
CS 344 (Spring 2017): End-semester Examination∗

Instructor: Shivaram Kalyanakrishnan

2.00 p.m. – 5.00 p.m., April 21, 2017, 101/103/105 New CSE Building

Total marks: 35

Note Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. This question pertains to ensemble methods for binary classification. An ensemble
comprises k ≥ 2 base classifiers L1, L2, . . . , Lk. The prediction made by the ensemble is the (un-
weighted) majority of the base classifiers’ individual predictions. Assume ties are broken uniformly
at random.

1a. Consider the data set shown below: 11 points in 2-dimensional space, each labeled “+” or
“-”. If the base classifier used is a Perceptron (a line in the 2-dimensional space, partitioning
it into a “+” region and a “-” region), what is the minimum number of base classifiers needed
to classify all the input points correctly? You don’t have to give a proof. Draw the figure
below and draw each of the Perceptrons in the minimal ensemble you construct. [2 marks]
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1b. Bagging is an ensemble method, which trains its base classifiers as follows. Given a data
set D, bagging creates k derived data sets D1, D2, . . . , Dk, where for each j ∈ {1, 2, . . . , k},
each row of Dj (of the form (x, y)) is drawn uniformly at random from among the rows of D
(hence there could be repeated rows). It is typical to make all the derived data sets the same
size. Subsequently, base classifier Lj is obtained by training independently (applying the base
learning method—SVM, Perceptron, decision tree, etc.) on data set Dj , for j ∈ {1, 2, . . . , k}.
Compare bagging with boosting. List at least one advantage each method has over the other.
[2 marks]

1c. The reason ensemble methods perform well is because the errors of the base classifiers tend
not to be correlated. Suppose a randomised procedure to generate a base classifier guarantees
that the base classifier will misclassify at most 10% of the points in a data set, and further, the
points it misclassifies will be drawn uniformly at random from the data set. If the procedure
is applied to produce k = 5 base classifiers, show that the probability that the (unweighted
majority-voted) 5-member ensemble correctly classifies a point is at least 99%. [2 marks]

∗Question 4 is based on an exercise in the textbook by Russell and Norvig (2010).



Question 2. You are placed on the number line shown below. You can occupy any of the positions
in {1, 2, . . . , N}, where N ≥ 2. Your objective is to get to position N “quickly”.

You have nothing more to do—your task is over—if you have reached position N . If, however,
you are in some position j ∈ {1, 2, . . . , N−1}, you can choose to perform one of two actions: SHIFT
and JUMP. The SHIFT action is deterministic: it takes you to position j+1. JUMP, however, has
a stochastic outcome. From position j, JUMP has a probability of 1/N of taking you to any fixed
position ahead of j (of which there are N − j). With the remaining probability of j/N , JUMP
keeps you at position j itself. The figure below shows all possible transitions from position j; each
transition is annotated with the corresponding probability.

j/N
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1/N
JUMP
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1 SHIFT

In this exercise, you will work out an optimal policy for you to follow. A policy here is a mapping
from {1, 2, . . . , N − 1} to {SHIFT, JUMP}. An optimal policy minimises the expected number of
actions taken to reach position N ; it does so for every starting position j ∈ {1, 2, . . . , N − 1}. Let
π⋆ be an optimal policy, and for j ∈ {1, 2, . . . , N − 1}, let T ⋆(j) denote the expected number of
actions that are performed, starting from position j and following π⋆, in order to reach position N .

2a. Show that π⋆(N − 1) = SHIFT. What is T ⋆(N − 1)? [1 mark]

2b. For j ∈ {2, 3, . . . , N − 1}, show that if π⋆(j) = JUMP, then π⋆(j − 1) = JUMP. [3 marks]

2c. From 2a and 2b, it follows that there is an optimal policy that selects JUMP for positions
{1, 2, . . . , k}, and SHIFT for positions {k + 1, k + 2, . . . , N − 1}, for some particular k ∈
{1, 2, . . . , N − 1}. Show that k = N −Θ(

√
N). [4 marks]

2d. Plot T ⋆(j) as a function of j ∈ {1, 2, . . . , N − 1}. [2 marks]

Question 3. This question is about conditional probabilities.

