
1/20

CS 747, Autumn 2020: Week 12, Lecture 1

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2020

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 1 / 20

2/20

Reinforcement Learning

1. Policy gradient methods

2. Variance reduction in policy gradient methods

3. Batch reinforcement learning

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 20

2/20

Reinforcement Learning

1. Policy gradient methods

2. Variance reduction in policy gradient methods

3. Batch reinforcement learning

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 2 / 20

3/20

Stochastic Policies
Single state; actions a1,a2.
R(a1) = 5; R(a2) = 10.
Policy π; parameter θ.

π(a1) =

{
1 if θ < 0.6,
0 otherwise.

J(θ) = π(a1) ·5+π(a2) ·10.

Policy π′; parameter θ.

π′(a1) =
1

1 + eθ−0.6 .

J ′(θ) = π′(a1)·5+π′(a2)·10.

a 1π()

0

1

5

10
θJ()

θ

θ

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 20

3/20

Stochastic Policies
Single state; actions a1,a2.
R(a1) = 5; R(a2) = 10.
Policy π; parameter θ.

π(a1) =

{
1 if θ < 0.6,
0 otherwise.

J(θ) = π(a1) ·5+π(a2) ·10.
Policy π′; parameter θ.

π′(a1) =
1

1 + eθ−0.6 .

J ′(θ) = π′(a1)·5+π′(a2)·10.

a 1π ()’

a 1π()

0

1

5

10
θJ()

θ

θ

θJ’()

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 3 / 20

4/20

Idea
If π is differentiable w.r.t. θ, so is (scalar) “policy value” J.

We can “search” for “good” θ by iterating:

θnew ← θold + α∇θJ(θold).

Example. If we have features x(s,a) ∈ Rd for s ∈ S,a ∈ A,
a common template for π is:

π(s,a) =
eθ·x(s,a)∑

b∈A eθ·x(s,b)
,

where θ ∈ Rd is the vector of policy parameters.
In this case, work out that

∇θπ(s,a) =

(
x(s,a)−

∑
b∈B

π(s,b)x(s,b)

)
π(s,a).

But what’s the connection between ∇θJ and ∇θπ(·, ·)?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 20

4/20

Idea
If π is differentiable w.r.t. θ, so is (scalar) “policy value” J.
We can “search” for “good” θ by iterating:

θnew ← θold + α∇θJ(θold).

Example. If we have features x(s,a) ∈ Rd for s ∈ S,a ∈ A,
a common template for π is:

π(s,a) =
eθ·x(s,a)∑

b∈A eθ·x(s,b)
,

where θ ∈ Rd is the vector of policy parameters.
In this case, work out that

∇θπ(s,a) =

(
x(s,a)−

∑
b∈B

π(s,b)x(s,b)

)
π(s,a).

But what’s the connection between ∇θJ and ∇θπ(·, ·)?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 20

4/20

Idea
If π is differentiable w.r.t. θ, so is (scalar) “policy value” J.
We can “search” for “good” θ by iterating:

θnew ← θold + α∇θJ(θold).

Example. If we have features x(s,a) ∈ Rd for s ∈ S,a ∈ A,
a common template for π is:

π(s,a) =
eθ·x(s,a)∑

b∈A eθ·x(s,b)
,

where θ ∈ Rd is the vector of policy parameters.

In this case, work out that

∇θπ(s,a) =

(
x(s,a)−

∑
b∈B

π(s,b)x(s,b)

)
π(s,a).

But what’s the connection between ∇θJ and ∇θπ(·, ·)?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 20

4/20

Idea
If π is differentiable w.r.t. θ, so is (scalar) “policy value” J.
We can “search” for “good” θ by iterating:

θnew ← θold + α∇θJ(θold).

Example. If we have features x(s,a) ∈ Rd for s ∈ S,a ∈ A,
a common template for π is:

π(s,a) =
eθ·x(s,a)∑

b∈A eθ·x(s,b)
,

where θ ∈ Rd is the vector of policy parameters.
In this case, work out that

∇θπ(s,a) =

(
x(s,a)−

∑
b∈B

π(s,b)x(s,b)

)
π(s,a).

But what’s the connection between ∇θJ and ∇θπ(·, ·)?

