Speech Recognition for Under-resourced Languages using Probabilistic Transcriptions

Preethi Jyothi Department of CSE, IIT Bombay

CS344 Guest Lecture February 7, 2017

Introduction

Automatic speech recognition (ASR): Translate spoken words into text

ASR isn't to blame for this...

Introduction

Automatic speech recognition (ASR): Translate spoken words into text

Modern ASR systems are dominated by statistical methods pioneered by [Jelenik '76]


```
Decoding: Given X, find \underset{W}{\operatorname{argmax}} p(W|X)
= \underset{W}{\operatorname{argmax}} p(W, X)
= \underset{W}{\operatorname{argmax}} \sum_{Q} p(X,Q,W)
```

ASR over the years

- Great progress in ASR performance
 - Aided by algorithmic and computational advances
- Recently: Baidu's
 Deep Speech 2
 comparable to
 human performance
 - Trained on about 10,000 hours of labeled speech
- But limited language diversity

Image reproduced from He & Deng, IEEE Signal Proc. Magazine, 2011

Languages with ASR

E.g., Google Voice Search supports < 80 out of 7000 languages

https://googleblog.blogspot.com/2012/08/voice-search-arrives-in-13-new-languages.html

- ASR systems in all languages?
 - Speech is the primary means of human communication
 - Develop natural interfaces for both literate & illiterate users
 - Contribute to preservation of endangered languages

Lack of Transcribed Corpora

- Major challenge: Building ASR systems is very data-hungry
 - Require large amounts of labeled speech data: Speech audio with *matching transcriptions*
 - Transcription by native speakers is a laborious and expensive process
- Crowdsourcing might help alleviate the problem
 - However, *significant* mismatch in native languages of crowd workers and native language populations in the world

Native Language Mismatch

- Very few (to zero) crowd workers speak minority languages
- Distributional mismatch between language background of crowd workers with the language expertise required to complete transcription tasks

Mismatched Crowdsourcing

- A major bottleneck for ASR in new languages: Labeled speech
- Transcribers need to be native speakers

Use Non-native Speakers? Mismatched Crowdsourcing How can it possibly work?!¹

¹[Jyothi & Hasegawa-Johnson AAAI-15 & Interspeech-15]

- How can it possibly work?! [Best '94, Flege '95, etc.]
 - We are typically bad at perceiving speech in foreign languages!
 - Unfamiliar sounds, no vocabulary, no language model to go by, distorted by native languages, ...

- How can it possibly work?! [Best '94, Flege '95, etc.]
 - We are typically bad at perceiving speech in foreign languages!
 - Unfamiliar sounds, no vocabulary, no language model to go by, distorted by native languages, ...
 - An extremely noisy channel

Mismatched Crowdsourcing

• An extremely noisy channel

- Learn channel characteristics of the foreign listener

• Learn channel characteristics of the foreign listener

A Probabilistic Finite State model

Trained using the Expectation-Maximization (EM) algorithm

Visualizing the Channel

(TE

- Learn channel characteristics of the foreign listener
- But also need to use an error-correcting code

- Learn channel characteristics of the foreign listener
- Use a repetition code!

- Learn channel characteristics of the foreign listener
- Use a repetition code!

Example

CUMULATIVE DECODING

Labeling Error Rates

 Impressive accuracy (~5% error) on a medium-vocabulary isolated-word task!

[Jyothi & Hasegawa-Johnson AAAI-15]

Information-theoretic Analysis

 Conditional entropy, H(X | Y), of the spoken words (Hindi), X, given the crowd transcripts Y, captures the amount of information lost in transmission

 H(X | Y) can be naively upper-bounded using corpus crossentropy

 However, errors in our channel model accumulate with increase in the number of repetitions, resulting in this upper-bound becoming less tight

Tighter bound on H(X | Y) using an auxiliary random variable, $Z \in \{0,1\}$

Consider
$$W = \epsilon$$
 when $Z = 0$, $W = X$ when $Z = 1$
We set $Z = 1$ when $q(x|y)$ is sufficiently low

W represents side channel information indicating when the model needs to be corrected

Conditional Entropy Estimates

Our upper-bound estimates for CE are clearly tighter than the naive cross-entropy upper-bound estimate

Mismatched Crowdsourcing for Continuous Speech

February 7, 2017

Decode each transcript individually using Maximum Likelihood Decoding and pick the output with the best score

Word error rate: 77%

Exact Maximum-Likelihood Decoding of multiple strings is intractable for long utterances

 \tilde{X}

Decode each transcript individually using Maximum Likelihood Decoding and pick the output with the best score

Word error rate: 77%

Can we do better? An outlier with a good score shouldn't be chosen over what many similar looking transcripts predict

<u>Data Filtering:</u> Use an edit-distance based similarity metric to discover a "cluster" to retain.

Can we do better? An outlier with a good score shouldn't be chosen over what many similar looking transcripts predict

Data Filtering

 \tilde{X}

Data Filtering: Use an edit-distance based similarity metric to discover a "cluster" to retain.

Word error rate: 68%

Can we do better? An outlier with a good score shouldn't be chosen over what many similar looking transcripts predict

 \tilde{X}

Data Filtering: Use an edit-distance based similarity metric to discover a "cluster" to retain.