3a. There are three boxes, each containing two coins. One box contains two gold coins, one box
contains two silver coins, and the other box contains a gold coin and a silver coin. A box is
chosen uniformly at random from among the three boxes, and a coin is selected uniformly at
random from among the coins in the chosen box. If the selected coin is a gold coin, what is
the probability that the other coin in the chosen box is also a gold coin? [2 marks]

3b. Consider Boolean random variables A, B, and C. A takes values a and ā, B takes values b
and b̄, and C takes values c and c̄. If it is known that P (a|c) ≥ P (b|c) and P (a|c̄) ≥ P (b|c̄),
can we conclude that P (a) ≥ P (b)? Provide a proof or a counterexample. [2 marks]



Question 4. The figure below depicts a zero sum game played by agents A and B. The game
is played on a board of length n ≥ 3, which comprises cells 1, 2, . . . , n in sequence. The figure is
drawn for n = 10.

A B
1 2 3 4 5 6 7 8 9 10

The game begins with A on cell 1, and B on cell n (as shown in the figure). The players take
turns to make moves, with A making the first move. To make a move, an agent can either (1) shift
to an empty cell beside its current cell (if one is available), or (2) if the other agent is in a cell next
to it, “jump” over that agent to the empty cell next to it (if one is present). Let (x, y) represent
a state in which A is on cell x and B is on cell y. As per the rules of the game, if A has to make
a move from (4, 6), it can go to either (3, 6) or (5, 6). If A has to make a move from (1, 7), it can
only go to (2, 7). If B has to make a move from (4, 5), it can go to either (4, 3) or (4, 6).

If any one of the agents reaches the opposite end, the game ends and that agent is declared the
winner. In other words, if a state (n, x) is reached, then A wins. If (x, 1) is reached, then B wins.
If, after a total of 2n moves, no player has reached the opposite end, then the game ends in a draw.

4a. For the game with n = 10, will A ever have to make a move starting from (4, 6)? If yes,
describe a sequence of moves from the starting configuration (recall that A moves first) that
leads to this situation. If not, prove that there exists no such sequence. [2 marks]

4b. For each n ≥ 3, describe the outcome of a game in which A and B both play minimax strate-
gies. Prove that your answer is correct. (Hint: You will find it useful to work out n = 3 and
n = 4 as special cases, and then generalise your results.) [4 marks]

Question 5. Define the Markov Blanket of a node X in a Bayes Net in terms of the Parent and
Child relations, and necessary logical operators. How does the Markov Blanket find use in Gibbs
Sampling? [2 marks]

Question 6. Take the Traveling Salesperson Problem, which can be equivalently stated in graph-
theoretic terms: Given a complete weighted graph, find a Hamiltonian cycle (a cycle that visits
every vertex exactly once) with the least weight. Since the problem is NP-hard, in practice we aim
to find a Hamiltonian cycle with as low weight as possible in a reasonable amount of time.

How would you model and solve the Traveling Salesperson Problem using Hill Climbing? Com-
ment on the design choices you have to make, and the effects of these choices on the quality of the
solution found and the time taken to find it. [3 marks]

Question 7. What are n-gram character and word models? What is the tradeoff to be balanced
in identifying a suitable value of n in these models? How are n-gram models applied to spam
detection? [4 marks]



Solutions

1a. At least three Perceptrons are needed in order to classify all the data points correctly. Below
is one possible arrangement: observe that each data point has some two Perceptrons that classify
it correctly, and one that does not.
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1b. Boosting is inherently sequential : the (j + 1)-st classifier is trained based on the errors made
by the first j classifiers on the training data. In bagging, on the other hand, each classifier is
learned independently. As a consequence of this difference, bagging affords much more flexibility in
implementation. Specifically, the base classifiers can be trained in parallel, and the training process
can be much quicker than that of boosting. However, observe that the errors of the base classifier
will only be uncorrelated under bagging, whereas in boosting, each classifier’s error is expressly
anti-correlated with the aggregate error of the classifiers preceding it. Hence, for the same ensem-
ble size, boosting is capable of yielding a more accurate ensemble.

1c. A point will be misclassified by the ensemble only if a majority of classifiers (that is, exactly 5,
4, or 3 classifiers) misclassify the point. Since each classifier independently has at most a probability
of ǫ = 10% of misclassifying the point, the probability of misclassification by the ensemble is upper-
bounded by

(

5

5

)

ǫ5(1− ǫ)0+

(

5

4

)

ǫ4(1− ǫ)1+

(

5

3

)

ǫ3(1− ǫ)2 = 10−5+5×10−4×0.9+10×10−3×0.81 = 0.00865.

