
CS 344 (Spring 2017): Class Test 3

Instructor: Shivaram Kalyanakrishnan

8.30 a.m. – 9.30 a.m., March 21, 2017, 101/103 New CSE Building

Total marks: 15

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. Consider an MDP M = (S,A,R, T, γ), with a set of states S = {s1, s2}; a set of
actions A = {a1, a2}; a transition function T and a reward function R as specified in the table below;
and a discount factor γ = 2

3 . A state transition diagram corresponding to M is shown alongside the
table. In the diagram, each transition is annotated with (action, transition probability, reward).
Transitions with zero probabilities are not shown.

Transition probabilities Rewards

T (s1, a1, s1) = 1 R(s1, a1, s1) = 0
T (s1, a1, s2) = 0 R(s1, a1, s2) = 0

T (s1, a2, s1) = 1/2 R(s1, a2, s1) = −1
T (s1, a2, s2) = 1/2 R(s1, a2, s2) = 2

T (s2, a1, s1) = 1 R(s2, a1, s1) = 1
T (s2, a1, s2) = 0 R(s2, a1, s2) = 0

T (s2, a2, s1) = 1/4 R(s2, a2, s1) = 0
T (s2, a2, s2) = 3/4 R(s2, a2, s2) = 1

s s21

(a , 1, 1)

(a , 1/2, 2)
(a , 1/2, −1)

(a , 3/4, 1)

(a , 1, 0)1
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(a , 1/4, 0)

For i, j ∈ {1, 2}, let πij denote the deterministic policy that takes action i from state s1 and action
j from state s2.

1a. Calculate V π21

(s1) and V π21

(s2). [2 marks]

1b. It is a well-known result (a derivative of the Policy Improvement Theorem) that a policy π is
optimal if and only if ∀s ∈ S, ∀a ∈ A : Qπ(s, a) ≤ V π(s). Use this result to ascertain if π21 is
an optimal policy. [3 marks]



Question 2. An agent interacts with a 3-state, 3-action MDP, in which the discount factor γ = 1/2.
The agent initialises its estimate of the action value function as in the table below.

Q a1 a2 a3
s1 5 6 9

s2 0 -1 2

s3 6 4 -3

The agent then encounters a trajectory s2, a2, 4, s2, a3, 0, s3, a2, . . . (4 and 0 are rewards). If the
agent was implementing Q-learning with a constant learning rate of α = 0.1, what would the action
value table be after making the first two learning updates? [2 marks]

Question 3. This question pertains to the use of heuristic functions (or simply heuristics) in
search.

3a. What are the properties of a consistent heuristic? [1 mark]

3b. If h1 is a consistent heuristic and h2 is a consistent heuristic, are h3, h4, and h5 (defined
below) necessarily consistent?

· h3 = h1 + h2.

· h4 =
h1+h2

3 .

· h5 = max (h1, h2).

Support your answer in each case with a short proof. [3 marks]

Question 4. Consider the game tree below, which shows max nodes (triangles pointed upwards),
min nodes (triangles pointed downwards), chance nodes (circles), and leaves (rectangles). Proba-
bilities associated with chance events are shown on the corresponding links. The value of each leaf
is shown inside it. Since the leaves have distinct values, we also use each leaf’s value as its name.
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4a. Assuming max and min play optimally, what is the (expectiminimax) value of each internal
node in the tree? [2 marks]

4b. What is the sequence of nodes expanded by DFS with Alpha-Beta pruning (also called Alpha-
Beta search)? Assume the leftmost unexpanded child is given preference in a tie. [1 mark]

4c. If it is known a priori that the values of leaves lie in [0, 9], can the strategy described in 4b
be improved such that an optimal action for the root can be determined in even fewer steps?
Explain. [1 mark]



Solutions

1a. The set of Bellman’s Equations for π21 are as follows.

V π21

(s1) =
1

2

(

−1 + γV π21

(s1)
)

+
1

2

(

2 + γV π21

(s2)
)

;V π21

(s2) = 1 + γV π21

(s1).

Solving, we get:

V π21

(s1) =
15

8
;V π21

(s2) =
9

4
.

1b. Qπ21

(·, ·) is calculated as follows.

Qπ21

(s1, a1) = 0 + γV π21

(s1) =
5

4
.

Qπ21

(s1, a2) = V π21

(s1) =
15

8
.