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 20

4/20

Idea
If π is differentiable w.r.t. θ, so is (scalar) “policy value” J.
We can “search” for “good” θ by iterating:

θnew ← θold + α∇θJ(θold).

Example. If we have features x(s,a) ∈ Rd for s ∈ S,a ∈ A,
a common template for π is:

π(s,a) =
eθ·x(s,a)∑

b∈A eθ·x(s,b)
,

where θ ∈ Rd is the vector of policy parameters.
In this case, work out that

∇θπ(s,a) =

(
x(s,a)−

∑
b∈B

π(s,b)x(s,b)

)
π(s,a).

But what’s the connection between ∇θJ and ∇θπ(·, ·)?
Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 4 / 20

5/20

Policy Gradient Theorem

For simplicity assume episodic task with γ = 1.
Assume there is a fixed start state s0.
We leave it implicit that π is fixed by parameter vector θ.
J(θ) = V π(s0).
We shall derive the connection between ∇θJ and ∇θπ(·, ·).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 5 / 20

6/20

Policy Gradient Theorem

For s ∈ S,∇θV π(s) = ∇θ

∑
a∈A

π(s,a)Qπ(s,a)

=
∑
a∈A

∇θπ(s,a)Qπ(s,a)

+
∑
a∈A

π(s,a)∇θ

∑
s′∈S

T (s,a, s′)(R(s,a, s′) + V π(s′))

=
∑
a∈A

[
∇θπ(s,a)Qπ(s,a) + π(s,a)

∑
s′∈S

T (s,a, s′)∇θV π(s′)

]

= · · · =
∑
x∈S

∞∑
k=0

P{s → x , k , π}
∑
a∈A

∇θπ(x ,a)Qπ(x ,a),

where P{s → x , k , π} is the probability of reaching x from s in k
steps if following π.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6 / 20

6/20

Policy Gradient Theorem

For s ∈ S,∇θV π(s) = ∇θ

∑
a∈A

π(s,a)Qπ(s,a)

=
∑
a∈A

∇θπ(s,a)Qπ(s,a)

+
∑
a∈A

π(s,a)∇θ

∑
s′∈S

T (s,a, s′)(R(s,a, s′) + V π(s′))

=
∑
a∈A

[
∇θπ(s,a)Qπ(s,a) + π(s,a)

∑
s′∈S

T (s,a, s′)∇θV π(s′)

]

= · · · =
∑
x∈S

∞∑
k=0

P{s → x , k , π}
∑
a∈A

∇θπ(x ,a)Qπ(x ,a),

where P{s → x , k , π} is the probability of reaching x from s in k
steps if following π.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6 / 20

6/20

Policy Gradient Theorem

For s ∈ S,∇θV π(s) = ∇θ

∑
a∈A

π(s,a)Qπ(s,a)

=
∑
a∈A

∇θπ(s,a)Qπ(s,a)

+
∑
a∈A

π(s,a)∇θ

∑
s′∈S

T (s,a, s′)(R(s,a, s′) + V π(s′))

=
∑
a∈A

[
∇θπ(s,a)Qπ(s,a) + π(s,a)

∑
s′∈S

T (s,a, s′)∇θV π(s′)

]

= · · · =
∑
x∈S

∞∑
k=0

P{s → x , k , π}
∑
a∈A

∇θπ(x ,a)Qπ(x ,a),

where P{s → x , k , π} is the probability of reaching x from s in k
steps if following π.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6 / 20

6/20

Policy Gradient Theorem

For s ∈ S,∇θV π(s) = ∇θ

∑
a∈A

π(s,a)Qπ(s,a)

=
∑
a∈A

∇θπ(s,a)Qπ(s,a)

+
∑
a∈A

π(s,a)∇θ

∑
s′∈S

T (s,a, s′)(R(s,a, s′) + V π(s′))

=
∑
a∈A

[
∇θπ(s,a)Qπ(s,a) + π(s,a)

∑
s′∈S

T (s,a, s′)∇θV π(s′)

]

= · · · =
∑
x∈S

∞∑
k=0

P{s → x , k , π}
∑
a∈A

∇θπ(x ,a)Qπ(x ,a),

where P{s → x , k , π} is the probability of reaching x from s in k
steps if following π.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6 / 20

