
CS 344 (Spring 2017): Mid-semester Examination∗

Instructor: Shivaram Kalyanakrishnan

11.00 a.m. – 1.00 p.m., February 23, 2017, 101/103 New CSE Building

Total marks: 20

Note Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. Consider the problem of k-means clustering, k ≥ 2, in 1-dimensional space. The input
is a set of distinct real-valued scalars {x1, x1, . . . , xn} (n > k) that are numbered in increasing order:

x1 < x2 < · · · < xn.

The expected output is a clustering C : {1, 2, . . . , n} → {1, 2, . . . , k} and a sequence of centres
µ = (µ1, µ2, . . . , µk), where for k′ ∈ {1, 2, . . . , k}, µk′ ∈ R. . Recall that

SSE(C,µ) =
n
∑

i=1

(xi − µC(i))
2.

1a. Suppose (C,µ) is the output of a run of the k-means clustering algorithm. Assume that the
centres in µ are distinct. Show that there cannot exist r, s, t ∈ {1, 2, . . . , n} with r < s < t

such that C(r) = C(t) 6= C(s). (You might find it useful to start by drawing the real line and
marking xr < xs < xt upon it. Then consider the constraint that any solution returned by
the k-means clustering algorithm must satisfy.) [5 marks]

1b. Based on 1a, what useful property can we expect in an optimal clustering of 1-dimensional
points? [1 mark]

1c. Now consider the special case of k = 2: that is, we wish to partition the set of n points on
the line into 2 clusters. Use the property identified in 1b to design an efficient algorithm for
finding an optimal clustering in this case . Provide pseudocode for your algorithm, assuming
that the input is provided as a sorted array. What is the running time of the algorithm as
a function of n (as an order complexity expression)? To receive full marks, you will have to
make it as efficient as possible. [5 marks]

Question 2. We never test the same categorical attribute more than once along any given path
in a decision tree. Why? [1 mark]

∗Questions 2 and 3 are based on exercises in the textbook by Russell and Norvig (2010).

Question 3. We plan to implement a 7-nearest neighbour predictor for regression. For a given
query point, let (x1, y1), (x2, y2), . . . , (x7, y7) be the 7 nearest training data points (in terms of x).
Our rule is to give ŷ as our prediction, where ŷ minimises the aggregate L1 loss with respect to its
neighbours:

ŷ = min
y∈R

7
∑

i=1

|y − yi|.

Suppose for a query point, the 7 nearest neighbours have the following y values: 14, 1, 6, 4, 21, 13, 88.
What ŷ value is predicted? What is the common name in statistics for ŷ as a function of
y1, y2, . . . , y7? [2 marks]

Question 4. Logistic regression is a supervised learning method for binary classification. The
basic model in use is an artificial neuron. However, rather than minimising the squared loss over
the training data (as we did in class), the method attempts to find weights that maximise the
likelihood that the model generated the data. As a consequence of this difference, the objective
function achieves the desirable property of having a single (global) optimum, which can be found
using gradient descent.

This question takes you through the steps of convincing yourself that logistic regression enjoys
the claimed property. However, rather than prove the result in full generality, we shall assume that
our data is 1-dimensional. Thus, there is only a single scalar weight w ∈ R to optimise.

We are given a data set (x1, y1), (x2, y2), . . . , (xn, yn), where for i ∈ {1, 2, . . . , n}, xi ∈ R and
yi ∈ {−1, 1}. Assume that the x-values are distinct, and that there is at least one point in each
class. We wish to fit the data with an artificial neuron, which calculates y = σ(wx). For α ∈ R,

σ(α) =
1

1 + exp(−α)
.

We interpret that for a given data point, the y-value was generated by tossing a coin with bias
σ(wx). The y-value +1 is interpreted as a head, and −1 as a tail. Hence, the likelihood L(w) that
w generated the training data set is given by

L(w) =

∏

i∈{1,2,...,n},yi=+1

σ(wxi)

∏

i∈{1,2,...,n},yi=−1

(1− σ(wxi))

 .

Your task is to show that L(w) has a unique maximum. In order to do so, derive expressions for
the following quantities. (You might find it convenient to use σ′(α) = σ(α)(1− σ(α)).)

