
Necessary and Sufficient Conditions for Achieving Sub-linear

Regret in Stochastic Multi-armed Bandits

Shivaram Kalyanakrishnan

August 2021

Abstract

In this note, we identify a condition that is necessary and sufficient for an algorithm to achieve
sub-linear regret on stochastic multi-armed bandits. The condition is a conjunction of two conditions,
C1 and C2. Informally, C1 is that the algorithm pull each arm infinitely often in the limit. C2 is
that the fraction of the total pulls performed on empirically inferior arms vanish in the limit. We state
these conditions formally and prove that their conjunction is both necessary and sufficient for achieving
sub-linear regret.

1 Stochastic Multi-armed Bandits

We consider n-armed bandits, n ≥ 2, in which each arm a from the set of arms A yields Bernoulli (0-1)
rewards. A bandit instance is fully specified by the means corresponding to each arm; each instance I is an
element of the universe of instances I = [0, 1]n. The bandit instance is sampled in sequence, with the pull
of arm at returning a reward rt, for t = 0, 1, Thus, an algorithm’s interaction with the bandit generates
a sequence

a0, r0, a1, r1,

Formally, an algorithm L is a mapping from the set of such interaction sequences, also known as histories, to
the set of probability distributions over arms. Thus, given any history h, algorithm L must specify qL(a|h),
the probability of pulling each arm a ∈ A.

For a horizon of T ≥ 1 pulls, the expected cumulative regret (or simply “regret”) of L on an instance
I ∈ I is given by

RTL,I = p?(I)T −
T−1∑
t=0

EL,I [rt],

where p?(I) is the largest mean among the arms of I. If we denote the mean of each arm a ∈ A in instance
I by pa(I), we have p?(I) = maxa∈A pa(I). If pa(I) = p?(I), then arm a is referred to as an optimal arm.

This note considers conditions on L so it achieves sub-linear regret.

2 Notation and Background

In this section, we present notation and some basic results that our subsequent analysis will utilise.

1

2.1 Random Variables and Constants

First, we define some relevant random variables and constants.

• For arm a ∈ A, let uta denote the number of pulls of arm a after t − 1 pulls of the bandit (that is,
before the t-th pull of the bandit is performed).

• For t ≥ 0, let exploitt be a Boolean random variable that is 1 if on round t,

– all the arms have a valid empirical mean (that is, have been pulled at least once), and

– the arm that is pulled—that is, at—has the highest empirical mean (possibly tied with other
arms);

otherwise exploitt is 0. For T ≥ 1, let exploit(T) denote the total number of “exploit” rounds

performed in the first T pulls: that is, exploit(T) =
∑T−1
t=0 exploitt.

• For t ≥ 0, let separatedt be a Boolean random variable that is 1 if on round t,

– all the arms have a valid empirical mean (that is, have been pulled at least once), and

– if arm a ∈ A has the highest empirical mean on round t, then it is an optimal arm (that is,
pa = p?);

otherwise separatedt is 0. For T ≥ 1, let separated(T) denote the total number of rounds up to

horizon T in which the arms have been “separated”: that is, separated(T) =
∑T−1
t=0 separatedt.

• For every instance I ∈ I containing at least one non-optimal arm, define

∆min(I) = min
a∈A,pa 6=p?

(p? − pa), and ∆max(I) = max
a∈A,pa 6=p?

(p? − pa).

These quantities denote the expected loss from pulling the “best” and the “worst” non-optimal arms,
respectively, when compared to pulling an optimal arm.

Observe that ∆min(I) and ∆max(I) are fixed constants for every instance I ∈ I. On the other hand,
uta, exploitt, exploit(T) separatedt, and separated(T) are random variables whose distribution depends on
both the bandit instance and the algorithm. Also note the fact that for every t ≥ 0,

(separatedt ∧ exploitt) =⇒ (at is an optimal arm).

We shall show that successful algorithms must explore sufficiently to get the arms separated, and that they
must also exploit sufficiently. As a consequence, they will pull optimal arms a sufficient number of times.