6/20

Policy Gradient Theorem

For s ∈ S,∇θV π(s) = ∇θ

∑
a∈A

π(s,a)Qπ(s,a)

=
∑
a∈A

∇θπ(s,a)Qπ(s,a)

+
∑
a∈A

π(s,a)∇θ

∑
s′∈S

T (s,a, s′)(R(s,a, s′) + V π(s′))

=
∑
a∈A

[
∇θπ(s,a)Qπ(s,a) + π(s,a)

∑
s′∈S

T (s,a, s′)∇θV π(s′)

]

= · · · =
∑
x∈S

∞∑
k=0

P{s → x , k , π}
∑
a∈A

∇θπ(x ,a)Qπ(x ,a),

where P{s → x , k , π} is the probability of reaching x from s in k
steps if following π.
Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 6 / 20

7/20

Policy Gradient Theorem

Recall that J(θ) = V π(s0).

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

But how to do gradient ascent? We do not know
P{s0 → s, k , π} and Qπ(s,a)!
We perform stochastic gradient ascent.
We use the following fact. For any discrete, real-valued
random variable X with pmf p : X → [0,1],∑

x∈X

p(x)x = E[X].

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7 / 20

7/20

Policy Gradient Theorem

Recall that J(θ) = V π(s0).

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

But how to do gradient ascent? We do not know
P{s0 → s, k , π} and Qπ(s,a)!

We perform stochastic gradient ascent.
We use the following fact. For any discrete, real-valued
random variable X with pmf p : X → [0,1],∑

x∈X

p(x)x = E[X].

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7 / 20

7/20

Policy Gradient Theorem

Recall that J(θ) = V π(s0).

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

But how to do gradient ascent? We do not know
P{s0 → s, k , π} and Qπ(s,a)!
We perform stochastic gradient ascent.
We use the following fact. For any discrete, real-valued
random variable X with pmf p : X → [0,1],∑

x∈X

p(x)x = E[X].

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 7 / 20

8/20

Towards Gradient Ascent
Generate episode s0,a0, r 0, s1,a1, r 1, s2, . . . , sT = s> by
acting according to π, parameterised by θ.

Now observe:

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a)

= Eπ

[
T−1∑
t=0

∑
a∈A

∇θπ(st ,a)Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∑
a∈A

π(st ,a)
∇θπ(st ,a)
π(st ,a)

Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Qπ(st ,at)

]
= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Gt :T

]

= Eπ

[
T−1∑
t=0

(
∇θ ln π(st ,at)

)
Gt :T

]
.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 20

8/20

Towards Gradient Ascent
Generate episode s0,a0, r 0, s1,a1, r 1, s2, . . . , sT = s> by
acting according to π, parameterised by θ. Now observe:

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a)

= Eπ

[
T−1∑
t=0

∑
a∈A

∇θπ(st ,a)Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∑
a∈A

π(st ,a)
∇θπ(st ,a)
π(st ,a)

Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Qπ(st ,at)

]
= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Gt :T

]

= Eπ

[
T−1∑
t=0

(
∇θ ln π(st ,at)

)
Gt :T

]
.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 20

8/20

Towards Gradient Ascent
Generate episode s0,a0, r 0, s1,a1, r 1, s2, . . . , sT = s> by
acting according to π, parameterised by θ. Now observe:

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a)

= Eπ

[
T−1∑
t=0

∑
a∈A

∇θπ(st ,a)Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∑
a∈A

π(st ,a)
∇θπ(st ,a)
π(st ,a)

Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Qπ(st ,at)

]
= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Gt :T

]

= Eπ

[
T−1∑
t=0

(
∇θ ln π(st ,at)

)
Gt :T

]
.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 20

8/20

Towards Gradient Ascent
Generate episode s0,a0, r 0, s1,a1, r 1, s2, . . . , sT = s> by
acting according to π, parameterised by θ. Now observe:

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a)

= Eπ

[
T−1∑
t=0

∑
a∈A

∇θπ(st ,a)Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∑
a∈A

π(st ,a)
∇θπ(st ,a)
π(st ,a)

Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Qπ(st ,at)

