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Visualising Performance

@ Consider a plot of E[r!] against t.

E[r!]
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@ What is the least expected reward
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@ If an algorithm pulls arms uniformly at random, what reward will it achieve?
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@ Consider a plot of E[r'] against t. .
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that can be achieved? -
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@ If an algorithm pulls arms uniformly at random, what reward will it achieve?
Pavg = 1 2 aca Pa:
@ How will the graph look for a reasonable learning algorithm?
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Regret

@ The maximum achievable expected
reward in T stepsis Tp*. 1
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Regret
@ The maximum achievable expected
reward in T stepsis Tp*.
@ The actual expected reward for an
algorithm is S/ E[r1].
@ The (expected cumulative) regret of
the algorithm for horizon T is the

difference
T—1
Rr=Tp" — ) E[r].
t=0

E[i!]
avg

Prmin

R= shaded area
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Regret
@ The maximum achievable expected
reward in T stepsis Tp*. 1
@ The actual expected reward for an p
algorithm is S/ E[r1].
@ The (expected cumulative) regret of

Elt]
the algorithm for horizon T is the Pave
difference P

T—1
Rr=Tp" — ) E[r]. 0
t=0

@ We would like Rt to be small, in fact for lim7_,

R= shaded area
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Regret
@ The maximum achievable expected
reward in T steps is Tp*. 1 Ry = shaded area :
@ The actual exp$cted reward for an P === :
. . —1
algorithmis >, -,  E[r']. ‘ <

@ The (expected cumulative) regret of

Learning algorithm

Elt]
the algorithm for horizon T is the Pave
difference P
T—1 3
Rr=Tp" — ) E[r]. 0 i
t=0 t

@ We would like Rr to be smalll, in fact for limr_,., & = 0.
Does this happen for eG1, eG2, eG3?
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Review of eG1, eG2

@ c-first: Explore (uniformly) for e T b
pulls; then exploit. ' efinst
E[rt] |
pavg
Pmin
0 T T
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> Tp* — €TPavg — (T — €T)P" = €(P* — Pavg) T = Q(T).
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Review of €G3

@ e-greedy: On each step explore
(uniformly) w.p. ¢, exploit w.p. 1 —e.
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Review of €G3
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s

@ c-greedy: On each step explore B e ey ;
(uniformly) w.p. €, exploit w.p. 1 —e. e-greedy
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@ e-greedy: On each step explore B e ey ;
(uniformly) w.p. €, exploit w.p. 1 —e. e-greedy

Elr']
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@ E[r] can never exceed B, |
PH(1 =€) + cPag! |
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How to achieve Sub-linear Regret?

@ Two conditions must be met: C1 and C2.
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How to achieve Sub-linear Regret?

@ Two conditions must be met: C1 and C2.

C1. Infinite exploration. In the limit (T — oo), each arm must almost surely be
pulled an infinite number of times.

- On the contrary, suppose we pull some arm a only a finite U times.
- We cannot be 100% sure based on the pulls of a that it is non-optimal.

- Even an optimal arm a will have the lowest possible empirical mean (0) with
positive probability (1 — p*)Y.

- Pulling only arms other than a will give linear regret if no other optimal arms.
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How to achieve Sub-linear Regret?

C2. Greed in the Limit. Let exploit( T) denote the number of pulls that are
greedy w.r.t. the empirical mean up to horizon T. For sub-linear regret, we

need .
m E[exploit(T)]

T—o0 T =1
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greedy w.r.t. the empirical mean up to horizon T. For sub-linear regret, we
need .

m E[exploit(T)]

T—o0 T L

@ Let 7 be the set of all bandit instances with reward means strictly less than 1.

@ Result. An algorithm L achieves sub-linear regret on all instances / € Tif
and only if it satisfies C1 and C2on all / € 7.
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How to achieve Sub-linear Regret?

C2. Greed in the Limit. Let exploit( T) denote the number of pulls that are
greedy w.r.t. the empirical mean up to horizon T. For sub-linear regret, we

need .
m E[exploit(T)]

T—o0 T L

@ Let 7 be the set of all bandit instances with reward means strictly less than 1.

@ Result. An algorithm L achieves sub-linear regret on all instances / € Tif
and only if it satisfies C1 and C2on all / € 7.

In short: “GLIE” <= sub-linear regret.
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GLIE-ifying e-Greedy Strategies

@ cr-first with er = %

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022



GLIE-ifying e-Greedy Strategies
@ cr-first with ey = %
Explore for e7 - T = /T pulls. Thereafter exploit.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14



GLIE-ifying e-Greedy Strategies
@ cr-first with ey = %
Explore for e7 - T = /T pulls. Thereafter exploit.

C1 satisfied since each arm gets at least @(},\/'_F) pulls with high probability.
C2 satisfied since E[exploit(T)] > T — VT.
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@ e-greedy with e; = 5.
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C1 satisfied: each arm assured Zt 0 m) = @('°gT) pulls with high
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C1 satisfied since each arm gets at least e(},ﬁ) pulls with high probability.
C2 satisfied since E[exploit(T)] > T — VT.

@ e-greedy with e; = 5.
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C2 satisfied since E[exploit(T)] > T — O(log T).
What happened when we took ¢; = ¢?
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GLIE-ifying e-Greedy Strategies
@ cr-first with e = %
Explore for e7 - T = /T pulls. Thereafter exploit.

C1 satisfied since each arm gets at least e(},ﬁ) pulls with high probability.
C2 satisfied since E[exploit(T)] > T — VT.

@ e-greedy with e; = 5.
On the t-th step, explore w.p. ¢, exploit w.p. 1 — ¢;.

C1 satisfied: each arm assured Zt 0 m) = @('°gT) pulls with high
probability.

C2 satisfied since E[exploit(T)] > T — O(log T).

What happened when we took ¢; = ¢? What will happen by taking ¢; = (t+‘1)2?
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A Lower Bound on Regret

@ What is the least regret possible?
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A Lower Bound on Regret

@ What is the least regret possible?

@ An algorithm that always pulls arm 3 gets zero regret on some instances. . .
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A Lower Bound on Regret

@ What is the least regret possible?

@ An algorithm that always pulls arm 3 gets zero regret on some instances. . .
but linear regret on other instances!

@ We desire “low” regret on all instances. What is the best we can do?
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A Lower Bound on Regret
Paraphrasing Lai and Robbins (1985; see Theorem 2).

Let L be an algorithm such that for every bandit instance / € 7
and for every a > 0,as T — oo:

Rr(L, 1) = o(T).
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A Lower Bound on Regret
Paraphrasing Lai and Robbins (1985; see Theorem 2).

Let L be an algorithm such that for every bandit instance / € 7
and for every a > 0,as T — oo:

Rr(L, 1) = o(T).

Then, for every bandit instance / € Z, as T — oc:

TP SOkl X(

|n(T) s 2p+(l) KL(Pa(/),p*(/))’

where for x, y € [0,1), KL(x, y) ZxIn % + (1 — x) In {=%.

<
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Multi-armed Bandits

1. Evaluating algorithms: Regret
2. Achieving sub-linear regret
3. A lower bound on regret

Next class: Optimal algorithms!
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