2.2 Probability of a History

For T ≥ 1, let HT denote the set of T -length histories (the sole 0-length history is denoted ∅). Suppose
algorithm L is applied on bandit instance I ∈ I, what is PL,I{h}, the probability that history h ∈ HT is
generated? If we take h to be a0, r0, a1, r1, . . . aT−1, rT−1, we observe

PL,I{h} =qL(a0|∅)PI{r0|a0}×
qL(a1|a0r0)PI{r1|a1}×
...

× qL(aT−1|a0r0a1r1 . . . aT−2rT−2)PI{rT−1|aT−1}.

2

Notice that PL,I{h} factorises into “qL” terms that only depend on h and the algorithm L, and “PI” terms
that only depend on h and the bandit instance I. We find it convenient to club the algorithm-specific terms
into a single term

QL(h) = qL(a0|∅)× qL(a1|a0r0)× · · · × qL(aT−1|a0r0a1r1 . . . aT−2rT−2).

Now, PI{rt|at} is pat(I) if rt = 1, and 1− pat(I) if rt = 0. If h contains exactly sa(h) 1-rewards and fa(h)
0-rewards for arm a ∈ A, we get

PL,I(h) = QL(h)
∏
a∈A

(pa(I))sa(h)(1− pa(I))fa(h). (1)

Note that the total number of occurrences of arm a in h is sa(h) + fa(h), which we denote ua(h).

2.3 Probability of an Event

When we refer to the probability of an event E, we really mean: what is the probability of encountering a
history in which E is true? Consider, as an example, the event that r10 = 1. This even could happen in
many possible ways, the probability of each way depending both on the sampling algorithm and the bandit
instance. Suppose E can be verified (to have happened or not happened) within T rounds, we may write

PL,I{E} =
∑

h∈HT ,E happens in h

PL,I{h}. (2)

Put otherwise, an event is equivalent to a set of histories.

3 Necessary and Sufficient Conditions

In this section we present necessary and sufficient algorithms for an algorithm L to achieve sub-linear regret.

3.1 Target Family of Bandit Instances

To make our goal precise, we must first state which bandit instances are under consideration. As we already
know, algorithms such as UCB and Thompson Sampling achieve sub-linear regret on every bandit instance
from the universe I = [0, 1]n. Nevertheless, we shall discover in our upcoming discussion that I contains
some exceptional bandit instances on which successful algorithms need not even pull every arm once—these
are instances I for which p?(I) = 1.

The crux of our argument in this section will be that if h is a finite-length history generated by an
algorithm L on instance I, there is a non-zero probability that the same history will be generated by L on
a different instance I ′. If we reflect for a moment, we observe that this claim cannot be valid in general if I ′

contains arms whose means are exactly 0 or 1: such arms can only generate all 0’s or all 1’s as rewards—they
have a zero probability of generating sequences containing both 0- and 1-rewards. Since our discussion is in
the context of minimising regret, it happens that arms with mean 0 will not affect our argument, whereas
arms with mean 1 will interfere.

Hence, for now, we shall remove from our consideration all instances with arms whose mean is 1. We
shall only consider instances from the set of instances I = {I ∈ I : p?(I) 6= 1}: that is, I = [0, 1)n. In
Section 4, we shall revisit the question of bandit instances whose optimal mean is 1.

3

3.2 Infinite Exploration

Our first condition, denoted C1, expresses that the algorithm in question pulls each arm infinitely often in
the limit. Here is the formal statement, applied to algorithm L and instance I ∈ I.

Definition 1 (C1(L, I)). For every u ≥ 0 and δ > 0, there exists T0(u, δ) ≥ u such that

PL,I{∀a ∈ A : uT0(u,δ)
a > u} ≥ 1− δ.

The following lemma shows that C1 is necessary for L to achieve sub-linear regret.

Lemma 1. If there exists I ∈ I such that ¬C1(L, I), then there exists I ′ ∈ I such that RTL,I′ = Ω(T).

