
CS 337 (Spring 2019): End-semester Examination

Instructor: Shivaram Kalyanakrishnan

5.30 p.m. – 8.30 p.m., April 28, 2019, 101/103/105 New CSE Building

Total marks: 40

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. Recall that the “L0 norm” of a vector V , written ‖V ‖0, denotes the number of non-
zero elements of V . For example, ‖(−5, 0, 0.02)‖0 = 2, ‖(1, 1,−1, 0, 1)‖0 = 4, and ‖(0, 0, 0)‖0 = 0.
This question considers the use of this norm for regularisation in linear regression. Consider the
following data set with input variables x1, x2 ∈ R and label y ∈ R. There are 3 data points.

r xr1 xr2 yr

1 -1 2 3
2 0 1 3
3 1 0 1

For w = (w1, w2) ∈ R
2, define a loss

L(w) =

(

3
∑

r=1

(yr − w1x
r
1 − w2x

r
2)

2

)

+ λ‖w‖0,

where λ ≥ 0 is the regularisation coefficient.

1a. Plot min
w∈R2 L(w) as a function of λ for λ ∈ [0, 20]. [8 marks]

1b. Is the “L0 norm” commonly used in practice for regularisation? Why or why not? [1 mark]

Question 2. This question is about the use of kernels in machine learning.

2a. In 2-dimensional space R
2, the function K : R2 ×R

2 → R is a kernel if there exists a feature
map F : R2 → R

d for some dimension d ≥ 1 such that for x, z ∈ R
2, K(x, z) = F (x) · F (z).

For each of the following functions, answer whether it is a kernel (in 2-dimensional space),
and prove that your answer is correct.

2a(i). K1(x, z) = 1 + (x · z)3. [2 marks]

2a(ii). K2(x, z) = (x+ z) · (x− z). [2 marks]

2b. What is the purpose of using kernels in conjunction with SVMs? Describe one strength and
one weakness of kernelised SVMs when compared to neural networks. [2 marks]



Question 3. A data set D contains n ≥ 1 labelled points, each point being 2-dimensional, real-
valued, and its label also real-valued. In other words, D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where
for r ∈ {1, 2, . . . , n}, xr ∈ R

2 and yr ∈ R.
If a model produces prediction yrpred for each data point r, the loss associated with the model is

taken to be
∑n

r=1(y
r−yrpred)2. Consider the family of models parameterised by (τ1, τ2, τ3, π1, π2, π3, π4) ∈

R
7, which make a prediction yqpred ∈ R for a query point xq ∈ R

2 as follows.

If xq

1 < τ1:
If xq

2 < τ2:
yqpred ← π1.

Else
yqpred ← π2.

Else:
If xq

2 < τ3:
yqpred ← π3.

Else
yqpred ← π4.

Return yqpred.

Describe a procedure to take the data set D as input and compute an optimal parameter vector
(τ⋆1 , τ

⋆
2 , τ

⋆
3 , π

⋆
1, π

⋆
2, π

⋆
3, π

⋆
4) in the sense that it gives a model with minimum loss on D.

You can use both descriptive statements in English and snippets of pseudocode. If convenient,
treat D as an n-sized array of objects (x, y), where x is itself a 2-dimensional array. You can assume
access to standard primitives such as testing for membership and sorting. To avoid worries related
to tie-breaking, assume no two x1- or x2-values are identical in the data set.

Your procedure will primarily be assessed for correctness. However, to obtain full marks, it
must run in O(n2) time. Be sure to provide a sketch arguing for correctness and the claimed time
complexity. [7 marks]

Question 4. Consider an MDP (S,A, T,R, γ), with notations being as usual and discount factor
γ ∈ [0, 1). Recall that the Value Iteration algorithm produces a sequence V 0, V 1, V 2, . . . , each
element being a mapping from S to R, which converges to the optimal value function V ⋆.

4a. For t = 0, 1, . . . , write down how V t+1 is obtained from V t. [2 marks]

4b. Assume that there is a scalar Rmax > 0 such that each individual reward obtained from R
lies in [0, Rmax]. Also assume that Value Iteration is initialised with the zero vector: that is,
V 0 = 0. Show that for t = 0, 1, . . . and for s ∈ S:

V ⋆(s)− V t(s) ≤ γtRmax

1− γ
. [5 marks]



Question 5. For a particular search instance, h1 and h2 are both consistent heuristics, and
additionally, for all nodes n, h1(n) ≥ h2(n). Let g(n) denote the path cost of node n. Assume that
there exists an optimal path to goal of finite length. In order to avoid reasoning about ties, assume
that the search instance and the heuristics are such that for every pair of distinct nodes n and n′,
g(n) + h1(n) 6= g(n′) + h1(n

′) and g(n) + h2(n) 6= g(n′) + h2(n
′).

