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Supervised Learning for Shape Segmentation
Siddhartha Chaudhuri, CS344 guest lecture

(thanks to Vangelis Kalogerakis for many slides)



Problem Statement

 Decompose shape into
structurally/semantically
meaningful parts and
label the components
with meaningful names,

e.g. ‘leg”, “ear”, “torso”

.Head
.Torso
Jurper arm
Lower arm
. Hand
. Upper leg
. Lower leg
. Foot




Not as easy as It looks...

Shape Diameter Randomized Cuts
[Shapira et al. 10] [Golovinskiy and Funkhouser 08]
‘,‘I o

Random Walks Normalized Cuts
[Lai et al. 08] [Golovinskiy and Funkhouser 08]



Is human-level segmentation even possible
without higher-level cues?

[X. Chen et al. SIGGRAPH 09]



Image segmentation and labeling

[Konishi and Yuille 00, Duygulu et al. 02, He et al. 04,
Kumar and Hebert 03, Anguelov et al. 05, Tu et al.05, Schnitman et
al. 06, Lim and Suter 07, Munoz et al. 08,...]

building
&

airplane

grass

Textonboost
[Shotton et al. ECCV 06]



Shape Segmentation and Labeling
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Why supervised segmentation?

e Learn from examples

» Significantly better results than state-of-the-art

 No manual parameter tuning

e Can learn different styles of segmentation



Kalogerakis, Hertzmann and Singh, 2010

Shape representation

* Polygon mesh, each polygonal face has label

—

c,c,,c, € Labels
Labels = { head, neck, torso, leg, tail, ear }



Key Insight #1

- Describe a face by features of its neighborhood
- Train a classifier to predict label from features
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Feature vector

surface curvature x € R37HIC _ P(c| x)

singular values from PCA —

shape diameter

distances from medial surface

average geodesic distances

shape contexts

spin Images

contextual label features
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Faces plotted in feature space
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Learning a classifier

afagad

E: o.I_J

JointBoost classifier
[Torralba et al. 2007]
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Classifier results

E, (c;x) =—-logP(c|x)
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Classifier i1sn’t great
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Key Insight #2

- ——

- Face’s label is correlated with that of its neighbors
- Similar faces have similar labels



Conditional Random Field (CRF)

(an undirected probabilistic graphical model)

Label nodes C= {c }

Feature nodes X= {x }

Factorized model of P(C | X) =[] P(c,| X) =[]. P(c, | nbrs of ¢)
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Conditional Random Field on Faces

+ by
......

Inpu't Mesh Labeled Mesh

C*:argmin<ZaE(cl,X)+Z E (cl,c,,y,,)>

C
H_/ ~ 7 )
Unary term Pairwise term

Call this E for energy
Then P(C | X) = exp(-E) / Z, where Z is a normalization factor
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Conditional Random Field on Faces
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Conditional Random Field on Faces
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Conditional Random Field on Faces
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Conditional Random Field on Faces
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Conditional Random Field on Faces
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Edge features
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Conditional Random Field on Faces
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Pairwise Term

E,(c,cy,0,) =|{G(y)L(c,c")

Geometry-dependent term
1.0

0.8
- 0.6
- 04
- 0.2
- 0.0
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Pairwise Term

E,(c,c’y,0,) = G(y)L(c,c)

Label compatibility term

Head Neck Ear Torso Leg Tail
0 45 .07 1 0 |Head
45 0 00 | 00 oo | Neck
Lic.c) = .07 00 0 00 00 o |Ear
1 1 00 0 1 .56 |Torso
00 00 | 0 Leg
o0 00 © .56 00 0 _Tail
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Effect of the pairwise term

Unary term classifier Full CRF result
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Training and Inference

e Training:
— (Joint-) Boosting for unary classifier

— Holdout validation with grid search and gradient
descent for remaining parameters

* Inference (finding the optimal face labeling by
minimizing the CRF energy):

— a-expansion graph cuts



Key Insight #3

- A better unary classifier would improve results
- The best current visual classifiers, in general, are
convolutional neural networks (CNNs)

Model Top-1 | Top-5

Sparse coding [2] | 47.1% | 28.2%
SIFT + FVs [24] | 45.7% | 25.7%
CNN 37.5% | 17.0%

In 2012, the error rate in the ImageNet visual recognition

challenge was halved by a deep CNN (gains are typically

incremental). There are 1000 categories: the baseline of
random guessing would have a 99.9% error.



What i1s a Convolutional Neural Network?

* Imagine we have a set of N samples from some
signal

 We want to produce a prediction, e.g. whether the
signal represents a human voice, or a picture of a
cat, or a depth image of a building



What i1s a Convolutional Neural Network?

