CS 747, Autumn 2022: Lecture 2

Shivaram Kalyanakrishnan

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Autumn 2022

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 1/14

Multi-armed Bandits

1. Evaluating algorithms: Regret

2. Achieving sub-linear regret

3. A lower bound on regret

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 2/14

Multi-armed Bandits

1. Evaluating algorithms: Regret

2. Achieving sub-linear regret

3. A lower bound on regret

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 2/14

Visualising Performance

@ Consider a plot of E[r!] against t.

E[r!]

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

Visualising Performance

@ Consider a plot of E[r'] against t.

@ What is the least expected reward
that can be achieved? it

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

Visualising Performance

@ Consider a plot of E[r'] against t.
@ What is the least expected reward
that can be achieved?

) El']
pmin = MINgecA Pa-

Pmin

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

Visualising Performance

@ Consider a plot of E[r'] against t.

@ What is the least expected reward
that can be achieved?
Prmin = minaeA Pa-

@ What is the highest expected
reward that can be achieved?

B[]

Pmin

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

Visualising Performance

@ Consider a plot of E[r'] against t.

@ What is the least expected reward
that can be achieved?
Prmin = minaeA Pa-

@ What is the highest expected
reward that can be achieved?

P* = MaXacA Pa-

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

B[]

Pmin

3/14

Visualising Performance

@ Consider a plot of E[r'] against t. :

@ What is the least expected reward
that can be achieved?
Prmin = minaeA Pa-

@ What is the highest expected
reward that can be achieved?

P* = MaXacA Pa. 0

B[]

Pmin

t

@ If an algorithm pulls arms uniformly at random, what reward will it achieve?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

Visualising Performance

@ Consider a plot of E[r'] against t. .
@ What is the least expected reward

that can be achieved? -

Pmin = minaeA Pa- ']pavg
@ What is the highest expected

reward that can be achieved?

P* = MaXacA Pa. 0

Pmin

t

@ If an algorithm pulls arms uniformly at random, what reward will it achieve?
Pavg = %Za@q Pa-

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

Visualising Performance

@ Consider a plot of E[r'] against t. .
@ What is the least expected reward

that can be achieved? -

Prin = MiNgea Pa. !]Palvg
@ What is the highest expected

reward that can be achieved?

P* = MaXacA Pa. 0

Pmin

t

@ If an algorithm pulls arms uniformly at random, what reward will it achieve?
Pavg = 1 2 aca Pa:
@ How will the graph look for a reasonable learning algorithm?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

Visualising Performance

@ Consider a plot of E[r'] against t. .

@ What is the least expected reward

. E[r] |
Prmin = MiNaep Pa. P

@ What is the highest expected -
reward that can be achieved?

P* = MaXacA Pa. 0

Pmin

t

@ If an algorithm pulls arms uniformly at random, what reward will it achieve?
Pavg = 1 2 aca Pa:
@ How will the graph look for a reasonable learning algorithm?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 3/14

Regret

@ The maximum achievable expected
reward in T stepsis Tp*. 1

T

Learning algorithm |
E[rt] g alg |

avg

Prmin

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/14

Regret
@ The maximum achievable expected
reward in T stepsis Tp*. 1

@ The actual expected reward for an p
algorithm is S/ E[r1].

T

Learning al on'thmi
Elt] 529 :

avg

Prmin

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/14

Regret

@ The maximum achievable expected

reward in T stepsis Tp*. 1
@ The actual expected reward for an P’
algorithm is S/ E[r1]. 1
@ The (expected cumulative) regret of g \Leaming algorithm§
the algorithm for horizon T is the Pave ‘
difference P
T—1 3
Rr=Tp" —) E[r]. 0 2
t=0 t

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/14

Regret
@ The maximum achievable expected
reward in T stepsis Tp*.
@ The actual expected reward for an
algorithm is S/ E[r1].
@ The (expected cumulative) regret of
the algorithm for horizon T is the

difference
T—1
Rr=Tp" —) E[r].
t=0

E[i!]
avg

Prmin

R= shaded area

[T
\

Learning algorithm ‘

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

4/14

Regret
@ The maximum achievable expected
reward in T stepsis Tp*. 1
@ The actual expected reward for an p
algorithm is S/ E[r1].
@ The (expected cumulative) regret of

Elt]
the algorithm for horizon T is the Pave
difference P

T—1
Rr=Tp" —) E[r]. 0
t=0

@ We would like Rt to be small, in fact for lim7_,

R= shaded area

[T
\

Learning algorithm

-

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

Fr — 0.