Let N1 be the number of expanded nodes if A⋆ search is run with h1 as the heuristic, and N2

be the number of expanded nodes if it is run with h2 as the heuristic. Is it guaranteed that N1 will
not exceed N2? Or is it guaranteed that N2 will not exceed N1? Or can the order between N1 and
N2 vary depending on the search instance? Justify your answer with a proof. [4 marks]

Question 6. Consider the Bayes Net X1 → X2 → X3, wherein each variable takes Boolean values
(without and with negation in corresponding lower case). The conditional probability distributions
are as follows; probabilities for negated values are implicit. Assume a, b, c ∈ (0, 1).

P{x1} = a; P{x2|x1} = P{x3|x2} = b; P{x2|¬x1} = P{x3|¬x2} = c.

6a. Express the following probabilities in terms of a, b, and c. [2 marks]

– P{x2|x1, x3} (denoted α1 for use in 6b).

– P{x2|x1,¬x3} (denoted α2 for use in 6b).

– P{x3|x1, x2} (denoted α3 for use in 6b).

– P{x3|x1,¬x2} (denoted α4 for use in 6b).

6b. Consider the use of Gibbs Sampling to draw samples from the conditional probability distri-
bution of X2, X3 given X1 = x1. Assume that the Gibbs Sampling process achieves steady
state probability γ1 of being in state (x1, x2, x3), γ2 of being in state (x1, x2,¬x3), and γ3 of
being in state (x1,¬x2, x3). Fill in the blanks below with arithmetic functions of (some or all
of) α1, α2, α3, and α4 such that the resulting recurrence reflects the dynamics of the Gibbs
Sampling process.

γ1 = ( × γ1) + ( × γ2) + ( × γ3). [2 marks]

6c. Express P{x2, x3|x1}, P{x2,¬x3|x1}, and P{¬x2, x3|x1} in terms of a, b, and c. Does taking
γ1 = P{x2, x3|x1}, γ2 = P{x2,¬x3|x1}, γ3 = P{¬x2, x3|x1} satisfy the recurrence you have
written in 6b? [3 marks]



Solutions

1a. We partition R
2 into three sets:

• S2 = {(w1, w2) ∈ R
2 : w1 6= 0, w2 6= 0}.

• S1 = {(w1, w2) ∈ R
2 : (w1 6= 0, w2 = 0) ∨ (w1 = 0, w2 6= 0)}.

• S0 = {(w1, w2) ∈ R
2 : w1 = 0, w2 = 0}.

The idea behind the partitioning is that (1) the elements w of each set have the same value of
‖w‖0 and (2) within each set, the minimiser and mimumum of L(w) are easy to find. We find each
minimum in turn.

argmin
(w1,w2)∈S2

L((w1, w2)) = argmin
(w1,w2)∈S2

((3 + w1 − 2w2)
2 + (3− w2)

2 + (1− w1)
2)) =

(

4

3
,
7

3

)

;

min
(w1,w2)∈S2

L((w1, w2)) =
2

3
+ 2λ.

The minimum from S1 is determined by considering two cases:

min
(w1,w2)∈S1

L((w1, w2)

= min{ min
(w1 6=0,w2=0)

L((w1, w2)), min
(w1=0,w2 6=0)

L((w1, w2))}

= min{ min
(w1 6=0,w2=0)

((3 + w1)
2 + (1− w1)

2 + 9 + λ), min
(w1=0,w2 6=0)

((3− 2w2)
2 + (3− w2)

2 + 1 + λ)}

= min{17 + λ,
14

5
+ λ} = 14

5
+ λ.

S0 only has a single element, (0, 0), and so

min
(w1,w2)∈S0

L((w1, w2)) = 32 + 32 + 12 + (0)λ = 19.

Now, we obtain

min
w∈R2

L(w) = min{min
w∈S2

L(w), min
w∈S1

L(w), min
w∈S0

L(w)} = min

{

2

3
+ 2λ,

14

5
+ λ, 19

}

.

The function is a continuous, non-decreasing, piecewise linear function of λ, given by

min
w∈R2

L(w) =











2
3 + 2λ, 0 ≤ λ ≤ 32

15 ,
14
5 + λ, 3215 < λ ≤ 16,

19, λ > 16.

1b. The “L0 norm” is not used commonly in practice for regularisation because there are no known
techniques to solve the resulting optimisation problem in a computationally-efficient manner. In
1a, the problem was 2-dimensional, and so we could enumerate the few possible configurations of
weights corresponding to each possible value of ‖w‖0. However, the number of configurations is
exponential in the number of dimensions. Our approach would not be feasible in higher dimensions.



