following .
Fort=0,1,....T—1:
G« >, rk IThisis Gi.r.
Onew < Onew + @GVy In 7T9(St, a’).
0 < Onew-
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Reinforcement Learning

1. Policy gradient methods
2. Variance reduction in policy gradient methods

3. Batch reinforcement learning
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Baseline Subtraction
@ Policy Gradient Theorem

Vod(0) =) ip{so — s, k,1} Y Ver(s,a)Q@(s, a).

seS k=0 acA
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Baseline Subtraction
@ Policy Gradient Theorem

Vod(0 ZZ]P’{S — s, k,1} Y Ver(s,a)Q@(s, a).

seS k=0 acA

@ Let B: S — R be an arbitrary function of state.
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Baseline Subtraction
@ Policy Gradient Theorem

Vod(0 ZZ]P’{S — s, k,1} Y Ver(s,a)Q@(s, a).
seS k=0 acA

@ letB:S —> R be an arbitrary function of state. We claim

Vod(0 ZZ]P’{S — s, k,m} Y Ver(s, a)(Q(s, a)-B(s)).

seS k=0 acA

@ How come?
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Baseline Subtraction
@ Policy Gradient Theorem

Vod(0) =) > P{s® = s, k,1} > Ver(s,a)@(s, a).
seS k=0 acA

@ Let B: S — R be an arbitrary function of state. We claim

Vod(0) =) i P{s® — s, k,m} > _ Vor(s, a)(Q(s,a)—B(s)).

seS k=0 acA

@ How come? Observe that

> i P{s® = s, k,m} > _ Vor(s, a)B(s)

seS k=0 acA
=> Y P{s° > s k,m}B(s)Vy > _(s,a)=0.
seS k=0 acA
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Baseline Subtraction
@ The policy gradient estimate can have high variance.

s | Q(s,ar) | Q"(s,a) | Q"(s,a3) | V(s)
S 105 79 100 90
So 10 6 13 12
S3 -50 —60 -50 —55
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Baseline Subtraction
@ The policy gradient estimate can have high variance.

s | Q(s,ar) | Q"(s,a) | Q"(s,a3) | V(s)
S 105 79 100 90
So 10 6 13 12
S3 -50 —60 -50 —55

@ Common practice to subtract out V™(s)—approximated
independently as V(s).

@ REINFORCE with baseline:
T—1

Onow < Onow + @ Y _(Gr.r — V(8"))Vy Inmy(s', &").
t=0
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Actor-critic Methods
@ Even for fixed (s!, a'), can have high variance in G;.7.
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Actor-critic Methods

@ Even for fixed (s!, a'), can have high variance in G;.7.

@ One approach is to do gradient ascent after averaging the
gradient from a few episodes.
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Actor-critic Methods
@ Even for fixed (s!, a'), can have high variance in G;.7.

@ One approach is to do gradient ascent after averaging the
gradient from a few episodes.

@ Another approach is to bootstrap: to use rf + \A/(sf“) in
place of G;.r, where V(s'*1) is estimated independently.
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Actor-critic Methods
@ Even for fixed (s!, a'), can have high variance in G;.7.

@ One approach is to do gradient ascent after averaging the
gradient from a few episodes.

@ Another approach is to bootstrap: to use rf + \7(sf+1) in
place of G;.r, where V(s'*1) is estimated independently.

@ Called the Actor-Critic architecture.
- Actor updates 6 and hence .

- Critic evaluates , (say using TD(0)) and provides input for
the gradient ascent update.
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Actor-critic Methods
@ Even for fixed (s!, a'), can have high variance in G;.7.

@ One approach is to do gradient ascent after averaging the
gradient from a few episodes.

@ Another approach is to bootstrap: to use rf + \A/(sf“) in
place of G;.r, where V(s'*1) is estimated independently.

@ Called the Actor-Critic architecture.
- Actor updates 6 and hence .

- Critic evaluates , (say using TD(0)) and provides input for
the gradient ascent update.