4/14

Regret
@ The maximum achievable expected
reward in T steps is Tp*. 1 Ry = shaded area :
@ The actual exp$cted reward for an P === :
. . —1
algorithmis >, -, E[r']. ‘ <

@ The (expected cumulative) regret of

Learning algorithm

Elt]
the algorithm for horizon T is the Pave
difference P
T—1 3
Rr=Tp" —) E[r]. 0 i
t=0 t

@ We would like Rr to be smalll, in fact for limr_,., & = 0.
Does this happen for eG1, eG2, eG3?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 4/14

Multi-armed Bandits

1. Evaluating algorithms: Regret

2. Achieving sub-linear regret

3. A lower bound on regret

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 5/14

Review of eG1, eG2

@ c-first: Explore (uniformly) for e T b
pulls; then exploit. ' efinst
E[rt] |
pavg
Pmin
0 T T

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/14

Review of eG1, eG2

@ e-first: Explore (uniformly) for e T
pulls; then exploit.

@ What would happen if we ran for
horizon 2T instead of T?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

E[r!]
avg

Prmin

i e~first

eT

6/14

Review of eG1, eG2

@ e-first: Explore (uniformly) for e T
pulls; then exploit.

@ What would happen if we ran for
horizon 2T instead of T?

Exploratory phase would last 2¢ T
steps!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

E[r!]
avg

Prmin

i e~first

eT

6/14

Review of eG1, eG2

@ c-first: Explore (uniformly) for e T b
pulls; then exploit. ' efinst
@ What would happen if we ran for Elr'] |
horizon 2T instead of T? Pave
Exploratory phase would last 2¢ T Pmin
steps!
0 T T
t
T—1
Rr=Tp* = > E[r]
t=0

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/14

Review of eG1, eG2

@ c-first: Explore (uniformly) for e T b
pulls; then exploit. ' efinst
@ What would happen if we ran for Elr'] |
horizon 2T instead of T? Pave
Exploratory phase would last 2¢ T Pmin
steps!
0 T T
t
T—1 eT—1 T-1
Rr=Tp* = > E[r']=Tp* - > E[r']- > E[r]
t=0 t=0 t=eT

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 6/14

Review of eG1, eG2

@ e-first: Explore (uniformly) for e T ?
pulls; then exploit.

@ What would happen if we ran for Elr']
horizon 2T instead of T? Pavg
Exploratory phase would last 2¢ T Pmin
steps!

0
T—1 eT—1 T-1

Rr=Tp* = > E[r]=Tp" - > E[r']-) E[r']=Tp" — eTpayg —

t=0 t=0 t=eT

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

i e~first

eT

t

T

T—1
> R[]

t=eT

6/14

Review of eG1, eG2

@ e-first: Explore (uniformly) for e T ?
pulls; then exploit.

@ What would happen if we ran for Elr']
horizon 2T instead of T? Pavg
Exploratory phase would last 2¢ T Pmin
steps!

0
T—1 eT—1 T-1

Rr=Tp* = > E[r]=Tp" - > E[r']-) E[r']=Tp" — eTpayg —

t=0 t=0 t=eT

> Tp" — €TPpayg — (T —€T)p"

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

i e~first

eT

t

T

T—1
> R[]

t=eT

6/14

Review of eG1, eG2

@ e-first: Explore (uniformly) for e T ?
pulls; then exploit.

@ What would happen if we ran for Elr']
horizon 2T instead of T? Pavg
Exploratory phase would last 2¢ T Pmin
steps!

0
T—1 eT—1 T-1

Rr=Tp* = > E[r]=Tp" - > E[r']-) E[r']=Tp" — eTpayg —

t=0 t=0 t=eT

* * *
> Tp" — €Tpavg — (T — €T)p" = €(P* — Pavg) T

i e~first

eT

t

T

T—1
> R[]

t=eT

6/14

Review of eG1, eG2

@ e-first: Explore (uniformly) for e T ?
pulls; then exploit.

@ What would happen if we ran for Elr']
horizon 2T instead of T? Pavg
Exploratory phase would last 2¢ T Pmin
steps!