Thus, the accuracy of the ensemble is at least 1− 0.00865 > 99%.

2a. For j ∈ {1, 2, . . . , N−1}, denote by T ⋆(j, SHIFT) the expected number of steps to reach position
N by taking the SHIFT action from position j once, and thereafter acting optimally (according
to π⋆). Similarly, denote by T ⋆(j, JUMP) the expected number of steps to reach position N by
taking the JUMP action from position j once, and thereafter acting according to π⋆. T ⋆(·, ·) is
analogous to the action value function Q⋆(·, ·) that we studied in class. However, note that we wish
to minimise the expected number of steps to reach N (Q is conventionally maximised). Thus,

T ⋆(j) = min(T ⋆(j, SHIFT), T ⋆(j, JUMP)).

From the transition probabilities specified, we obtain:

T ⋆(N − 1, SHIFT) = 1, and

T ⋆(N − 1, JUMP) = 1 +
N − 1

N
T ⋆(N − 1) > 1.

Therefore, π⋆(N − 1) = SHIFT and T ⋆(N − 1) = 1.



2b. We are given T ⋆(j, JUMP) ≤ T ⋆(j, SHIFT), and we have to show that T ⋆(j − 1, JUMP) <
T ⋆(j − 1, SHIFT). Clearly, T ⋆(j − 1, SHIFT) = 1+ T ⋆(j, JUMP). Therefore, we need to show that
T ⋆(j − 1, JUMP) < 1 + T ⋆(j, JUMP). We will prove a stronger result, that

T ⋆(j − 1, JUMP) = T ⋆(j, JUMP).

T ⋆(j − 1, JUMP) = 1 +
j − 1

N
T ⋆(j − 1) +

1

N

N−1
∑

r=j

T ⋆(r)

≤ 1 +
j − 1

N
T ⋆(j − 1, JUMP) +

1

N

N−1
∑

r=j

T ⋆(r)

=⇒

T ⋆(j − 1, JUMP) ≤ 1

N − j + 1



N +
N−1
∑

r=j

T ⋆(r)



 .

Now, since T ⋆(j) = T ⋆(j, JUMP) = 1 + j
N
T ⋆(j, JUMP) + 1

N

∑N−1

r=j+1
T ⋆(r), we get

T ⋆(j) = T ⋆(j, JUMP) =
1

N − j



N +
N−1
∑

r=j+1

T ⋆(r)



 .

Therefore,

T ⋆(j − 1, JUMP) ≤ 1

N − j + 1



N +
N−1
∑

r=j

T ⋆(r)





=
1

N − j + 1



N + T ⋆(j, JUMP) +
N−1
∑

r=j+1

T ⋆(r)





=
1

N − j + 1
(N + T ⋆(j, JUMP) + (N − j)T ⋆(j)−N)

= T ⋆(j, JUMP).

Since T ⋆(j− 1, JUMP) ≤ T ⋆(j, JUMP) and T ⋆(j, SHIFT) > T ⋆(j, JUMP), it must be the case that
π⋆(j − 1) = JUMP. The implication is that the “≤” in our first derivation is indeed an “=” (that
is, T ⋆(j − 1) = T ⋆(j − 1, JUMP)), and so T ⋆(j − 1, JUMP) = T ⋆(j, JUMP).

2c. Let k ∈ {1, 2, . . . , N − 1} be such that JUMP is an optimal action for positions 1, 2, . . . , k, and
SHIFT is an optimal action for k + 1, k + 2, . . . , N − 1. This pattern implies that T ⋆(k, JUMP ) ≤
N − k, which, expanded, becomes

1

N − k

(

N +
N−1
∑

r=k+1

T ⋆(r)

)

≤ N − k, or equivalently,

1

N − k

(

N +
N−1
∑

r=k+1

(N − r)

)

≤ N − k.
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Simplifying this expression yields

(

N +
1

2
− k

)2

≥ 2N +
1

4
.

Since k ≤ N − 1, we get

k ≤ k⋆
def

=

⌊

N +
1

2
−
√

2N +
1

4

⌋

.

Given the result from 2b (in an optimal policy, every action preceding a JUMP is also a JUMP), we
conclude that an optimal policy will pick JUMP at positions 1, 2, . . . , k⋆, and SHIFT at positions
k⋆ + 1, k⋆ + 2, . . . , N − 1, where k⋆ = N −Θ(

√
N).