]
= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Gt :T

]

= Eπ

[
T−1∑
t=0

(
∇θ ln π(st ,at)

)
Gt :T

]
.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 20

8/20

Towards Gradient Ascent
Generate episode s0,a0, r 0, s1,a1, r 1, s2, . . . , sT = s> by
acting according to π, parameterised by θ. Now observe:

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a)

= Eπ

[
T−1∑
t=0

∑
a∈A

∇θπ(st ,a)Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∑
a∈A

π(st ,a)
∇θπ(st ,a)
π(st ,a)

Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Qπ(st ,at)

]

= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Gt :T

]

= Eπ

[
T−1∑
t=0

(
∇θ ln π(st ,at)

)
Gt :T

]
.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 20

8/20

Towards Gradient Ascent
Generate episode s0,a0, r 0, s1,a1, r 1, s2, . . . , sT = s> by
acting according to π, parameterised by θ. Now observe:

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a)

= Eπ

[
T−1∑
t=0

∑
a∈A

∇θπ(st ,a)Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∑
a∈A

π(st ,a)
∇θπ(st ,a)
π(st ,a)

Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Qπ(st ,at)

]
= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Gt :T

]

= Eπ

[
T−1∑
t=0

(
∇θ ln π(st ,at)

)
Gt :T

]
.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 20

8/20

Towards Gradient Ascent
Generate episode s0,a0, r 0, s1,a1, r 1, s2, . . . , sT = s> by
acting according to π, parameterised by θ. Now observe:

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a)

= Eπ

[
T−1∑
t=0

∑
a∈A

∇θπ(st ,a)Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∑
a∈A

π(st ,a)
∇θπ(st ,a)
π(st ,a)

Qπ(st ,a)

]

= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Qπ(st ,at)

]
= Eπ

[
T−1∑
t=0

∇θπ(st ,at)

π(st ,at)
Gt :T

]

= Eπ

[
T−1∑
t=0

(
∇θ ln π(st ,at)

)
Gt :T

]
.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 8 / 20

9/20

REINFORCE Algorithm
Reference: Williams (1992).

For clarity we show explicit dependence of π on parameter
vector θ ∈ Rd .

Assume θ is initialised arbitrarily.

Repeat for ever:
θnew ← θ.
Generate episode s0,a0, r 0, s1, . . . , sT = s>, following πθ.
For t = 0,1, . . . ,T − 1:

G←
∑T−1

k=t r k . //This is Gt :T .
θnew ← θnew + αG∇θ ln πθ(st ,at).

θ ← θnew.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 9 / 20

10/20

Reinforcement Learning

1. Policy gradient methods

2. Variance reduction in policy gradient methods

3. Batch reinforcement learning

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 10 / 20

11/20

Baseline Subtraction
Policy Gradient Theorem

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

Let B : S → R be an arbitrary function of state. We claim

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)(Qπ(s,a)−B(s)).

How come? Observe that∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)B(s)

=
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}B(s)∇θ

∑
a∈A

π(s,a) = 0.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 20

11/20

Baseline Subtraction
Policy Gradient Theorem

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

Let B : S → R be an arbitrary function of state.

We claim

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)(Qπ(s,a)−B(s)).

How come? Observe that∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)B(s)

=
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}B(s)∇θ

∑
a∈A

π(s,a) = 0.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 20

11/20

Baseline Subtraction
Policy Gradient Theorem

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

Let B : S → R be an arbitrary function of state. We claim

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)(Qπ(s,a)−B(s)).

How come?

Observe that∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)B(s)

=
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}B(s)∇θ

∑
a∈A

π(s,a) = 0.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 20

11/20

Baseline Subtraction
Policy Gradient Theorem

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)Qπ(s,a).

Let B : S → R be an arbitrary function of state. We claim

∇θJ(θ) =
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)(Qπ(s,a)−B(s)).

How come? Observe that∑
s∈S

∞∑
k=0

P{s0 → s, k , π}
∑
a∈A

∇θπ(s,a)B(s)

=
∑
s∈S

∞∑
k=0

P{s0 → s, k , π}B(s)∇θ

∑
a∈A

π(s,a) = 0.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 11 / 20

12/20

Baseline Subtraction
The policy gradient estimate can have high variance.

s Qπ(s,a1) Qπ(s,a2) Qπ(s,a3) V π(s)
s1 105 79 100 90
s2 10 6 13 12
s3 −50 −60 −50 −55

Common practice to subtract out V π(s)—approximated
independently as V̂ (s).