Proof. If C1(L, I) is false for some I ∈ I, it means there exist (1) u0 > 0, (2) δ0 > 0, and (3) a0 ∈ A such
that for all T ≥ u0, PL,I{uTa0 > u0} < 1− δ0, or equivalently,

PL,I{uTa0 ≤ u0} > δ0. (3)

Now, consider a bandit instance I ′ such that for every arm a ∈ A:

pa(I ′) =

{
pa(I), if a 6= a0,
p?(I)+1

2 , if a = a0.

The idea behind the construction is that I ′ is identical to I except for arm a0, which for I ′ is the sole
optimal arm (in fact we could take the mean of this arm in I ′ to be any arbitrary element in (p?(I), 1)).
We establish that with a non-zero probability, L will also pull a0 fewer than u0 times on I ′. We use (1) and
(2) to write

PL,I′{uTa0 ≤ u0}

=
∑

h∈HT ,ua0 (h)≤u0

PL,I′{h}

=
∑

h∈HT ,ua0 (h)≤u0

QL(h)
∏
a∈A

(pa(I ′))sa(h)(1− pa(I ′))fa(h)

=
∑

h∈HT ,ua0 (h)≤u0

QL(h)

(∏
a∈A

(pa(I))sa(h)(1− pa(I))fa(h)

)(
pa0(I ′)

pa0(I)

)sa0 (h)(
1− pa0(I ′)

1− pa0(I)

)fa0 (h)

≥
∑

h∈HT ,ua0 (h)≤u0

QL(h)

(∏
a∈A

(pa(I))sa(h)(1− pa(I))fa(h)

)(
1− pa0(I ′)

1− pa0(I)

)u0

=

(
1− pa0(I ′)

1− pa0(I)

)u0

PL,I{uTa0 ≤ u0}.

From (3), we infer that

PL,I′{uTa0 ≤ u0} >
(

1− pa0(I ′)

1− pa0(I)

)u0

δ0.

Notice that the right hand side does not depend on T : it is fixed by I, I ′, a0, δ0, and u0. If we call the
right hand side δ1, which is clearly positive, we essentially have the following: if C1(L, I) is false for I ∈ I,
then there exist (1) an instance I ′ ∈ I, (2) u0 > 0, (3) δ1 > 0, and (4) a0 ∈ A such that for all T ≥ u0,

PL,I′{uTa0 ≤ u0} > δ1.

4

In other words, there is at least a δ1-probability that L plays a0, which is the sole optimal arm in I ′, no
more than u0 times. If we consider any horizon T > 2u0, we get

RTL,I′ ≥ δ1(T − u0)∆min(I ′) > δ1
∆min(I ′)

2
T,

implying that RTL,I′ = Ω(T).

The crux of the proof of Lemma 1 was that a finite number of pulls can always be misleading (with a
positive, even if small, probability). Hence, in order to progressively get closer to the true means of the arms
(which shall reveal an optimal arm), an algorithm must continue to pull each arm for ever. The following
lemma guarantees that continuous sampling of all arms results in progress.

Lemma 2. Suppose C1(L, I) is true for some algorithm L and instance I ∈ I. Then for all δ0 > 0, there
is some T0(δ0) > 0 such that for all t ≥ T0(δ0),

PL,I{separatedt} ≥ 1− δ0.

Proof. For ε > 0, Hoeffding’s Inequality guarantees that if each arm is pulled exactly u times, the probability
that its empirical mean is ε or more away from the true mean is at most 2e−2uε2 . Hence, if an arm has
been pulled u0 or more times, the probability that its empirical mean is ε or more away from the true
mean is at most

∑∞
u=u0

2e−2uε2 = 2e−2u0ε
2

/(1 − e−2ε2). Now, observe that if each arm’s empirical mean

is less than ∆min(I)
2 away from its true mean, then an arm with the highest empirical mean must be an

optimal arm: that is, an optimal arm must have “separated”. Therefore, if we take ε = ∆min(I)
2 and

u0 = d 2
(∆min(I))2 ln 4n

δ0(1−e−2ε2)
e, we can make the following claim. If t is a round at which each arm has been

pulled at least u0 times, then the probability of an optimal arm not being separated—which can happen
only if at least one arm is inaccurate—is at most∑

a∈A

2e−2u0ε
2

1− e−2ε2
≤ n2δ0

4n
=
δ0
2
.