* We can compute the probability as a function F' of
these values

— In a fully-connected network, the function takes in all the
inputs at once, e.g. as g(w-X), where w is a weight vector
and g 1s some nonlinear transformation such as a sigmoid
function

T;T
EEEKEEEXEK



What i1s a Convolutional Neural Network?

 Fully-connected networks have some drawbacks

— The function is very high-dimensional (all inputs processed at once)

— No complex relationships between inputs are modeled (just a dot
product)

— Local information is not captured in a “translation-invariant” way
(a feature of the signal at the left end of the sequence must be
learned independently of the same feature occurring at the right end)

T
CE
1

Bowow m oW w w ww




What i1s a Convolutional Neural Network?

» Solution: a convolutional layer

o A filter (again, a dot product followed by a nonlinear
transformation) is applied on local neighborhoods of
the signal

T
FEW
Al Al Al |A]l A Al Al |A
A A




What i1s a Convolutional Neural Network?

 All filters share the same weights!
— Dramatically reduces number of parameters of the network

* The final output I1s a function of the filter responses

Each A node
has the same r F \l
set of 2

weights A A A A A A




What i1s a Convolutional Neural Network?

* We can make the neighborhoods larger, to capture
broader local features




What i1s a Convolutional Neural Network?

* Convolutional layers are composable: they can be stacked with
each layer providing inputs for the next layer

— Higher layers can capture more abstract features since they effectively cover
larger neighborhoods, and combine multiple different nonlinear
transformations of the signal

T
Another set r F \|

nodes

of weights
for all B
nodes
Ong set of
i (A

Christopher Olah



What i1s a Convolutional Neural Network?

e To make the network robust to small translations in
detected features, and to reduce the amount of
redundant data fed into higher layers, we introduce

pooling layers t
F
A

Return the max of

the inputs \
4




What i1s a Convolutional Neural Network?

* The signal can be 2D: the filters are now also 2D,

0

but it's all essentially the same
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What i1s a Convolutional Neural Network?

* The function computed by this gigantic model is
differentiable* w.r.t. the weights

— Given training data and a loss function measuring the
deviation between predicted and actual values, we can
optimize the weights by gradient descent

— The gradient of the loss function can
be found efficiently by a method
called back-propagation

......
-l i |- -t ol et

* nearly everywhere



Kalogerakis, Averkiou, Maji, Chaudhuri, https://arxiv.org/abs/1612.02808

Applying 2D image CNNs to 3D shapes

e Problem: Doing convolutions on arbitrary surfaces
at various scales Is hard

* Solution: Render shape from different directions,
apply image CNNs to the renderings, and merge
the results
— ... also lets us take advantage of huge amounts of

Image training data to pre-train the model (voxel grids
are typically 3D data-starved)


https://arxiv.org/abs/1612.02808
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Applying 2D image CNNs to 3D shapes
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This is a fully convolutional network that produces a probability for each label
at each pixel. It does not predict the class of the overall object.
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Results
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Overall results (on ShapeNetCore)

ShapeBoost|Guo et al.| ShapePFCN

Category Avg. 83.1 78.7 88.7
Category Avg. (>3 labels) 74.8 69.6 84.9
Dataset Avg. 80.4 74.7 88.0

Dataset Avg. (>3 labels) 74.2 68.7 84.5
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Per-class results

#train/test

#part

shapes |labels ShapeBoost|Guo et al.|ShapePFCN
Airplane (|250/250| 4 84.1 78.4 88.4
Bag 38 /38 2 94.3 95.7 95.5
Cap 27128 2 94.8 91.2 92.0
Car 250/250| 4 75.5 74.7 86.6
Chair {|250/250| 4 71.9 60.6 83.7
Earphone || 34 /35 3 76.0 74.6 82.9
Guitar ||250/250| 3 86.9 82.8 89.7
Knife ([196/196| 2 84.1 69.6 87.1
Lamp |/250/250| 4 63.8 57.7 78.3
Laptop |[222/222| 2 79.4 68.0 95.2
Motorbike|| 101 /101 | 6 78.6 76.9 87.5
Mug 92/92 2 98.1 97.7 98.1
Pistol |[137/138| 3 84.9 82.9 92.2
Rocket 33/33 3 83.2 79.6 81.5
Skateboard]| 76 /76 3 89.6 87.8 92.5
Table |/250/250| 3 83.9 81.0 88.0
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Effect of solution components

fixed | disjoint junary use

views |training | term |everything
Category Avg. 87.8 | 88.2 | 83.5 88.7
Category Avg. (>3 labels)| 84.0 | 84.5 | 76.2 84.9
Dataset Avg. 87.2 | &87.5 | 82.2 88.0
Dataset Avg. (>3 labels) | 83.6 | 84.2 | 76.7 84.5
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