0
T—1 eT—1 T-1

Rr=Tp* = > E[r]=Tp" - > E[r']-) E[r']=Tp" — eTpayg —

t=0 t=0 t=eT

i e~first

eT

t

> Tp* — €TPavg — (T — €T)P" = €(P* — Pavg) T = Q(T).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

T

T—1
> R[]

t=eT

6/14

Review of €G3

@ e-greedy: On each step explore
(uniformly) w.p. ¢, exploit w.p. 1 —e.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/14

Review of €G3

1

s

@ c-greedy: On each step explore B e ey ;
(uniformly) w.p. €, exploit w.p. 1 —e. e-greedy

Elr']
P

avg

Prmin

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/14

Review of €G3

1

s

@ e-greedy: On each step explore B e ey ;
(uniformly) w.p. €, exploit w.p. 1 —e. e-greedy

Elr']

pavg 3

@ E[r] can never exceed B, |
PH(1 =€) + cPag! |

0 T

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/14

Review of €G3

@ e-greedy: On each step explore B e ey ;
(uniformly) w.p. €, exploit w.p. 1 —e. e-greedy

Elr']
pavg 3
@ E[r] can never exceed B, |
PH(1 =€) + cPag! |
0 3
T

T-1 !

Rr=Tp* = > E[r]
t=0

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/14

Review of €G3

1

@ e-greedy: On each step explore B e ey 3
(uniformly) w.p. €, exploit w.p. 1 —e. e-greedy

Elr']
P 3
@ E[r] can never exceed B, |
P*(1 — €) + €Payg! |
’ T
T-1 !
Rr=Tp* = > E[r]
t=0
7
> Tp* — Z ((€)Pavg + (1 —€)p*)
t=0

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/14

Review of €G3

1

@ e-greedy: On each step explore B e ey 3
(uniformly) w.p. €, exploit w.p. 1 —e. e-greedy

Elr']
P 3
@ E[r] can never exceed B, |
p*(1 - 6) + epavg!
0 3
T
T-1 !
Rr=Tp* = > E[r]
t=0
T—1
> Tp* — Z ((€)Pavg + (1 —€)p*) = e(P* — Pavg) T
t=0

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/14

Review of €G3

1

@ e-greedy: On each step explore B e ey 3
(uniformly) w.p. €, exploit w.p. 1 —e. e-greedy

Elr']
Pug 3
@ E[r'] can never exceed B |
p*(1 - 6) + epavg!
0 3
T
T-1 !
Rr=Tp* = > E[r]
t=0
T-1
> Tp* — Z ((€)Pavg + (1 — €)p") = €(P* — Pavg) T = Q(T).
t=0

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 7/14

How to achieve Sub-linear Regret?

@ Two conditions must be met: C1 and C2.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 8/14

How to achieve Sub-linear Regret?

@ Two conditions must be met: C1 and C2.

C1. Infinite exploration. In the limit (T — oo), each arm must almost surely be
pulled an infinite number of times.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 8/14

How to achieve Sub-linear Regret?

@ Two conditions must be met: C1 and C2.

C1. Infinite exploration. In the limit (T — oo), each arm must almost surely be
pulled an infinite number of times.

- On the contrary, suppose we pull some arm a only a finite U times.
- We cannot be 100% sure based on the pulls of a that it is non-optimal.

- Even an optimal arm a will have the lowest possible empirical mean (0) with
positive probability (1 — p*)Y.

- Pulling only arms other than a will give linear regret if no other optimal arms.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 8/14

How to achieve Sub-linear Regret?

C2. Greed in the Limit. Let exploit(T) denote the number of pulls that are
greedy w.r.t. the empirical mean up to horizon T. For sub-linear regret, we

need .
m E[exploit(T)]

T—o0 T =1

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/14

How to achieve Sub-linear Regret?

C2. Greed in the Limit. Let exploit(T) denote the number of pulls that are
greedy w.r.t. the empirical mean up to horizon T. For sub-linear regret, we
need .

m E[exploit(T)]

T—o0 T L

@ Let 7 be the set of all bandit instances with reward means strictly less than 1.

@ Result. An algorithm L achieves sub-linear regret on all instances / € Tif
and only if it satisfies C1 and C2on all / € 7.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/14

How to achieve Sub-linear Regret?

C2. Greed in the Limit. Let exploit(T) denote the number of pulls that are
greedy w.r.t. the empirical mean up to horizon T. For sub-linear regret, we

need .
m E[exploit(T)]

T—o0 T L

@ Let 7 be the set of all bandit instances with reward means strictly less than 1.

@ Result. An algorithm L achieves sub-linear regret on all instances / € Tif
and only if it satisfies C1 and C2on all / € 7.

In short: “GLIE” <= sub-linear regret.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 9/14

GLIE-ifying e-Greedy Strategies

@ cr-first with er = %

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

GLIE-ifying e-Greedy Strategies
@ cr-first with ey = %
Explore for e7 - T = /T pulls. Thereafter exploit.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

GLIE-ifying e-Greedy Strategies
@ cr-first with ey = %
Explore for e7 - T = /T pulls. Thereafter exploit.

