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Reinforcement Learning

1. Policy gradient methods

2. Variance reduction in policy gradient methods

3. Batch reinforcement learning
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Stochastic Policies
Single state; actions a1,a2.
R(a1) = 5; R(a2) = 10.
Policy π; parameter θ.

π(a1) =

{
1 if θ < 0.6,
0 otherwise.

J(θ) = π(a1) ·5+π(a2) ·10.

Policy π′; parameter θ.

π′(a1) =
1

1 + eθ−0.6 .

J ′(θ) = π′(a1)·5+π′(a2)·10.
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Idea
If π is differentiable w.r.t. θ, so is (scalar) “policy value” J.

We can “search” for “good” θ by iterating:

θnew ← θold + α∇θJ(θold).

Example. If we have features x(s,a) ∈ Rd for s ∈ S,a ∈ A,
a common template for π is:

π(s,a) =
eθ·x(s,a)∑

b∈A eθ·x(s,b)
,

where θ ∈ Rd is the vector of policy parameters.
In this case, work out that

∇θπ(s,a) =

(
x(s,a)−

∑
b∈B

π(s,b)x(s,b)

)
π(s,a).

But what’s the connection between ∇θJ and ∇θπ(·, ·)?
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Policy Gradient Theorem

For simplicity assume episodic task with γ = 1.
Assume there is a fixed start state s0.
We leave it implicit that π is fixed by parameter vector θ.
J(θ) = V π(s0).
We shall derive the connection between ∇θJ and ∇θπ(·, ·).
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Policy Gradient Theorem

For s ∈ S,∇θV π(s) = ∇θ

∑
a∈A

π(s,a)Qπ(s,a)

=
∑
a∈A

∇θπ(s,a)Qπ(s,a)

+
∑
a∈A

π(s,a)∇θ

∑
s′∈S

T (s,a, s′)(R(s,a, s′) + V π(s′))

=
∑
a∈A

[
∇θπ(s,a)Qπ(s,a) + π(s,a)

∑
s′∈S

T (s,a, s′)∇θV π(s′)

]

= · · · =
∑
x∈S

∞∑
k=0

P{s → x , k , π}
∑
a∈A

∇θπ(x ,a)Qπ(x ,a),

where P{s → x , k , π} is the probability of reaching x from s in k
steps if following π.
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Policy Gradient Theorem

Recall that J(θ) = V π(s0).

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

But how to do gradient ascent? We do not know
P{s0 → s, k , π} and Qπ(s,a)!
We perform stochastic gradient ascent.
We use the following fact. For any discrete, real-valued
random variable X with pmf p : X → [0,1],∑

x∈X

p(x)x = E[X ].
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Towards Gradient Ascent
Generate episode s0,a0, r 0, s1,a1, r 1, s2, . . . , sT = s> by
acting according to π, parameterised by θ.

Now observe:

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a)

= Eπ

[
T−1∑
t=0

∑
a∈A

∇θπ(st ,a)Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∑
a∈A

π(st ,a)
∇θπ(st ,a)
π(st ,a)

Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Qπ(st ,at)

]
= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Gt :T

]

= Eπ

[
T−1∑
t=0

(
∇θ ln π(st ,at)

)
Gt :T

]
.
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REINFORCE Algorithm
Reference: Williams (1992).

For clarity we show explicit dependence of π on parameter
vector θ ∈ Rd .

Assume θ is initialised arbitrarily.

Repeat for ever:
θnew ← θ.
Generate episode s0,a0, r 0, s1, . . . , sT = s>, following πθ.
For t = 0,1, . . . ,T − 1:

G←
∑T−1

k=t r k . //This is Gt :T .
θnew ← θnew + αG∇θ ln πθ(st ,at).

θ ← θnew.
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Reinforcement Learning

1. Policy gradient methods

2. Variance reduction in policy gradient methods

3. Batch reinforcement learning
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Baseline Subtraction
Policy Gradient Theorem

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

Let B : S → R be an arbitrary function of state. We claim

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)(Qπ(s,a)−B(s)).

How come? Observe that∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)B(s)

=
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}B(s)∇θ

∑
a∈A

π(s,a) = 0.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 20



11/20

Baseline Subtraction
Policy Gradient Theorem

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

Let B : S → R be an arbitrary function of state.

We claim

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)(Qπ(s,a)−B(s)).

How come? Observe that∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)B(s)

=
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}B(s)∇θ

∑
a∈A

π(s,a) = 0.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 20



11/20

Baseline Subtraction
Policy Gradient Theorem

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

Let B : S → R be an arbitrary function of state. We claim

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)(Qπ(s,a)−B(s)).

