
CS 747 (Autumn 2025)
Mid-semester Examination and Weeks 5–6 Test

6.30 p.m. – 8.30 p.m., September 14, 2025, LA 001 and LA 002

Name: Roll number:

Note. There are four questions in this test. Questions 1, 2, and 3
count towards your mid-semester examination (15 marks total), and
Question 4 counts towards your Weeks 5–6 Test (3 marks).

Provide your answer to each question in the space following the question
(and before the next question if one exists). You can use any blank
space in the paper for rough work by drawing a line (either vertical
or horizontal), writing “Rough work” on one side of it, and using the
demarcated space for rough work.

Question Marks
1 /5
2 /5
3 /5

Total: /15

Question Marks
4 /3

Question 1. Let I denote the set of all 3-armed bandit instances in which each arm yields Bernoulli
rewards. Each instance I ∈ I is of the form I = (p1, p2, p3), where p1, p2, p3 ∈ [0, 1] are the mean rewards
of arms a1, a2, and a3, respectively. Recall that a history records the “arm pulled, reward obtained”
sequence when an algorithm interacts with the bandit.

1a. Consider the following history h after 7 pulls, which is generated by a deterministic algorithm L.

h
def
= (a3, 1, a2, 1, a2, 0, a3, 0, a1, 1, a3, 1, a2, 0).

Which bandit instance Ī ∈ I has the highest probability of generating history h while executing L?
If there are multiple such instances, specify any one. [2 marks]

1b. What is the probability that Ī (from part 1a) generates h if L is executed? [1 mark]

1c. Suppose we execute a randomised algorithm L′, which at each step selects an arm to pull uniformly
at random. If L′ is executed for 7 steps on instance I = (p1, p2, p3), which history h′ has the highest
probability of being generated? Describe h′ in terms of variables p1, p2, and p3. If there is a tie, you
can break it arbitrarily. [2 marks]
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Answer 1a. Since L is deterministic and it can generate h, we infer that its first action is always a3;
from history a3, 1 it selects a2; from history a3, 1, a2, 1 it selects a2, and so on. Hence, the probability that
instance I = (p1, p2, p3) generates h when executing L is

p3 × p2 × (1− p2)× (1− p3)× p1 × p3 × (1− p2) = p1 ×
(
p2 × (1− p2)

2
)
×
(
(p3)

2 × (1− p3)
)
.

This probability is maximised for the instance having p1 = 1, p2 =
1
3
, p3 =

2
3
.

Answer 1b. The probability of generating h while runining L on the maximising instance from part 1a is

1× 1

3
× 4

9
× 4

9
× 1

3
=

16

729
.

Answer 1c. Since L′ selects arms uniformly at random at each step, the probability of the subsequence

of arms within any history is identical for all histories—in fact exactly equal to
(
1
3

)7
. The difference in the

probabilities of different histories arises from the probability of 0′s and/or 1′s being generated as rewards
by the respective arms. If in history h, each arm a generates sa 1’s and fa 0’s, then the probability of h is

q =

(
1

3

)7

(p1)
s1(1− p1)

f1(p2)
s2(1− p2)

f2(p3)
s3(1− p3)

f3 .

In this question, we have (p1, p2, p3) fixed; we are asked for which history (or histories) the probability q is
largest. Since we have the constraint that s1 + f1 + s2 + f2 + s3 + f3 = 7, we have to work out how to split
7 into portions to allot as exponents to the factors p1, 1− p1, p2, 1− p2, p3, 1− p3 such that the product
is maximised. Clearly we should allocate all 7 units to the largest among these, breaking ties arbitrarily.
If allotting to sa for some arm a, the rewards in h′ would all be 1; if allotting to fa for some arm a, the
rewards in h′ would all be 0. Formally, let

ā = argmax
a∈{a1,a2,a3}

∣∣∣∣pa − 1

2

∣∣∣∣ .
Then we can take

h′ =

{
(ā, 1, ā, 1, ā, 1, ā, 1, ā, 1, ā, 1, ā, 1) if pā ≥ 1

2
,

(ā, 0, ā, 0, ā, 0, ā, 0, ā, 0, ā, 0, ā, 0) otherwise.
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Question 2. Consider an n-armed bandit setup, n ≥ 2, in which each arm yields Bernoulli rewards. The
arms are a1, a2, . . . , an, and their respective mean rewards are p1, p2, . . . , pn ∈ [0, 1].