C1 satisfied since each arm gets at least @(},\/'_F) pulls with high probability.
C2 satisfied since E[exploit(T)] > T — VT.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

GLIE-ifying e-Greedy Strategies
@ cr-first with ey = %
Explore for e7 - T = /T pulls. Thereafter exploit.

C1 satisfied since each arm gets at least @(},\/'_F) pulls with high probability.
C2 satisfied since E[exploit(T)] > T — VT.

@ e-greedy with e; = 5.
On the t-th step, explore w.p. ¢;, exploit w.p. 1 — ¢;.

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

GLIE-ifying e-Greedy Strategies
@ cr-first with e = %
Explore for e7 - T = /T pulls. Thereafter exploit.

C1 satisfied since each arm gets at least e(%ﬁ) pulls with high probability.
C2 satisfied since E[exploit(T)] > T — VT.

@ e-greedy with e; = 5.
On the t-th step, explore w.p. ¢, exploit w.p. 1 — ¢;.

C1 satisfied: each arm assured Zt 0 m) = @('°gT) pulls with high

probability.
C2 satisfied since E[exploit(T)] > T — O(log T).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

GLIE-ifying e-Greedy Strategies
@ cr-first with e = %
Explore for e7 - T = /T pulls. Thereafter exploit.

C1 satisfied since each arm gets at least e(},ﬁ) pulls with high probability.
C2 satisfied since E[exploit(T)] > T — VT.

@ e-greedy with e; = 5.
On the t-th step, explore w.p. ¢, exploit w.p. 1 — ¢;.

C1 satisfied: each arm assured Zt 0 m) = @('°gT) pulls with high

probability.
C2 satisfied since E[exploit(T)] > T — O(log T).
What happened when we took ¢; = ¢?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

GLIE-ifying e-Greedy Strategies
@ cr-first with e = %
Explore for e7 - T = /T pulls. Thereafter exploit.

C1 satisfied since each arm gets at least e(},ﬁ) pulls with high probability.
C2 satisfied since E[exploit(T)] > T — VT.

@ e-greedy with e; = 5.
On the t-th step, explore w.p. ¢, exploit w.p. 1 — ¢;.

C1 satisfied: each arm assured Zt 0 m) = @('°gT) pulls with high
probability.

C2 satisfied since E[exploit(T)] > T — O(log T).

What happened when we took ¢; = ¢? What will happen by taking ¢; = (t+‘1)2?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 10/14

Multi-armed Bandits

1. Evaluating algorithms: Regret

2. Achieving sub-linear regret

3. A lower bound on regret

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 11/14

A Lower Bound on Regret

@ What is the least regret possible?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022

A Lower Bound on Regret

@ What is the least regret possible?

@ An algorithm that always pulls arm 3 gets zero regret on some instances. . .

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/14

A Lower Bound on Regret

@ What is the least regret possible?

@ An algorithm that always pulls arm 3 gets zero regret on some instances. . .
but linear regret on other instances!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/14

A Lower Bound on Regret

@ What is the least regret possible?

@ An algorithm that always pulls arm 3 gets zero regret on some instances. . .
but linear regret on other instances!

@ We desire “low” regret on all instances. What is the best we can do?

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 12/14

A Lower Bound on Regret
Paraphrasing Lai and Robbins (1985; see Theorem 2).

Let L be an algorithm such that for every bandit instance / € 7
and for every a > 0,as T — oo:

Rr(L, 1) = o(T).

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/14

A Lower Bound on Regret
Paraphrasing Lai and Robbins (1985; see Theorem 2).

Let L be an algorithm such that for every bandit instance / € 7
and for every a > 0,as T — oo:

Rr(L, 1) = o(T).

Then, for every bandit instance / € Z, as T — oc:

TP SOkl X(

|n(T) s 2p+(l) KL(Pa(/),p*(/))’

where for x, y € [0,1), KL(x, y) ZxIn % + (1 — x) In {=%.

<

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 13/14

Multi-armed Bandits

1. Evaluating algorithms: Regret
2. Achieving sub-linear regret

3. A lower bound on regret

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/14

Multi-armed Bandits

1. Evaluating algorithms: Regret
2. Achieving sub-linear regret
3. A lower bound on regret

Next class: Optimal algorithms!

Shivaram Kalyanakrishnan (2022) CS 747, Autumn 2022 14/14