How come?

Observe that∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)B(s)

=
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}B(s)∇θ

∑
a∈A

π(s,a) = 0.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 20



11/20

Baseline Subtraction
Policy Gradient Theorem

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

Let B : S → R be an arbitrary function of state. We claim

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)(Qπ(s,a)−B(s)).

How come? Observe that∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)B(s)

=
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}B(s)∇θ

∑
a∈A

π(s,a) = 0.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 20



12/20

Baseline Subtraction
The policy gradient estimate can have high variance.

s Qπ(s,a1) Qπ(s,a2) Qπ(s,a3) V π(s)
s1 105 79 100 90
s2 10 6 13 12
s3 −50 −60 −50 −55

Common practice to subtract out V π(s)—approximated
independently as V̂ (s).

REINFORCE with baseline:

θnew ← θnew + α

T−1∑
t=0

(Gt :T − V̂ (st))∇θ ln πθ(st ,at).
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Actor-critic Methods
Even for fixed (st ,at), can have high variance in Gt :T .

One approach is to do gradient ascent after averaging the
gradient from a few episodes.
Another approach is to bootstrap: to use r t + V̂ (st+1) in
place of Gt :T , where V̂ (st+1) is estimated independently.
Called the Actor-Critic architecture.

- Actor updates θ and hence πθ.
- Critic evaluates πθ (say using TD(0)) and provides input for

the gradient ascent update.

θnew ← θnew + α
T−1∑
t=0

(r t + V̂ (st+1)− V̂ (st))∇θ ln πθ(st ,at).

Not always provably convergent, but widely used in practice.
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Reinforcement Learning

1. Policy gradient methods

2. Variance reduction in policy gradient methods

3. Batch reinforcement learning
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Batch Updates to Q̂
We are back to value function-based learning.

On-line methods such as TD(0) “extract” very little
information from each transition; are computationally
lightweight.
In many applications, samples are more expensive than
computation; need to get more out of samples.
Batch RL keeps transitions in memory, performs
computationally heavier updates.

Batch RL outer loop
Q̂ ← 0, D → ∅.
Repeat for ever: //Each iteration is a batch.

π ← ε-greedy(Q̂).
Follow π for N episodes; gather data D′ = (si ,ai , ri , si+1)

L
i=1.

D ← D ∪ D′.
Q̂ ← BatchUpdate(D, Q̂).//Q̂ optional in RHS.
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Experience Replay

Reference: Lin (1992).

BatchUpdateExperienceReplay(D, Q̂)

Repeat M times:
Pick (s,a, r , s′) uniformly at random from D.
Q̂(s,a)← Q̂(s,a)+α{r+γmaxa′∈A Q̂(s′,a′)−Q̂(s,a)}.

Return Q̂.

Sometimes Q̂ reset/forgotten before the batch update.

M usually large; hence multiple updates using each sample.
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Fitted Q Iteration
Reference: Ernst, Geurts, Wehenkel (2005).
Idea: obtain Q̂ using supervised learning. Wait—labels?

BatchUpdateFittedQIteration(D)

Q̂0 ← 0.
For i = 0,1, . . . ,H − 1:

For j ∈ {1,2, . . . ,L}: //Create a labeled data set.
xj ← FeatureVector(sj ,aj).
yj ← rj + γmaxa∈A Q̂i(sj+1,a).

Q̂i+1 ← SupervisedLearning((xj , yj)
L
j=1).

Return Q̂H .
Will not diverge if the supervised learning model is an
averager (nearest neighbour methods, decision trees, etc.).
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Illustrative Graph
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Batch Reinforcement Learning in a Complex Domain. Shivaram Kalyanakrishnan and
Peter Stone, In Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2007), pp.650–657, IFAAMAS, 2007.
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Batch RL: Summary

High computational complexity, low sample complexity.

Can also be interpreted as a model-based approach (the
data set D implicitly represents the model).

Forms the basis for many modern neural network-based
algorithms, such as DQN.

Many variations possible
I Gathering multiple batches of data in parallel.
I Picking experience replay samples more intelligently.
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Why So Many RL Methods?
We have seen

- Model-based RL,
- On-line TD methods (Q-learning, Sarsa, Expected Sarsa),
- Policy search (black box optimisation),
- Policy gradient and actor-critic methods,
- Batch RL methods.

There is no single winner among these!
Effectiveness on a particular task depends on many factors:
quality of features, type of representation, task horizon,
state aliasing, constraints on computation and memory, etc.
Other topics we will cover:

- Monte Carlo Tree search,
- Multiagent RL,
- Case studies: Atari games, AlphaGo.
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