Qπ21

(s2, a1) = V π21

(s2) =
9

4
.

Qπ21

(s2, a2) =
1

4

(

0 + γV π21

(s1)
)

+
3

4

(

1 + γV π21

(s2

)

=
35

16
.

Applying the result provided, we conclude that π21 is indeed an optimal policy.

2. Let the table given correspond to Q0(·, ·). We get

Q1(s2, a2) = Q0(s2, a2)(1− α) + α(4 + γQ0(s2, a3)) = −1× 0.9 + 0.1× (4 + 0.5× 2) = 0.4.

If s 6= s2 or a 6= a2, Q1(s, a) = Q0(s, a). From the second update, we get

Q2(s2, a3) = Q1(s2, a3)(1− α) + α(0 + γQ1(s3, a1)) = 2× 0.9 + 0.1× (0 + 0.5× 6) = 2.1,

and again, if s 6= s2 or a 6= a3, Q2(s, a) = Q1(s, a). Thus, Q2(·, ·) is as follows.

Q a1 a2 a3
s1 5 6 9

s2 0 -0.4 2.1

s3 6 4 -3



3a. Let n and n′ be arbitrary nodes in a search tree, wherein n′ is reached by taking action a from
n. Let g be an arbitrary node that corresponds to a goal state. We make the standard assumption
that costs are non-negative.

A heuristic h is consistent if (1) h(n) ≤ cost(n, a, n′) + h(n′), and (2) h(g) = 0. Together these
conditions imply (3) h(n) ≤ cost-to-goal(n), and in fact (1) and (3) imply (2). Thus, to show
consistency, either (1) and (2), or (1) and (3) must be shown to be satisfied. If any of (1), (2), and
(3) is violated by a heuristic, then the heuristic is not consistent.

• h3 = h1 + h2 need not be consistent. For example, consider h1(n) = h2(n) = cost-to-goal(n).
Clearly cost-to-goal(n) is a consistent heuristic. Then h3(n) = 2 × cost-to-goal(n), which
violates (3) if cost-to-goal(n) is positive.

• h4 =
h1+h2

3 is necessarily consistent, as argued below.

h4(n) =
h1(n)+h2(n)

3 ≤ 2
3cost(n, a, n

′) + h1(n′)+h2(n′)
3 ≤ cost(n, a, n′) + h4(n

′).

h4(n) =
h1(n)+h2(n)

3 ≤ 2
3cost-to-goal(n) ≤ cost-to-goal(n).

• h5 = max (h1, h2) is necessarily consistent.
h5(n) = max (h1(n), h2(n)) ≤ max (cost(n, a, n′) + h1(n

′), cost(n, a, n′) + h2(n
′)) = cost(n, a, n′)+

max (h1(n
′), h2(n

′)) = cost(n, a, n′) + h4(n
′).

h5(n) = max (h1(n), h2(n)) ≤ max (cost-to-goal(n), cost-to-goal(n)) = cost-to-goal(n).

4a.

val(B) = 0.2× 6 + 0.8× 5 = 5.2.

val(E) = max (0, 3) = 3.

val(F ) = max (1, 9) = 9.

val(C) = min (val(E), val(F )) = 3.

val(G) = 0.7× 2 + 0.3× 8 = 3.8.

val(D) = min (7, val(G) = 3.8.

val(A) = max (val(B), val(C), val(D)) = 5.2.

4b. Observe that val(B) ≥ val(E). Since C is a min node, it can infer based on the evaluations of
B and E (which precede it in the DFS order) that F need not be evaluated. Whatever F ’s eval-
uation, val(C) = min (val(E), val(F )) is guaranteed not to exceed val(E) = 3. Therefore, A will
not pick the action leading to C. No other nodes can be Alpha-Beta pruned. Thus, the required
expansion order is: AB65CE03D7G28.

4c. If the values of leaves are bounded in [0, 9], so must the values in each node, which are
obtained using expectation, min, and max operations. Hence, after 2 is evaluated, we can conclude
that val(G) is upper-bounded by 0.7×2+0.3×9 = 4.1. If D, which is a min player, plays optimally,
it will therefore take the action to reach G. Anticipating that D will do so, A, a max node, will not
take the action leading to G, but rather proceed to B, which assures it 5.2 in expectation. Hence,
we can eliminate the expansion of 8 from what we performed in 4b; the overall expansion sequence
is AB65CE03D7G2.