2a(i). For x ∈ R, take F (x) = (1, (x1)
3, (x2)

3,
√
3(x1)

2x2,
√
3x1(x2)

2). Then

F (x) · F (z) = 1 + (x1)
3(z1)

3 + (x2)
3(z2)

3 + 3(x1)
2x2(z1)

2z2 + 3x1(x2)
2z1(z2)

2

= 1 + (x1z1 + x2z2)
3 = 1 + (x · z)3 = K1(x, z),

implying that K1 is a kernel function.

2a(ii). Assume that for some feature map F , indeed K2(x, z) = F (x) · F (z). Then, we see that
K2(z,x) = F (z) · F (x) must be equal to K2(x, z): in other words, K2 must be symmetric with
respect to its arguments. Clearly it is not, and so cannot be a kernel function.

2b. The basic SVM formulation, say for binary classification, is designed to find a linear separator
between two sets of points. However, in practice, the points might need a non-linear separating
boundary. Kernels implicitly transform the input points to a higher-dimensional space wherein
they are hoped to be “more separable”.

Whether used with or without kernels, SVM training amounts to solving a convex optimisation
problem, which guarantees an optimal solution. This aspect is in contrast with neural network
training, which optimises a non-convex function, and can get stuck at local optima. However, neu-
ral networks have the advantage of inferring higher-order representations from the data (in their
many hidden layers). Traditional usage of SVMs with kernels usually implies applying the same
non-linear operations (or a few from a small set) regardless of the data set, which limits the prac-
tical efficacy of the method.

3. From the template of the model, it is apparent that the points are partitioned into four clusters
based on their x1 and x2 coordinates, and a single prediction is associated with each cluster. The
easy portion to first get out of the way is to observe that for any fixed clustering (determined by
τ1, τ2, and τ3), the prediction made for each cluster must be its mean y value (which minimises
the SSE for that cluster). That settles π⋆

1 π⋆
2, π

⋆
3, and π⋆

4, provided we find τ⋆1 , τ
⋆
2 , and τ⋆3 . We find

these optimal thresholds by examining all the relevant (τ1, τ2) and (τ1, τ3) pairs.
There are n−1 possible ways to divide the points based on x1 into sets of sizem ∈ {1, 2, . . . , n−1}

and n−m; it suffices to consider n− 1 values for τ1. If τ1 results in an m:(n−m) split, similarly it
suffices to consider m−1 values for τ2 and n−m−1 values for τ3. Further, τ2 and τ3 independently

determine the loss of two separate sets of points, which means θ(n2) evaluations suffice to identify
(τ⋆1 , τ

⋆
2 , τ

⋆
3 ). We have implicitly assumed that for given (τ1, τ2, τ3), there is no additional overhead

to create/store/represent the four resulting clusters. This assumption is justified if we initially sort
the points on x1 and x2—which should take no more than θ(n log n) time.

A näıve way to implement our solution would be to calculate the SSE of each cluster for each of
the θ(n2) settings of (τ1, τ2) (and (τ1, τ3)), but this approach would result in an overall complexity
of θ(n3). To gain efficiency, consider that the m− 1 clusterings obtained by varying τ2 in sequence
(while keeping τ1 fixed) will progress from a 1:(m - 1) split, incrementally, all the way to an m−1:1
split. Conveniently, the SSE of an (a − 1):(b + 1) split can be obtained in only θ(1) time from
the SSE of an a:b split, as long as we store the number of points a, sums of the y-coordinates
sumy and the sums of the squares of the y-coordinates sumSquaredy of each cluster. Clearly these
quantities can be updated in θ(1) time as points are added or removed. The SSE is given by
sumSquaredy − a · (sumy)

2 and the mean is given by sumy/a.



4a. For t = 0, 1, . . . and s ∈ S:

V t+1(s)← max
a∈A

∑

s′∈S

T (s, a, s′){R(s, a, s′) + γV t(s′)}.

4b. We prove the result by induction on t. For t = 0, we have to show that for s ∈ S,

V ⋆(s) ≤ Rmax

1− γ
,

which is evident since V ⋆(s) is the expected infinite discounted reward obtained by a policy, in this
case an optimal policy. Even if each reward is maximum, V ⋆(s) can at most be

Rmax + γRmax + γ2Rmax + · · · =
Rmax

1− γ
.

Assume the result is true for some t ≥ 0. Take π⋆ to be any optimal policy. We have, for s ∈ S:

V t+1(s) = max
a∈A

∑

s′∈S

T (s, a, s′){R(s, a, s′) + γV t(s′)}

≥
∑

s′∈S

T (s, π⋆(s), s′){R(s, π⋆(s), s′) + γV t(s′)}

≥
∑

s′∈S

T (s, π⋆(s), s′)

{

R(s, π⋆(s), s′) + γ

(

V ⋆(s′)− γtRmax

1− γ

)}

,

wherein the last step applies the induction hypothesis and also the fact that the transition proba-
bilities are non-negative. By expanding out, we get

V t+1(s) ≥
∑

s′∈S

T (s, π⋆(s), s′)
{

R(s, π⋆(s), s′) + γ(V ⋆(s′)
}

−
∑

s′∈S

T (s, π⋆(s), s′)

{

γ

(

γtRmax

1− γ

)}

= V ⋆(s)− γt+1Rmax

1− γ
,

obtained by invoking Bellman’s Equations for π⋆ and equating the sum of transition probabilities
from (s, π⋆(s)) to 1.