@ Not always provably convergent, but widely used in practice.
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Reinforcement Learning

1. Policy gradient methods
2. Variance reduction in policy gradient methods

3. Baitch reinforcement learning
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Batch Updates to Q

@ We are back to value function-based learning.
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Batch Updates to Q

@ We are back to value function-based learning.

@ On-line methods such as TD(0) “extract” very little
information from each transition; are computationally
lightweight.
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Batch Updates to Q
@ We are back to value function-based learning.
@ On-line methods such as TD(0) “extract” very little

information from each transition; are computationally
lightweight.

@ In many applications, samples are more expensive than
computation; need to get more out of samples.
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Batch Updates to Q

@ We are back to value function-based learning.

@ On-line methods such as TD(0) “extract” very little
information from each transition; are computationally
lightweight.

@ In many applications, samples are more expensive than
computation; need to get more out of samples.

@ Batch RL keeps transitions in memory, performs
computationally heavier updates.

Batch RL outer loop
Q+ 0,D — 0.
Repeat for ever: /Each iteration is a batch.
7+ e-greedy(Q).
Follow 7 for N episodes; gather data D’ = (s;, a;, 17, Si1)-_4.
D+ DuD. o
Q « BatchUpdate(D, Q).//Q optional in RHS.
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Experience Replay

@ Reference: Lin (1992).

BatchUpdateExperienceReplay(D, @)

Repeat M times:

Pick (s, a, r, ") uniformly at random from D.

Q(s a) + Q(s, a)+a{r+ymaxyca Q(s, a)—Q(s, a)}.
Return Q.

@ Sometimes Q reset/forgotten before the batch update.

@ M usually large; hence multiple updates using each sample.
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Fitted Q Iteration

@ Reference: Ernst, Geurts, Wehenkel (2005).
@ Idea: obtain Q using supervised learning. Wait—labels?

BatchUpdateFittedQlteration(D)

Qo + 0.
For i=0,1,... H-1:
Forjc {1,2,...,L}: //Create a labeled data set.
X; < FeatureVector(s;, ).
A Yj < I+ vy maxaea Q,'(Sj+1 , a).
Qi1 + SupervisedLearning((x;, ¥;)f+)-
Return Q.
@ Will not diverge if the supervised learning model is an
averager (nearest neighbour methods, decision trees, etc.).
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Batch Reinforcement Learning in a Complex Domain. Shivaram Kalyanakrishnan and
Peter Stone, In Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2007), pp.650-657, IFAAMAS, 2007.
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Batch RL: Summary

@ High computational complexity, low sample complexity.

@ Can also be interpreted as a model-based approach (the
data set D implicitly represents the model).

@ Forms the basis for many modern neural network-based
algorithms, such as DQN.

@ Many variations possible

» Gathering multiple batches of data in parallel.
» Picking experience replay samples more intelligently.
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Why So Many RL Methods?
@ We have seen
- Model-based RL,
- On-line TD methods (Q-learning, Sarsa, Expected Sarsa),
- Policy search (black box optimisation),
- Policy gradient and actor-critic methods,
- Batch RL methods.
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- Policy search (black box optimisation),
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Why So Many RL Methods?
@ We have seen
- Model-based RL,
- On-line TD methods (Q-learning, Sarsa, Expected Sarsa),
- Policy search (black box optimisation),
- Policy gradient and actor-critic methods,
- Batch RL methods.
@ There is no single winner among these!

Effectiveness on a particular task depends on many factors:
quality of features, type of representation, task horizon,
state aliasing, constraints on computation and memory, etc.
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Why So Many RL Methods?
@ We have seen
- Model-based RL,
- On-line TD methods (Q-learning, Sarsa, Expected Sarsa),
- Policy search (black box optimisation),
- Policy gradient and actor-critic methods,
- Batch RL methods.
@ There is no single winner among these!

Effectiveness on a particular task depends on many factors:
quality of features, type of representation, task horizon,
state aliasing, constraints on computation and memory, etc.

@ Other topics we will cover:

- Monte Carlo Tree search,

- Multiagent RL,

- Case studies: Atari games, AlphaGo.
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