REINFORCE with baseline:

θnew ← θnew + α

T−1∑
t=0

(Gt :T − V̂ (st))∇θ ln πθ(st ,at).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 20

12/20

Baseline Subtraction
The policy gradient estimate can have high variance.

s Qπ(s,a1) Qπ(s,a2) Qπ(s,a3) V π(s)
s1 105 79 100 90
s2 10 6 13 12
s3 −50 −60 −50 −55

Common practice to subtract out V π(s)—approximated
independently as V̂ (s).

REINFORCE with baseline:

θnew ← θnew + α
T−1∑
t=0

(Gt :T − V̂ (st))∇θ ln πθ(st ,at).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 12 / 20

13/20

Actor-critic Methods
Even for fixed (st ,at), can have high variance in Gt :T .

One approach is to do gradient ascent after averaging the
gradient from a few episodes.
Another approach is to bootstrap: to use r t + V̂ (st+1) in
place of Gt :T , where V̂ (st+1) is estimated independently.
Called the Actor-Critic architecture.

- Actor updates θ and hence πθ.
- Critic evaluates πθ (say using TD(0)) and provides input for

the gradient ascent update.

θnew ← θnew + α
T−1∑
t=0

(r t + V̂ (st+1)− V̂ (st))∇θ ln πθ(st ,at).

Not always provably convergent, but widely used in practice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 20

13/20

Actor-critic Methods
Even for fixed (st ,at), can have high variance in Gt :T .
One approach is to do gradient ascent after averaging the
gradient from a few episodes.

Another approach is to bootstrap: to use r t + V̂ (st+1) in
place of Gt :T , where V̂ (st+1) is estimated independently.
Called the Actor-Critic architecture.

- Actor updates θ and hence πθ.
- Critic evaluates πθ (say using TD(0)) and provides input for

the gradient ascent update.

θnew ← θnew + α
T−1∑
t=0

(r t + V̂ (st+1)− V̂ (st))∇θ ln πθ(st ,at).

Not always provably convergent, but widely used in practice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 20

13/20

Actor-critic Methods
Even for fixed (st ,at), can have high variance in Gt :T .
One approach is to do gradient ascent after averaging the
gradient from a few episodes.
Another approach is to bootstrap: to use r t + V̂ (st+1) in
place of Gt :T , where V̂ (st+1) is estimated independently.

Called the Actor-Critic architecture.
- Actor updates θ and hence πθ.
- Critic evaluates πθ (say using TD(0)) and provides input for

the gradient ascent update.

θnew ← θnew + α
T−1∑
t=0

(r t + V̂ (st+1)− V̂ (st))∇θ ln πθ(st ,at).

Not always provably convergent, but widely used in practice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 20

13/20

Actor-critic Methods
Even for fixed (st ,at), can have high variance in Gt :T .
One approach is to do gradient ascent after averaging the
gradient from a few episodes.
Another approach is to bootstrap: to use r t + V̂ (st+1) in
place of Gt :T , where V̂ (st+1) is estimated independently.
Called the Actor-Critic architecture.

- Actor updates θ and hence πθ.
- Critic evaluates πθ (say using TD(0)) and provides input for

the gradient ascent update.

θnew ← θnew + α
T−1∑
t=0

(r t + V̂ (st+1)− V̂ (st))∇θ ln πθ(st ,at).

Not always provably convergent, but widely used in practice.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 20

13/20

Actor-critic Methods
Even for fixed (st ,at), can have high variance in Gt :T .
One approach is to do gradient ascent after averaging the
gradient from a few episodes.
Another approach is to bootstrap: to use r t + V̂ (st+1) in
place of Gt :T , where V̂ (st+1) is estimated independently.
Called the Actor-Critic architecture.

- Actor updates θ and hence πθ.
- Critic evaluates πθ (say using TD(0)) and provides input for

the gradient ascent update.