We examine a setting in which algorithms for interacting with this bandit must specify a pair of distinct
arms to pull on each time step. Thus, on time step t ≥ 0, the algorithm specifies (xt, yt) such that xt

and yt are both from the set {a1, a2, . . . , an}, and xt ̸= yt. Now, the environment selects one of xt and
yt uniformly at random (that is, each with probability 1/2), pulls the selected arm, and returns the 0 or
1 reward obtained. For example if (a5, a8) is the pair specified by the algorithm at some time step, then
the environment selects one of these arms uniformly at random. Suppose a5 is selected. Then a5 is pulled,
generating a reward of 1 with probability pa5 , and a reward of 0 with probability 1− pa5 . Only the reward
(0 or 1) is communicated back to the algorithm—it is not disclosed which arm from the pair was pulled to
obtain the reward. This process continues until T pulls have been performed, where T ≥ 2 is the horizon.

Let L be the set of all algorithms from the family described above (that is, those specifying a pair of
arms to pull at each time step). For algorithm L ∈ L, bandit instance I, and horizon T , let rew(L, I, T )
denote the expected cumulative reward obtained by L on I over horizon T . For a given bandit instance I
and horizon T , let rew⋆(I, T ) be the maximum expected cumulative reward achievable by any algorithm:
that is,

rew⋆(I, T ) = max
L∈L

rew(L, I, T ).

Accordingly, for algorithm L ∈ L, instance I, and horizon T ≥ 2, we define

regret(L, I, T ) = rew⋆(I, T )− rew(L, I, T ).

Describe an algorithm L ∈ L such that for every instance I and horizon T ≥ 2,

regret(L, I, T ) ≤ CI ln(T ),

where CI is a constant depending on I. Prove that your algorithm achieves this regret upper bound, and
comment on the form taken by CI (an exact expression is not required). You are free to reuse results
presented in class. [5 marks]
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Answer 2. For i, j ∈ {1, 2, . . . , n}, i < j, we treat the pair (i, j) as an arm in a new bandit setup I ′.
There are

(
n
2

)
arms in I ′. Playing (i, j) on I ′ is accomplished by playing i and j as a pair on the original

instance I. Clearly the reward obtained is Bernoulli, with mean

1

2
{pi(1) + (1− pi)(0)}+

1

2
{pj(1) + (1− pj)(0)} =

1

2
(pi + pj).

All we have to do is attain logarithmic regret on I ′, which is accomplished by implementing, say, UCB
or Thompson Sampling on I ′. In particular, we have to maintain statistics (such as successes and failures)
for each pair (i, j), rather than separately for each arm in I.

The regret upper bound for this algorithm would be CI ln(t) where CI is the product of a constant with
the sum of the “gap terms” of non-optimal pairs of arms. Define

rmax
def
= max

1≤i<j≤n
(pi + pj).

Then we would have a gap term of the form 1
rmax−pi−pj

for each (i, j) pair, with 1 ≤ i < j ≤ n, satisfying
pi + pj < rmax.
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Question 3. Consider the python program shown below right.

Recall that numpy.random.random() returns
a number drawn uniformly at random from [0, 1).
Also recall that elif is python syntax for “else
if”, so at most one of the lines marked L1, L2,
and L3 can be executed within any iteration of
the while loop.

