
CS 344 (Spring 2017): Class Test 1

Instructor: Shivaram Kalyanakrishnan

8.30 a.m. – 9.30 a.m., January 24, 2017, 101/103/105 New CSE Building

Total marks: 15

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. What is the “AI Effect”, which is sometimes called the “AI Paradox” or the “Odd
Paradox”? Explain using an example. [2 marks]

Question 2. What is a simple reflex agent? What is a goal-based agent? What advantage does
the former have over the latter? What advantage does the latter have over the former? [3 marks]

Question 3. A data set D contains 4 classes: l1, l2, l3, and l4. The fraction of data points with
label l1 is f1 = 20%, with label l2 is f2 = 40%, with label l3 is f3 = 15%, and with label l4 is
f4 = 25%.

3a. Consider a predictor P1 that predicts the label of a given input point by picking uniformly

at random from {l1, l2, l3, l4}. In other words, P1 makes its prediction by picking one of the
four labels, each with a probability of 1/4. What is the expected accuracy of P1 on D?;
equivalently, what is the expected fraction of points in D classified correctly by P1? [1 mark]

3b. Consider another predictor P2 that predicts the label of a given input point by picking label
l1 with probability p1, label l2 with probability p2, label l3 with probability p3, and label l4
with probability p4, where p1 + p2 + p3 + p4 = 1. For what value(s) of (p1, p2, p3, p4), is the
expected accuracy of P2 on D maximised? [2 marks]



Question 4. This question corresponds to an exercise given in Class Note 1. Let

D = ((x1, y1), (x2, y2), . . . , (xn, yn))

be a set of labeled data points such that for i ∈ {1, 2, . . . , n}: xi ∈ R
d and yi ∈ {−1, 1}. This data

set is linearly separable by a non-origin-centred hyperplane (there is no guarantee that it is also
separable by an origin-centred hyperplane). In other words, all we can assume is that there exist
w⋆ ∈ R

d and b ∈ R \ {0} such that for all i ∈ {1, 2, . . . , n},

yi(w⋆ · xi + b) > 0.

Describe a procedure that uses the Perceptron Learning Algorithm discussed in class (which can
only learn origin-centred hyperplanes) as a blackbox in order to find a non-origin-centred hyper-
plane in R

d that classifies all the points in D correctly. Provide a proof that your procedure is
correct. [3 marks]

Question 5. Consider the data set shown in the table and plot below. Clearly, the + and the
− points in this data set can be separated by an origin-centred hyperplane. Since our space is
2-dimensional, we may represent a hyperplane by the angle θ ∈ (−180◦, 180◦] that its normal

makes with the x1 axis. In addition to showing the four data points, the plot below also shows
an example of a separating hyperplane (dotted line, with perpendicular arrow showing the normal
direction).
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5a. Give the set of all θ corresponding to hyperplanes that correctly classify all four input points.
[1 mark]

5b. Assume, as we did in class, that we initialise the Perceptron Learning Algorithm with the
zero vector, and iteratively update the weight vector based on misclassified points. Recall
that the algorithm may pick an arbitrary misclassified point at each step to update its weight
vector. For the data set shown above, what is the set of all hyperplanes that the algorithm
can possibly return upon termination? [3 marks]



Solutions

1. The “AI Effect” refers to the phenomenon that every time AI reaches a goal, society ceases to
view that goal as a part (and a success!) of AI. For example, the game of Chess was pursued for
several decades (even as far back as Turing) as a holy grail for AI. In the 1990’s, Chess-playing
programs could finally outplay humans. Since we now know how these programs are engineered,
they are no longer considered exemplars of “intelligence”, nor in the domain of AI. The goals of AI
have moved forward.

2. A simple reflex agent implements a mapping from sensation to action, whereas a goal-directed
agent, armed with some knowledge about how the world, takes actions by explicitly reasoning about
their consequences, such that a goal can be reached. As the name suggests, simple reflex agents
have very little “thinking” to do—they are easy to implement and computationally lightweight.
However, a goal-directed agent is a lot more robust to changes that could occur in the world. For
example, if there is a road-closure on your route home from work, you could replan if you knew the
map. A simple reflex agent that follows the rule “if at Saki Naka signal, turn right” might never
reach home in such an eventuality.
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3b. By a working similar to that in 3a, we get that the expected accuracy of P2 is

4
∑

l=1

fl · pl.

Observe that regardless of the actual values of p1, p2, p3, and p4,

f1p1 + f2p2 + f3p3 + f4p4 ≤ max(f1, f2, f3, f4) = f2.

Indeed an expected accuracy of f2 can (only) be achieved by setting (p1, p2, p3, p4) = (0, 1, 0, 0).
This strategy amounts to predicting the “most frequent class”.



4. We transform our original data set D into a data set D′ in d+ 1 dimensions, where

D′ = ((x′1, y1), (x′2, y2), . . . , (x′n, yn)),

where for i ∈ {1, 2, . . . , n}: x′i ∈ R
d+1 is identical to xi in the first d dimensions, and has its

(d+ 1)st component as 1. We also define a vector w′⋆ ∈ R
d+1 which is identical to w⋆ in the first

d dimensions, and has its (d+ 1)st component as b. Observe that

∀i ∈ {1, 2, . . . , n} : yi(w⋆ · xi + b) > 0 ⇐⇒ ∀i ∈ {1, 2, . . . , n} : yi(w′⋆ · x′i) > 0.

Thus, D′ is linearly separable using an origin-centred hyperplane w⋆. Therefore, we can find an
an origin-centred separating hyperplane in d + 1 dimensions by running the Perceptron Learning
Algorithm on D′. The answer returned by the algorithm can be interpreted as a non-origin-centred
hyperplane in d dimensions (with the first d dimensions giving the normal, and the (d + 1)st di-
mension giving the intercept).

5a. From the figure, it is clear that every separating hyperplane must lie “between” x3 and x2

(and pointing towards the + points), and in fact that every hyperplane in this region is a legal
separating hyperplane. Thus, θ must be in the set (45◦, 120◦).

5b. Initially, when w1 = 0, any of x1, x2, x3, and x4 can be picked (since they all have a zero dot
product with w1). Thus, w2 must be in the set {x1,x2,−x3,−x4}. It is easy to verify that x1 and
−x4 are already valid separating hyperplanes, and will be returned if they are found at the end of
this update. On the other hand, (1) if point x2 was picked, then point x3 is misclassified (since
x2 · x3 > 0), and (2) if point x3 was picked, then point x2 is misclassified (since −x3 · x2 < 0).
Consequently, the only possible value w3 can take is x2 −x3, which can be seen to be a separating
hyperplane. The required answer is

{x1,−x4,x2 − x3} = {(−1, 4), (2, 3), (2
√
3− 3, 5)}.
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