2d. The plot below shows the dependence of T ⋆(j) on j. The function is constant up to k⋆: the
actual value is in the interval [N−k⋆−1, N−k⋆]. The function value at k⋆+1 is exactly N−k⋆−1;
thereafter the function decreases by 1 with every increment to j.

1 2 k* N−1*

constant

linear

N−k

j

T  (j)*

*

3a. This problem is due to Bertrand.1 Let the boxes be named B1, B2, and B3. Box B1 contains
coins G1 and G2, box B2 contains coins S1 and S2, and box B3 contains coins G3 and S3. Using
the fact that the occurrence of one coin excludes all others, we get

P (B1|G1 or G2 or G3) = P (G1 or G2|G1 or G2 or G3)

=
P ((G1 or G2) and (G1 or G2 or G3))

P (G1 or G2 or G3)

=
P (G1 or G2)

P (G1 or G2 or G3)

=
1

3

1

2
+ 1

3

1

2

1

3

1

2
+ 1

3

1

2
+ 1

3

1

2

=
2

3
.

1See http://blog.zymergi.com/2013/06/bertrands-box-paradox.html.
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3b.

P (a|c) ≥ P (b|c) and P (a|c̄) ≥ P (b|c̄)
⇐⇒ P (a and c)/P (c) ≥ P (b and c)/P (c) and P (a and c̄)/P (c̄) ≥ P (b and c̄)/P (c̄)

⇐⇒ P (a and c) ≥ P (b and c) and P (a and c̄) ≥ P (b and c̄)

=⇒ P (a and c) + P (a and c̄) ≥ P (b and c) + P (b and c̄)

⇐⇒ P (a) ≥ P (b).

4a. Let xA denote the cell occupied by A, and xB the cell occupied by B. Let the parity of a
state (xA, xB) denote (xA + xb) mod 2. Observe that the parity flips if either agent moves to an
adjoining cell, and the parity remains the same if an agent jumps over the other.

We are interested in the reachability of the state (4, 6), with it being A’s turn to move. Observe
that A is to the left of B in this state: the state is therefore reachable only if the number of jump
moves preceding it is even. Since it is A’s turn, the total number of moves made before reaching it
must also be even. Therefore, the number of moves that took either agent to an adjacent cell must
also be even, which means the the parity must be the same as that of the start state. However, the
parity of (1, 10) is 1, while that of (4, 6) is 0. We may conclude that (4, 6) cannot be reached in an
even number of moves.

4b. In the n = 3 game, the only possible sequence of moves is (1, 3)
A−→ (2, 3)

B−→ (2, 1), which results

in a win for B. In the n = 4 game, the first two moves are determined: (1, 4)
A−→ (2, 4)

B−→ (2, 3).
Hereafter, A can move either to (1, 3) or to (4, 3). The latter results in a win for A, and so A can
force a win when n = 4. Upon closer inspection, we find that B can force a win if n is odd, and A
can force a win if n is even.

Towards a proof, let us first consider odd n. B’s winning strategy is as follows.

O1. If possible, move to the cell on the left; if not

O2. If possible, jump over A to a cell on its left; if not

O3. From the state (1, 2), force the sequence (1, 2)
B−→ (1, 3)

A−→ (2, 3)
B−→ (2, 1).

It is not hard to see that if the first two options are not available to B, then the third one must be—
and third option clearly leads to a win for B. In fact, observe that B’s strategy must necessarily
take it to a state of the form (j, j + 1). Based on an argument similar to that in 4a, we observe
that in such a state (which has a parity 1), it must be B’s turn to move. j = 1 corresponds to O3
(B can force a win): if not, B will cross over A to reach (j, j − 1). A can choose to cross back to
(j − 2, j − 1), or proceed right to (j + 1, j − 1). Regardless of A’s strategy, B will move at least
one cell to the left with each move, and it will move two cells to the left at least once. Hence,
after at most n− 2 moves, B will either reach the opposite end, or reach (1, 2)—both resulting in
a win. The only possible way for A to deny B is by itself reaching its opposite end before B wins.
However, A only moves 1 cell at a time, and because of B’s strategy, it can never jump over B to
the right. Hence, A needs at least n− 1 moves to reach the opposite end.

