
CS 337 (Spring 2019): Class Test 2

Instructor: Shivaram Kalyanakrishnan

4.00 p.m. – 5.15 p.m., February 25, 2019, 101/103/105 New CSE Building

Total marks: 20

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. Consider the bootstrap operation: given a data setD = {(x1, y1), (x2, y2), . . . , (xn, yn)}
(the form of (xi, yi) does not matter for this question), we create new data set D1, of the same size,
as follows.

D1 ← ∅.
Repeat n times:

Select i ∈ {1, 2, . . . , n} uniformly at random and add (xi, yi) ∈ D to D1.

Assume D is a set with distinct elements. In general D1 can be a multiset with repeated entries.

1a. What is the probability that a given data point (xi, yi) ∈ D will occur exactly k times in D1,
where 0 ≤ k ≤ n? [1 mark]

1b. What is the expected number of times that a given data point (xi, yi) ∈ D will occur in D1?
[1 mark]

1c. Suppose a data set D2 is created from D using the same process used to generate D1, but
independently. What is the expected number of elements that D1 and D2 will have in
common? We use the convention that the number of elements common to D1 and D2 is
|Set(D1) ∩ Set(D2)|, where Set() only retains the unique elements. For example, multisets
{A,A,B,C,D} and {A,A,A,B,B,E} have two elements, A and B, in common. [2 marks]

Question 2. Consider the problem of linear regression with regularisation. We know that regu-
larisation is meant to yield smaller-magnitude weights—but is it guaranteed to do so? Concretely,
consider L2 regularisation. As usual, let {(x1, y1), (x2, y2), . . . , (xn, yn)} be the input data set, with
xr ∈ R

d and yr ∈ R for r ∈ {1, 2, . . . , n}. For 0 < λ1 < λ2, let

w1 = argmin
w∈Rd

(

n
∑

r=1

(yr −w · xr)2 + λ1‖w‖2
)

, and w2 = argmin
w∈Rd

(

n
∑

r=1

(yr −w · xr)2 + λ2‖w‖2
)

,

where ‖w‖ =
√

(w1)2 + (w2)2 + · · ·+ (wd)2. Is it guaranteed that ‖w2‖ ≤ ‖w1‖? Prove that your
answer is correct. [4 marks]



Question 3. Consider the special case of the k-means clustering problem with k = 2 and d = 1:
in other words, we wish to cluster n ≥ 3 points x1, x2, . . . , xn ∈ R into two clusters and assign
the clusters centres so as to minimise the sum squared error. Is the k-means clustering algorithm
guaranteed to find an optimal clustering for this special case? Assume that the initial clustering
has one or more points assigned to each cluster, but is otherwise arbitrary. Prove that your answer
is correct. [4 marks]

Question 4. You are given access to a function median() that takes as input a real-valued array Z
and returns the median of the elements in Z. Note that Z need not be sorted, and also note that
the median is a value, not an index. Indeed there are versions of median() that run in time linear
in the size of Z; assume you are given such a version.

Provide pseudocode for a function NearestNeighbours(k, n, d, x,D), which should return the
labels of k nearest points in the n-sized data set D to a query point x ∈ R

d. Assume 1 ≤ k ≤ n. D
is of the form (xr, yr)n

r=1, where xr ∈ R
d and yr ∈ {0, 1}.

• Use D.x[i] to access the ith data element of D, which is a vector of size d. The corresponding
label is D.y[i]. You can also use D.x and D.y to access the entire list of data points and
labels, respectively.

• Use Euclidean distance for identifying nearest neighbours. Assume no two points in D are at
the same distance from x, and hence there are no ties to resolve.

• Your code should return a k-sized array of labels, each 0 or 1.

• Use standard operators for arithmetic, comparison, logic, assignment, etc. The only functions
you can use are median() and those functions you fully define yourself.

Your aim is to make NearestNeighbours(k, n, d, x,D) as efficient as you can by using median()
appropriately. What is the complexity of your implementation as a function of n and k (ignore the
dependence on d)? [6 marks]

Question 5. In the real world, labelled data sets are hard to come by, but there is a large amount
of unlabeled data. For example, a hospital might have a large collection of chest X-rays from
previous years (whose labels have not been entered into their database), but only a small number
of recent ones in which the X-rays are tagged with the corresponding diagnosis.

Abstractly, assume that we have labelled data set DL = {(x1, y1), (x2, y2), . . . (xn, yn)} and also
an unlabelled data set DU = {z1, z2, . . . , zm}, where x and z come from the same domain and
distribution. We have seen several ways to build classification models by training on DL. Do you
think DU can also help in the process? In what ways? [2 marks]



Solutions

1a.
(

n

k

)

pk(1− p)n−k where p = 1
n
.