θnew ← θnew + α
T−1∑
t=0

(r t + V̂ (st+1)− V̂ (st))∇θ ln πθ(st ,at).

Not always provably convergent, but widely used in practice.
Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 13 / 20

14/20

Reinforcement Learning

1. Policy gradient methods

2. Variance reduction in policy gradient methods

3. Batch reinforcement learning

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 14 / 20

15/20

Batch Updates to Q̂
We are back to value function-based learning.

On-line methods such as TD(0) “extract” very little
information from each transition; are computationally
lightweight.
In many applications, samples are more expensive than
computation; need to get more out of samples.
Batch RL keeps transitions in memory, performs
computationally heavier updates.

Batch RL outer loop
Q̂ ← 0, D → ∅.
Repeat for ever: //Each iteration is a batch.

π ← ε-greedy(Q̂).
Follow π for N episodes; gather data D′ = (si ,ai , ri , si+1)

L
i=1.

D ← D ∪ D′.
Q̂ ← BatchUpdate(D, Q̂).//Q̂ optional in RHS.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15 / 20

15/20

Batch Updates to Q̂
We are back to value function-based learning.
On-line methods such as TD(0) “extract” very little
information from each transition; are computationally
lightweight.

In many applications, samples are more expensive than
computation; need to get more out of samples.
Batch RL keeps transitions in memory, performs
computationally heavier updates.

Batch RL outer loop
Q̂ ← 0, D → ∅.
Repeat for ever: //Each iteration is a batch.

π ← ε-greedy(Q̂).
Follow π for N episodes; gather data D′ = (si ,ai , ri , si+1)

L
i=1.

D ← D ∪ D′.
Q̂ ← BatchUpdate(D, Q̂).//Q̂ optional in RHS.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15 / 20

15/20

Batch Updates to Q̂
We are back to value function-based learning.
On-line methods such as TD(0) “extract” very little
information from each transition; are computationally
lightweight.
In many applications, samples are more expensive than
computation; need to get more out of samples.

Batch RL keeps transitions in memory, performs
computationally heavier updates.

Batch RL outer loop
Q̂ ← 0, D → ∅.
Repeat for ever: //Each iteration is a batch.

π ← ε-greedy(Q̂).
Follow π for N episodes; gather data D′ = (si ,ai , ri , si+1)

L
i=1.

D ← D ∪ D′.
Q̂ ← BatchUpdate(D, Q̂).//Q̂ optional in RHS.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15 / 20

15/20

Batch Updates to Q̂
We are back to value function-based learning.
On-line methods such as TD(0) “extract” very little
information from each transition; are computationally
lightweight.
In many applications, samples are more expensive than
computation; need to get more out of samples.
Batch RL keeps transitions in memory, performs
computationally heavier updates.

Batch RL outer loop
Q̂ ← 0, D → ∅.
Repeat for ever: //Each iteration is a batch.

π ← ε-greedy(Q̂).
Follow π for N episodes; gather data D′ = (si ,ai , ri , si+1)

L
i=1.

D ← D ∪ D′.
Q̂ ← BatchUpdate(D, Q̂).//Q̂ optional in RHS.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 15 / 20

16/20

Experience Replay

Reference: Lin (1992).

BatchUpdateExperienceReplay(D, Q̂)

Repeat M times:
Pick (s,a, r , s′) uniformly at random from D.
Q̂(s,a)← Q̂(s,a)+α{r+γmaxa′∈A Q̂(s′,a′)−Q̂(s,a)}.

Return Q̂.

Sometimes Q̂ reset/forgotten before the batch update.

M usually large; hence multiple updates using each sample.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 16 / 20

17/20

Fitted Q Iteration
Reference: Ernst, Geurts, Wehenkel (2005).
Idea: obtain Q̂ using supervised learning. Wait—labels?

BatchUpdateFittedQIteration(D)

Q̂0 ← 0.
For i = 0,1, . . . ,H − 1:

For j ∈ {1,2, . . . ,L}: //Create a labeled data set.
xj ← FeatureVector(sj ,aj).
yj ← rj + γmaxa∈A Q̂i(sj+1,a).

Q̂i+1 ← SupervisedLearning((xj , yj)
L
j=1).