In short, PL,I{¬separatedt ∧ (∀a ∈ A : uta ≥ u0)} ≤ δ0
2 . Now, apply Definition 1 with u0 as defined,

with probability parameter δ2 = δ0
2 . The definition gives us that there exists T0(δ2) ≥ u0 such that for all

t ≥ T0(δ2), PL,I{∀a ∈ A : uta ≤ u0} ≤ δ2. We get:

PL,I{¬separatedt} = PL,I{¬separatedt ∧ (∃a ∈ A : uta ≤ u0)}+ PL,I{¬separatedt ∧ (∀a ∈ A : uta > u0)}
≤ PL,I{∃a ∈ A : uta ≤ u0}+ PL,I{¬separatedt ∧ ∀a ∈ A : uta ≥ u0}

≤ δ0
2

+
δ0
2

= δ0,

which completes the proof.

The lemma establishes that an algorithm exploring sufficiently will eventually get an optimal arm sepa-
rated out. We find it convenient to convert this result, which makes an observation about each round t, to
one that aggregates rounds up to a specified horizon.

Corollary 1. Suppose C1(L, I) is true for some algorithm L and instance I ∈ I. Then for all ε0 > 0, there
is some T0(ε0) > 0 such that for all T ≥ T0(ε0),

EL,I{separated(T)}
T

≥ 1− ε0.

5

Proof. Apply Lemma 2 with probability parameter δ0 = ε0/2. There exists T1 > 0 such that for all t ≥ T1,
P{separatedt} ≥ 1− δ0. Take T0(ε0) ≥ T1/δ0. For T ≥ T0(ε0), we have

EL,I{separated(T)}
T

=
1

T

T−1∑
t=0

PL,I{separatedt} ≥
1

T

T−1∑
t=T1

PL,I{separatedt}

≥ (T − T1)(1− δ0)

T
= 1− δ0 −

T1(1− δ0)

T
≥ 1− δ0 − δ0(1− δ0) > 1− ε0.

In summary, we have shown that infinite exploration is necessary for achieving sub-linear regret, and
that it helps to get the arms’ means separated. We now move to the next logical step: exploiting arms with
high empirical means.

3.3 Greed in the Limit

Since algorithms do not directly know which arms are optimal, the best they can do is trust empirical
data (and be greedy with respect to empirical means). Recall that exploit(T) =

∑T−1
t=0 exploitt denotes

the number of rounds on which an empirically optimal arm is pulled. Our second condition, C2, is about
exploit(T).

Definition 2 (C2(L, I)).

lim
T→∞

EL,I [exploit(T)]

T
= 1.

In the two following lemmas, we shall assume that C1 is true. Under this assumption, we show that
achieving sub-linear regret depends on C2. Taken together with Lemma 1, the implication is that C1∧C2
is a necessary and sufficient condition for the achievement of sub-linear regret.

Lemma 3. Assume that for algorithm L and instance I ∈ I, C1(L, I) is true and C2(L, I) is false. Then
RTL,I = Ω(T).

Proof. Since C2(L, I) is false, there exist ε0 > 0 and T0 > 0 such that for all T ≥ T0,

EL,I [exploit(T)]

T
< 1− ε0.

Since C1(L, I) is true, we can apply Corollary 1 with parameter δ0 = ε0/2. We have that there exists T1 > 0

such that for all T ≥ T1,
EL,I{separated(T)}

T ≥ 1 − δ0. Now fix some T2 ≥ max(T0, T1). We observe that for
all T > T2,

EL,I [exploit(T)] < (1− ε0)T, and

EL,I [separated(T)] ≥ (1− δ0)T.