1b. Since the bootstrap operation is symmetric with respect to all the elements of D, and since
D1 has the same number of elements as D, the expected number of times a given point (xi, yi) ∈ D
will occur in D1 is 1. Alternatively, we can also use the answer to the previous question to calculate
the expectation as follows:

n
∑

k=0

k

(

n

k

)

pk(1− p)n−k =

n
∑

k=1

k

(

n

k

)

pk(1− p)n−k

=
n
∑

k=1

n

(

n− 1

k − 1

)

pk(1− p)n−k

=

n−1
∑

l=0

np

(

n− 1

l

)

pl(1− p)(n−1)−l

= np

= 1.

1c. The expected number of times D1 and D2 will have some fixed element (xi, yi) ∈ D in common
is the probability that it occurs in both D1 and D2, which is (1− (1− p)n)2. The expected number
of elements D1 and D2 will have in common is the sum of the expectations for the individual data
points, and therefore n(1− (1− p)n)2.

2. For w ∈ R
d, let E(w) =

∑

n

r=1(y
r −w · xr). Since w1 = argminw∈Rd(E(w) + λ1‖w‖2), we have

E(w1) + λ1‖w1‖2 ≤ E(w2) + λ1‖w2‖2.

Similarly, from the definition of w2, we get

E(w2) + λ2‖w2‖2 ≤ E(w1) + λ2‖w1‖2.

These inequalities combine to give

λ2(‖w2‖2 − ‖w1‖2) ≤ E(w1)− E(w2) ≤ λ1(‖w2‖2 − ‖w1‖2),

which means
(λ2 − λ1)(‖w2‖2 − ‖w1‖2) ≤ 0.

Since λ2 > λ1, we infer ‖w2‖2 ≤ ‖w1‖2 =⇒ ‖w2‖ ≤ ‖w1‖.



3. We show by example on a data set with n = 3 points that the k-means clustering algorithm
need not find an optimal clustering. Take x1 = 1;x2 = 5, x3 = 8. Let

• Clustering 1 assign x1 and x2 to cluster 1, with centre µ1 = 3; and x3 to cluster 2, with centre
µ2 = 8, and

• Clustering 2 assign x1 cluster 1, with centre µ1 = 1; and x2 and x3 to cluster 2, with centre
µ2 = 6.5.

For both clusterings, the centres are optimal, and given the centres, the cluster assignment is opti-
mal. In other words, both clusterings are locally optimal. Hence, if initialised with either of these
clusterings, the k-means clustering algorithm will have already converged. However, we note that
the SSE of Clustering 1 is 8 and the SSE of Clustering 2 is 4.5. Clustering 2 is the sole optimal 2-
clustering of this data set—which means k-means sometimes converges to a suboptimal clustering.

4. It is possible to find the k nearest neighbours of x in O(n) time for all k, without any prepro-
cessing. First we calculate the distance of each point to x; this step needs O(n) time. We can find
the median distance again in O(n) time, and through comparison, identify the ⌈n/2⌉ closest points
and the ⌊n/2⌋ farthest points, putting these in separate arrays. The total time taken thus far is
O(n). Now, if k ≤ ⌈n/2⌉, it follows that we only need search the “closer points” array for the k
nearest neighbours; otherwise we look for the (k − ⌈n/2⌉) nearest points in the “farther points”
array and return them along with the entire “closer points” array. In either case, our new search
is restricted to ⌈n/2⌉ points, and so the total time taken remains linear in n.

The pseudocode on the following page implements this logic.



Distance(x, x′)
s← 0.
For i ∈ {1, 2, . . . , |x|}:

t← x[i]− x′[i].
s← s+ t× t.

s← √s.
Return s.

Append(x, x′)
For i ∈ {1, 2, . . . , |x|}:

x′′[i]← x[i].
For i ∈ {1, 2, . . . , |x′|}:

x′′[i+ |x|]← x′[i].
Return x′′.

NearestNeighbours(k, n, d, x,D)
If k = n

Return D.y.
For i ∈ {1, 2, . . . , n}:

Z[i]← Distance(x,D.x[i]).
z ← Median(Z).
l← 1; r ← 1.
For i ∈ {1, 2, . . . , n}:

If Z[i] ≤ z
Dleft.x[l]← D.x[i].
Dleft.y[l]← D.y[i].
l← l + 1.

Else
Dright.x[r]← D.x[i].
Dright.y[r]← D.y[i].
r ← r + 1.

If k ≤ ⌈n
2
⌉

Return NearestNeighbours(k, ⌈n
2
⌉, d, x,Dleft).

Else
Return Append(Dleft.y, NearestNeighbours(k − ⌊n2 ⌋, ⌊n2 ⌋, d, x,Dright)).

5. Not surprisingly, it is of much interest to use DU for training a better model: the entire area
of “semi-supervised learning” is devoted to this cause. The student is referred to the relevant
Wikipedia page for a descriptive account of this topic:

https://en.wikipedia.org/wiki/Semi-supervised learning.
In short, DU (which is usually much larger than DL) can provide statistical strength to any

operations performed solely on the “x” part of DL, such as dimensionality reduction. Another
popular approach is transduction, in which labels are estimated for points in DU based on their
proximity to points in DL (say by clustering), and thereby a larger labelled data set is used (using
the same supervised learning pipeline as before) for training.