The argument for even n proceeds similarly, with A moving right if at all possible, otherwise
arriving at (n− 1, n), from which it can force a win. The key difference from odd-n games is that
when a state of the form (j, j + 1) is reached in an even-n game, it must be A’s turn to move.
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5. The Markov Blanket of X is defined as

{Y : (Y 6= X) and (Y = Parent(X) or Y = Child(X) or (∃Z : Z = Child(X) and Y = Parent(Z)))}.

Let X1, X2, . . . , Xn be the nodes in the Bayes Net. Each step of Gibbs Sampling samples a
node Xi, i ∈ {1, 2, . . . , n} (whose value is not given) with probability

P (Xi|X1, X2, . . . , Xi−1, Xi+1, Xi+2, . . . , Xn).

From the semantics of Bayes Nets, this probability is exactly equal to P (Xi|Markov Blanket of Xi).
The latter probability is less expensive to compute if if the size of the Markov Blanket of Xi is
significantly smaller than n, which is often the case in practice.

6. The first aspect to consider when applying Hill Climbing to a problem is how solutions will be
represented. For the Traveling Salesperson Problem, solutions are cycles of length n, where n is the
number of vertices. Cycles can naturally be represented as strings (such as 14837256). To avoid
redundancy (multiple strings mapping to the same cycle), it can be enforced that the first letter of
the string is always 1, and the second letter is smaller than the last letter. Note that the number
of unique cycles in a complete n-vertex graph is (n− 1)!/2.

The natural value to associate with each cycle, in the case of the Traveling Salesperson Problem,
would be the weight of the cycle.

The most important design choice is in fixing the set of neighbours for each cycle. If the
neighbourhood is fixed, Hill Climbing proceeds by repeatedly evaluating all the neighbours of a
particular cycle. If a neighbour has a lower weight than the cycle currently considered, then that
neighbour becomes the “current” cycle (and thereafter its neighbours evaluated). This procedure
is repeated until every cycle in the neighbourhood of the current cycle C is no lower in weight. If
so, C is returned as the solution.

A common definition of neighbourhood is as follows: cycles C1 and C2 are k-neighbours if some
k edges can be removed from C1, and some k edges can be then added in order to obtain C2. Thus,
for example, 123456 and 124356 are 2-neighbours (remove 23 and 45 from 123456, and add 24 and
35 to obtain 124356). Naturally, other notions of locality can also be used to define neighbours. The
main effect of the choice of neighbours is in the time taken to evaluate all the neighbours, as well
as the quality of the solution eventually found. For example, the number of 2-neighbours of a cycle
is smaller than the number of 3-neighbours: on average, we can expect the use of 2-neighbourhood
for hill-climbing to find solutions more quickly than by using 3-neighbourhood. On the other hand,
using 3-neighbourhood is likely to find better cycles at convergence.

7. n-gram models are language models: they map a given sequence of characters (or words) to
a probability. The parameter n encodes an assumption on the degree of independence between
characters in the string, based on their separation. Specifically, the probability

P (c1c2 . . . ck) = Πk
i=1P (ci|c1c2 . . . ci−1)

is approximated in an n-gram model by

Πk
i=1P (ci|ci−nci−n+1 . . . ci−1).
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Clearly, the larger the value of n, the more accurate the model will be—as long as every proba-
bility in the calculation is exact. However, the main use of n-gram models is in practice, wherein
P (ci|ci−nci−n+1 . . . ci−1) are estimated based on frequencies occurring in a particular data set.
When this is done, unfortunately there is less data available for larger values of n, and so probabil-
ity estimates can be noisy. Hence, it is common to not go beyond n = 3 or n = 4, and to fall back

on n = 1 and n = 2 when data is insufficient for predicting with larger values of n (for example,
some sequences can have even zero counts in the data set).

n-gram models can be used for spam detection by estimating

P (spam|c1c2 . . . ck) ∝ P (spam)P (c1c2 . . . ck|spam) ≈ P (spam)Πk
i=1P (ci|ci−nci−n+1 . . . ci−1, spam).

Here, P (ci|ci−nci−n+1 . . . ci−1, spam) is computed based on frequencies in a spam data set. A similar
model can be learned for non-spam data sets, and used to estimate P (non-spam|c1c2 . . . ck). The
prediction of spam/non-spam can be made based on these probabilities.
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