Return Q̂H .
Will not diverge if the supervised learning model is an
averager (nearest neighbour methods, decision trees, etc.).

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 17 / 20

18/20

Illustrative Graph

 4

 5

 6

 7

 8

 9

 10

 11

 0 100 200 300 400 500

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Number of Training Episodes

Learning Curves for Keepaway

 4

 5

 6

 7

 8

 9

 10

 11

 0 100 200 300 400 500

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Number of Training Episodes

Learning Curves for Keepaway

 4

 5

 6

 7

 8

 9

 10

 11

 0 100 200 300 400 500

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Number of Training Episodes

Learning Curves for Keepaway

 4

 5

 6

 7

 8

 9

 10

 11

 0 100 200 300 400 500

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Number of Training Episodes

Learning Curves for Keepaway

 4

 5

 6

 7

 8

 9

 10

 11

 0 100 200 300 400 500

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Number of Training Episodes

Learning Curves for Keepaway

 4

 5

 6

 7

 8

 9

 10

 11

 0 100 200 300 400 500

E
p

is
o

d
e

 D
u

ra
ti
o

n
 (

s
e

c
o

n
d

s
)

Number of Training Episodes

Learning Curves for Keepaway

FQI−NNet

ER−NNet

ER−CMACFQI−CMAC

OL−NNet

OL−CMAC

Batch Reinforcement Learning in a Complex Domain. Shivaram Kalyanakrishnan and
Peter Stone, In Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2007), pp.650–657, IFAAMAS, 2007.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 18 / 20

19/20

Batch RL: Summary

High computational complexity, low sample complexity.

Can also be interpreted as a model-based approach (the
data set D implicitly represents the model).

Forms the basis for many modern neural network-based
algorithms, such as DQN.

Many variations possible
I Gathering multiple batches of data in parallel.
I Picking experience replay samples more intelligently.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 19 / 20

20/20

Why So Many RL Methods?
We have seen

- Model-based RL,
- On-line TD methods (Q-learning, Sarsa, Expected Sarsa),
- Policy search (black box optimisation),
- Policy gradient and actor-critic methods,
- Batch RL methods.

There is no single winner among these!
Effectiveness on a particular task depends on many factors:
quality of features, type of representation, task horizon,
state aliasing, constraints on computation and memory, etc.
Other topics we will cover:

- Monte Carlo Tree search,
- Multiagent RL,
- Case studies: Atari games, AlphaGo.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 20

20/20

Why So Many RL Methods?
We have seen

- Model-based RL,
- On-line TD methods (Q-learning, Sarsa, Expected Sarsa),
- Policy search (black box optimisation),
- Policy gradient and actor-critic methods,
- Batch RL methods.

There is no single winner among these!

Effectiveness on a particular task depends on many factors:
quality of features, type of representation, task horizon,
state aliasing, constraints on computation and memory, etc.
Other topics we will cover:

- Monte Carlo Tree search,
- Multiagent RL,
- Case studies: Atari games, AlphaGo.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 20

20/20

Why So Many RL Methods?
We have seen

- Model-based RL,
- On-line TD methods (Q-learning, Sarsa, Expected Sarsa),
- Policy search (black box optimisation),
- Policy gradient and actor-critic methods,
- Batch RL methods.

There is no single winner among these!
Effectiveness on a particular task depends on many factors:
quality of features, type of representation, task horizon,
state aliasing, constraints on computation and memory, etc.

Other topics we will cover:
- Monte Carlo Tree search,
- Multiagent RL,
- Case studies: Atari games, AlphaGo.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 20

20/20

Why So Many RL Methods?
We have seen

- Model-based RL,
- On-line TD methods (Q-learning, Sarsa, Expected Sarsa),
- Policy search (black box optimisation),
- Policy gradient and actor-critic methods,
- Batch RL methods.

There is no single winner among these!
Effectiveness on a particular task depends on many factors:
quality of features, type of representation, task horizon,
state aliasing, constraints on computation and memory, etc.
Other topics we will cover:

- Monte Carlo Tree search,
- Multiagent RL,
- Case studies: Atari games, AlphaGo.

Shivaram Kalyanakrishnan (2020) CS 747, Autumn 2020 20 / 20