6

We observe the the expected number of non-optimal pulls up to horizon T is

T−1∑
t=0

PL,I{at is not an optimal arm} ≥
T−1∑
t=0

PL,I{separatedt ∧ ¬exploitt)}

=

T−1∑
t=0

(
PL,I{separatedt}+ PL,I{¬exploitt} − PL,I{separatedt ∨ ¬exploitt}

)
≥
T−1∑
t=0

(
PL,I{separatedt}+ PL,I{¬exploitt} − 1}

)
=

T−1∑
t=0

(
PL,I{separatedt} − PL,I{exploitt}

)
= EL,I [separated(T)]− EL,I [exploit(T)]

≥ (1− δ0)T − (1− ε0)T

= δ0T.

Clearly RTL,I is at least δ0∆min(I)T for all T > T2, which means RTL,I = Ω(T).

Lemma 4. Assume that for algorithm L and instance I ∈ I, C1(L, I) and C2(L, I) are both true. Then
RTL,I = o(T).

Proof. To prove the result, we show that for every γ0 > 0, there exists T0 > 0 such that for all T ≥
T0, R

T
L,I/T ≤ γ0.

Take δ0 = γ0
2∆max(I) . From Corollary 1, we get that there is T1 > 0 such that for all T ≥ T1,

EL,I [separated(T)] ≥ (1− δ0)T.

Take ε0 = γ0
2∆max(I) . From Definition 2, we see that there is T2 > 0 such that for all T ≥ T2,

EL,I [exploit(T)] ≥ (1− ε0)T.

It follows that for T > T0 ≥ max(T1, T2),

RTL,I
T
≤ 1

T

T−1∑
t=0

∆max(I)PL,I{at is not an optimal arm}

≤ 1

T

T−1∑
t=0

∆max(I)PL,I{¬separatedt ∨ ¬exploitt}

≤ ∆max(I)

T

T−1∑
t=0

(
PL,I{¬separatedt}+ PL,I{¬exploitt}

)
=

∆max(I)

T
((T − EL,I [separated(T)]) + (T − EL,I [exploit(T)]))

≤ ∆max(I)

T
(Tδ0 + Tε0)

= γ0.

7

3.4 Final Result

The results proven so far already establish necessary and sufficient conditions for achieving sub-linear regret.
For clarity, we state our final result in concise form below and give a detailed working that combines the
previous results. In the theorem and proof that follow, there is a “for all learning algorithms L” quantifier
applying to all the statements; we leave out this quantifier to reduce clutter.

Theorem 1.
∀I ∈ I : C1(L, I) ∧ C2(L, I) =⇒ ∀I ∈ I : RTL,I = o(T). (4)

∀I ∈ I : RTL,I = o(T) =⇒ ∀I ∈ I : C1(L, I) ∧ C2(L, I). (5)

Proof. Lemma 4 gives that ∀I ∈ Ī : (C1(L, I)∧C2(L, 1) =⇒ RTL,I = o(T)), which implies (4). To show (5),
we begin by considering the conjunction of lemmas 1 and 4 and proceeding in logical sequence. We have:

(∃I ∈ Ī : ¬C1(L, I) =⇒ ∃I ∈ Ī : RTL,I = Ω(T)) ∧ (∀I ∈ Ī : C1(L, I) ∧ ¬C2(L, I)) =⇒ RTL,I = Ω(T))

=⇒
(∃I ∈ Ī : ¬C1(L, I) =⇒ ∃I ∈ Ī : RTL,I = Ω(T)) ∧ (∃I ∈ Ī : C1(L, I) ∧ ¬C2(L, I) =⇒ ∃I ∈ Ī : RTL,I = Ω(T))

=⇒
∃I ∈ Ī : ¬C1(L, I) ∨ (C1(L, I) ∧ ¬C2(L, I)) =⇒ ∃I ∈ Ī : RTL,I = Ω(T)

⇐⇒
∃I ∈ Ī : ¬C1(L, I) ∨ ¬C2(L, I) =⇒ ∃I ∈ Ī : RTL,I = Ω(T)

⇐⇒
¬(∃I ∈ Ī : RTL,I = Ω(T)) =⇒ ¬(∃I ∈ Ī : ¬C1(L, I) ∨ ¬C2(L, I))

⇐⇒
∀I ∈ Ī : RTL,I = o(T) =⇒ ∀I ∈ Ī : C1(L, I) ∧ C2(L, I),

which is the statement of (5).