Answer the questions below about the out-
put of the program: that is, the number t that is
printed out. Assume that the environment com-
putes with infinite precision and no overflows.
For all three parts, show steps/reasoning to ar-
rive at your answers.

3a. What is the set of all possible values that
t can take? [1 mark]

3b. What is E[t]—that is, the expectation of
t? Provide as a number. [3 marks]

3c. What is P{t < E[t]}—that is, the probabil-
ity that t is smaller than its expectation?
Provide as a number. [1 mark]

########## START ##############

import numpy

s = 0

t = 0

while s < 2:

increment = 0

x = numpy.random.random()

if(s == 0 and x < 0.8):

increment = 1 #L1

elif(s == 1 and x < 0.2):

increment = -1 #L2

elif(s == 1 and x < 0.8):

increment = 1 #L3

s = s + increment

t = t + 1

print(t)

########### END ###############
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Answer 3. It is convenient to first visualise the flow of the program as a Markov Chain (that is, an MDP
with a single action from each state); the figure below shows the states and transition probabilities.

s = 0 s = 1 s = 2

0.2

0.8

0.2

0.2

0.6

t is nothing but the number of steps taken from state “s = 0” to reach state “s = 2”, which is terminal.

Answer 3a. Clearly t takes values from the set {2, 3, 4, . . . ,∞}.

Answer 3b. The answer is V (s = 0), which is obtained by solving these Bellman equations:

V (s = 0) = 0.2{1 + V (s = 0)}+ 0.8{1 + V (s = 1)},
V (s = 1) = 0.2{1 + V (s = 0)}+ 0.2{1 + V (s = 1)}+ 0.6{1 + V (s = 2)},
V (s = 2) = 0.

The answer works out to E[t] = V (s = 0) = 10
3
.

Answer 3c. This answer can be worked out from the answers to parts 3a and 3b.

P{t < E[t]}
= P{t = 2}+ P{t = 3}
= P{s = 0 → s = 1 → s = 2}+ P{s = 0 → s = 0 → s = 1 → s = 2}+ P{s = 0 → s = 1 → s = 1 → s = 2}
= 0.8× 0.6 + 0.2× 0.8× 0.6 + 0.8× 0.2× 0.6

= 0.672.
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Question 4. Consider an arbitrary MDP (S,A, T,R, γ), notation as usual, which encodes a continuing
task with γ < 1. Suppose there are n ≥ 2 states and k ≥ 2 actions. Let Π be the set of all deterministic,
Markovian, stationary policies π : S → A for the MDP. Hence, |Π| = kn. Now consider the following
claim, denoted C.

Claim C. The kn distinct policies in Π can necessarily be arranged in a sequence such
that for any two consecutive policies in the sequence, the latter policy’s value function
dominates or equals the former policy’s value function. In other words, we can name
the |Π| policies π1, π2, . . . , π|Π| such that for each i ∈ {1, 2, . . . , |Π| − 1}, πi+1 ⪰ πi.

Is Claim C correct? If your answer is yes, provide a proof. If your answer is no, provide a counterex-
ample. [3 marks]
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Answer 4. Claim C is not correct. If the claim was correct, it would imply that for every pair of policies
π and π′, either “π ⪰ π′” or “π′ ⪰ π” must be true. On the other hand, we know that there are MDPs
with pairs of incomparable policies—such that each policy in the pair has a strictly larger value for some
state than the other policy.

Concretely, consider a 2-state, 2-action MDP, in which both actions a1 and a2 have self-loops at each
state; let the states be s1 and s2. The reward is 0 for every transition of a1, and 1 for every transition of
a2. Take γ = 1

2
. And let πi,j denote the policy taking ai from s1 and aj from s2 for i, j ∈ {1, 2}. The value

functions of these policies are given below.

Policy π V π(s1) V π(s2)
π11 0 0
π12 0 2
π21 2 0
π22 2 2

Policies π12 and π21 are incomparable—hence no sequence that contains both of them can have the
property required in Claim C.
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