Word error rate: 68%

<u>Can we do even better?</u>

Channel Merger

Data	Alignment			
Filtering	NP-hard!			
Discover "typical" transcripts	Approximation via incremental alignment algorithm			

Alignment

keeajaga giyajayga keeajaygah chaijega

k	е	е	_	а	-	j	а	_	g	а	_
-	g	i	У	а	-	j	а	У	g	а	-
k	е	е	-	а	-	j	а	У	g	а	h
-	_	С	h	а	i	j	е	-	g	а	-

kiyā jāyegā

Alignment

keeajaga giyajayga keeajaygah chaijega

k	Ε	_	а	j	а	g	а	
g	i	У	а	j	Y	g	а	_
k	Е	—	а	j	Y	g	а	h
С	-	_	Y	j	е	g	а	_

kiyā jāyegā

Channel Merger

Data	Alignment	Merge		
Filtering	NP-hard!	Merge into one		
Discover "typical" transcripts	Approximation via incremental alignment algorithm	probabilistic transcript		

Merge Transcripts

k	Е	_	а	j	а	g	а	_
g	i	У	а	j	Y	g	а	_
k	Е	_	а	j	Y	g	а	h
С	-	-	Y	j	е	g	а	_

kiyā jāyegā

Channel Merger

Data	Alignment	Merge				
Filtering	NP-hard!	Merge into one				
Discover "typical"	Approximation via incremental	probabilistic transcript				
transcripts	alignment algorithm	Model for merged channel				

Channel Merger

Data	Alignment	Merge	Shortlist
Filtering	NP-hard!	Merge into one	& Decode
Discover "typical" transcripts	Approximation via incremental alignment algorithm	probabilistic transcript Model for merged channel	List Decoding + Exact Decoding from List

Probabilistic Transcriptions

Tacapo piza strucka po zapecham trakapo trabiza Straka pose ta peesome straka po ta pisha strah kah poh chah peesh um chaka-pu shapisha stakkappoo sabeesham takapo chapiser Strike a pose some pizza

Probabilistic Transcriptions

Tacapo piza																		
S	t	r	a	-	k	а	р	0	z	t	a	-	р	E	-	S	0	m
S	t	r	а	-	k	а	р	0	-	t	a	-	р	i	-	S	а	-
S	t	r	а	h	k	а	р	0	-	С	а	h	р	E	-	S	u	m
S	t	r	Y	-	k	а	р	0	z	S	а	m	р	E	t	S	а	-
S	ť	r	a/ ai		k ^h	а	p ^h	С		t∫ ^h / t/s	a		p ^h	i/i:		∫/s	a	

Strike a pose some pizza

Probabilistic phone-based transcriptions derived from alignments¹

Transcription Error Rates

[Jyothi & Hasegawa-Johnson Interspeech-15]

Adapting ASR Systems using Mismatched Transcriptions

February 7, 2017

Next Step?

- Respectable accuracy from mismatched transcriptions
 - But can this be leveraged for building ASR systems?
- Plan: Baseline ASR trained on *other* languages will be *adapted* using mismatched transcriptions
 - Baseline could use data-hungry technology like Deep Neural Networks (DNNs)
- Project at 2015 Jelenik Summer Workshop [JSALT '15]
 - Several languages considered: Hungarian, Mandarin, Swahili etc.

More than meets the eye

- Mismatched transcripts too noisy to be used in the traditional way for ASR training
 - Use as *probabilistic* transcripts
 - Measuring additional information in probabilistic transcripts:
 - How error rates fall when more "advice" is made available to the decoder

• **Multilingual**: Train on 6 languages (Arabic, Cantonese, Dutch, Hungarian, Mandarin, Urdu) and test on a new target language (Swahili).

• **Semi-supervised DNN:** Transcribe unlabeled audio from the target language using a DNN-based multilingual ASR system and use it to further re-train the DNN models.

Mismatched Transcriptions for ASR

[Liu*, Jyothi* et al. ICASSP' 16]

Native Language Backgrounds of Mismatched Crowds

February 7, 2017

- Can we do better by selecting the language background of the transcribers?
- How should we select the transcribers?
 - Understanding when phones get misperceived
 - How is this correlated with transcribers' language background

Understanding the Mismatched Channel

- When are two phones confused with each other?
 - If they are "phonologically close" to each other
- Phonological distance between two phones
 - Use distinctive features (DF) from linguistic theory
 [Chomsky & Halle, '68] [Phoible '15]
 - Phones as "code words" in the DF-space.
 Hamming distance measures phone contrast.

37 DFs nasal tone sonorant labial trill front back

Distance Distribution of the Code

[Varshney, Jyothi & Hasegawa-Johnson ITA-16]

Distance Distribution of the Code

• Codes for different languages exhibit similar distributions

Understanding the Mismatched Channel

- <u>Hypothesis</u>: Phonological distance in the DF-space correlated with *phone confusion* in the mismatched channel
- Phone confusion quantified using the **total variational distance** between the output distributions of the *channel*
 - We call it **phone-pair distinction**

Phone Pair Distinction vs. DF-Distance

Phone Pair Distinction

Phone Pair Distinction

- Clearly, DF-distance positively correlated with phone-pair distinction
- Difference across native language backgrounds
 - Different DFs are prominent in different languages

Phone Pair Distinction

- Clearly, DF-distance positively correlated with phone-pair distinction
- Difference across native language backgrounds
 - Different DFs are prominent in different languages
 - Ongoing work: A model that takes into account DF presence/prominence

Summary

- ASR for low-resource languages presents challenging research problems
- In this talk:
 - Establish the possibility of acquiring speech transcriptions using mismatched crowds
 - Demonstrate the impact of mismatched transcriptions on ASR performance

- Investigate relation of transcriber native languages with phone confusion
- Future research: Optimally select mismatched transcribers to further improve impact of mismatched transcriptions

Summary

- ASR for low-resource languages presents challenging research problems
- In this talk:
 - Establish the possibility of acquiring speech transcriptions using mismatched crowds
 - Demonstrate the impact of mismatched transcriptions on ASR performance

• Investigate relation of transcriber native languages with phone confusion

¹Based on joint works with Mark Hasegawa-Johnson, Lav Varshney and participants at the 2015 Jelinek Summer Workshop.