A second, direct approach would be to split

V ⋆(s) = Eπ⋆{r0 + γr1 + γ2r2 + . . . |s0 = s}

into a sum of
T1 = Eπ⋆{r0 + γr1 + γ2r2 + · · ·+ γt−1rt−1|s0 = s}

and
T2 = Eπ⋆{γtrt + γt+1rt+1 + . . . |s0 = s}.

It so happens that V t(s) is the maximum expected discounted t-step reward that can be possibly
obtained; in general one would have to follow a non-stationary (time-dependent) policy in order
to achieve it. T1 is the expected discounted t-step reward obtained by following π⋆, and so cannot
exceed V t(s). Since each individual reward is upper-bounded by Rmax, we see that T2 is at most
γtRmax

1−γ
. Hence, V ⋆(s) ≤ V t(s) + γtRmax

1−γ
.



5. Let R1 denote the run of A⋆ using h1 as the heuristic, and let R2 be the run of A⋆ using h2
as the heuristic. Since both heuristics are consistent, both will find an optimal-cost goal node G.
Since we have assumed that no two nodes have the same g + h1 (or g + h2) value, and since goal
nodes have a zero heuristic value, we infer that G must be the unique optimal goal node. Let its
cost be C⋆.

We also know that A⋆ expands nodes in non-decreasing order of g+h, which implies R1 expands
every node n such that g(n)+h1(n) ≤ C⋆ and R2 expands every node n such that g(n)+h2(n) ≤ C⋆.
Since for every node n, h1(n) ≥ h2(n), it follows that g(n) + h1(n) ≤ C⋆ =⇒ g(n) + h2(n) ≤ C⋆.
In other words, every node expanded by R1 is also expanded by R2 (the converse need not be true).
We have thus proven N1 ≤ N2.

6a.

α1 = P{x2|x1, x3} =
P{x1, x2, x3}

P{x1, x2, x3}+ P{x1,¬x2, x3}
=

abb

abb+ a(1− b)c
=

b2

b2 + (1− b)c
.

α2 = P{x2|x1,¬x3} =
P{x1, x2,¬x3}

P{x1, x2,¬x3}+ P{x1,¬x2,¬x3}
=

ab(1− b)

ab(1− b) + a(1− b)(1− c)
=

b

b+ 1− c
.

α3 = P{x3|x1, x2} =
P{x1, x2, x3}

P{x1, x2, x3}+ P{x1, x2,¬x3}
=

abb

abb+ ab(1− b)
= b.

α4 = P{x3|x1,¬x2} =
P{x1,¬x2, x3}

P{x1,¬x2, x3}+ P{x1,¬x2,¬x3}
=

a(1− b)c

a(1− b)c+ a(1− b)(1− c)
= c.

6b. Recall that to go from one state to another, Gibbs Sampling selects a non-given variable
uniformly at random and sets it to a value sampled from its distribution given all the other variables
in the current state. Therefore, in our example, the probability of going

• from (x1, x2, x3) to (x1, x2, x3) is
1
2α1 +

1
2α3;

• from (x1,¬x2, x3) to (x1, x2, x3) is
1
2α1;

• from (x1, x2,¬x3) to (x1, x2, x3) is
1
2α3; and

• from (x1,¬x2,¬x3) to (x1, x2, x3) is 0.

Consequently the steady state probabilities satisfy

γ1 =
α1 + α3

2
γ1 +

α3

2
γ2 +

α1

2
γ3.

6c.

P{x2, x3|x1} =
P{x1, x2, x3}

P{x1}
=

abb

a
= b2.

P{x2,¬x3|x1} =
P{x1, x2,¬x3}

P{x1}
=

ab(1− b)

a
= b(1− b).

P{¬x2, x3|x1} =
P{x1,¬x2, x3}

P{x1}
=

a(1− b)c

a
= (1− b)c.



It can be verified that taking γ1 = P{x2, x3|x1}, γ2 = P{x2,¬x3|x1}, γ3 = P{¬x2, x3|x1} indeed
satisfies the recurrence in 6b.

In class we did not undertake the proof of the consistency of Gibbs Sampling, which proceeds
by analysing a Markov Chain. In this example, too, we have not furnished a full proof—we have
only verified that the true probabilities of a subset of samples satisfy the steady state equation of
the Gibbs Sampling process. Nonetheless, the example is illustrative.