4 Discussion

Having completed our presentation, we have two points to discuss.

4.1 Arms with Mean 1

First, why did we exclude bandit instances with an optimal mean of 1 in our working? Recall that the
universe of bandit instances considered in our working was I = [0, 1)n. What would happen if we tried
replacing it with I = [0, 1]n? Do you think the following statements are correct?

∀I ∈ I : C1(L, I) ∧ C2(L, I) =⇒ ∀I ∈ I : RTL,I = o(T). (6)

∀I ∈ I : RTL,I = o(T) =⇒ ∀I ∈ I : C1(L, I) ∧ C2(L, I). (7)

Following the same proof structure as we presented in Section 3, it is not hard to show that (6) is true.
However, (7) is not true. To see why, consider any successful algorithm L—concretely let us take εt-greedy

8

sampling with εt = 1/(t + 1). We know that L achieves sub-linear regret on every instance I ∈ I. Now
make one minor change to L: whenever an arm returns a reward of 1, continue pulling that arm until it
returns a reward of 0. Let the resulting algorithm be L′. In short, L′ performs “extended pulls” of each
arm that last until a 0-reward is returned; the arm to pull next is decided by the εt-greedy strategy.

It is not hard to show that L′ will achieve sub-linear regret on every instance I ∈ I. However, observe
that on an instance Iopt in which the optimal mean is 1, L′ will never stop pulling an optimal arm once it
is encountered. In this event, other arms (some of which might not have been sampled even once!) will not
be explored infinitely often: that is, C1(L′, Iopt) is false and consequently (7) is false.

4.2 Weaker Form of C1

In the 2019 offering of CS 747, the instructor had presented (so-called) necessary and sufficient conditions
with a weaker form of C1, which we define here as C1W .

Definition 3 (C1W (L, I)). For every u ≥ 0, there exists T0 ≥ u such that for all T ≥ T0 and for all a ∈ A,

EL,I{uTa } ≥ u.

Take a moment to consider whether the following statements are indeed true.

∀I ∈ I : C1W (L, I) ∧ C2(L, I) =⇒ ∀I ∈ I : RTL,I = o(T). (8)

∀I ∈ I : RTL,I = o(T) =⇒ ∀I ∈ I : C1W (L, I) ∧ C2(L, I). (9)

First, convince yourself that for all algorithms L and instances I ∈ I, C1(L, I) =⇒ C1W (L, I). Hence,
(9) follows from (5), which we have already proven to be true.

On the other hand, (8) is not true, and so the claim made by the instructor in the 2019 class is not
correct. The error is regretted. To see why (8) fails, consider the following three algorithms.

L1. Algorithm L1 pulls each arm exactly once, and thereafter greedily pulls an arm with the highest
empirical mean.

L2. Algorithm L2 is any successful algorithm—for example εt-greedy sampling with εt = 1/(t+ 1).

L3. Algorithm L3 is a randomised algorithm that with probability 1/2, behaves through its entire run as
L1, and with probability 1/2, behaves through its entire run as L2. Note that L1, L2, and L3 can be
suitably defined so the choice made by L3 before pulling an arm can be encoded in its first pull: that
is, by observing the very first pull made by L3, we know whether it is implementing L1 or L2 (and so
L3 is a legitimate algorithm).

We leave it to the student to verify that L3 satisfies C1W and C2 on all instances I ∈ I, but it still
achieves sub-linear regret on some instances I ∈ I.

Acknowledgement

The author is grateful to Aditya Gopalan and Saumya Goyal for suggesting several improvements to the
draft, and to Rishi Agarwal and for catching typos.

9