• The natural logarithm of L(w), denoted LL(w) (for log-likelihood). [1 mark]

• d
dw

LL(w). [1 mark]

• d2

dw2LL(w). [1 mark]

• limw→∞
d
dw

LL(w). [1 mark]

• limw→−∞
d
dw

LL(w). [1 mark]

Based on the expressions you have derived, put together an argument that indeed L(w) has a
unique maximum. [1 mark]

Solutions

1a. Let us consider arbitrary r, s, t ∈ {1, 2, . . . , n} such that r < s < t. We shall show that (C,µ)
cannot be such that C(r) = C(t) 6= C(s). For convenience, we use the names R,S, T,M1, and M2

to denote our points of interest in R. The points R, S, and T are shown below on the real line.

R = xr;S = xs;T = xt;M1 = µC(r) = µC(t);M2 = µC(s).

R S T

Since (C,µ) is the output of the k-means clustering algorithm, the points must satisfy the following
proximity constraints.

RM1 ≤ RM2.

SM1 ≥ SM2.

TM1 ≤ TM2.

We consider every possible configuration of M1 and M2, and show that in each case, not all three
proximity constraints can be simultaneously satisfied. From the description, we know that R, S,
and T are distinct, and also that M1 6= M2.

• Assume M2 ∈ (R, T). Then (1) M1 < M2 would imply TM2 < TM1, and (2) M1 > M2 would
imply RM2 < RM1. Hence, we must have M2 ∈ (−∞, R] or M2 ∈ [T,∞). Since these cases
are symmetric, we only examine the former.

• Assume M2 ∈ (−∞, R]. Then (1) M1 < M2 would imply RM2 < RM1, and (2) M2 < M1 ≤ S

would imply SM1 < SM2. (3) If M1 > S, the constraints RM1 ≤ RM2 and SM1 ≥ SM2

cannot both hold. To see why, assume that M1 > S and RM1 ≤ RM2. Then, SM2 =
RS +RM2 ≥ RS +RM1 = 2RS + SM1 > SM1.

Our proof is done.

1b. It follows from the condition listed in 1a that every optimal clustering (a clustering that min-
imises SSE) must have contiguous clusters: that is, there must exist r1, r2, . . . , rk−1 ∈ {1, 2, . . . , n−
1} such that every point in {1, 2, . . . , r1} is assigned the same cluster, every point in {r1 + 1, r1 +
2, . . . , r2} is assigned the same cluster, . . . , and every point in {rk−1+1, rk−1+2, . . . , n} is assigned
the same cluster. In other words, an optimal clustering segments the real line into k intervals, each
associated with a separate cluster.

1c. Finding an optimal clustering for k = 2 reduces to the problem of finding a single number
r ∈ {1, 2, . . . , n − 1} such that if every point in {1, 2, . . . , r} is assigned cluster 1, and every point
in {r+1, r+2, . . . , n} is assigned cluster 2, the SSE is minimised. Hence, we may construe SSE as
a function of r. In other words, we have to find minr∈{1,2,...,n−1} SSE(r), where

SSE(r) =
r
∑

i=1

(xi − µ1(r))
2 +

n
∑

i=r+1

(xi − µ2(r))
2,

µ1(r) =
1

r

r
∑

i=1

xi and µ2(r) =
1

n− r

n
∑

i=r+1

xi.

The most natural procedure to find the minimising value of r would be to iterate from 1 to n−1,
calculate the SSE for each iterate r, and pick the minimiser. If we calculate SSE each time based
on the formula above, each calculation would take O(n) steps, leading to an overall complexity of
O(n2) for our procedure. However, upon closer inspection, we observe that an O(n) preprocessing
step can help bring down the SSE calculation for a given r to merely an O(1) operation.

For i ∈ {1, 2, . . . , n}, define Ai =
∑i

j=1 x
j , and Bi =

∑i
j=1(x

j)2. Now observe that

SSE(r) =

r
∑

i=1

(xi − µ1(r))
2 +

n
∑

i=r+1

(xi − µ2(r))
2

=

r
∑

i=1

(

(xi)2 + (µ1(r))
2 − 2xiµ1(r)

)

+

n
∑

i=r+1

(

(xi)2 + (µ2(r))
2 − 2xiµ2(r)

)

=
n
∑

i=1

(xi)2 − r · (µ1(r))
2 − r · (µ2(r))

2

= Bn − r

(

(

Ar

n

)2

+

(

An −Ar

n− r

)2
)

.

Hence, SSE(r) only depends on Ar, An, and Bn, which can all be pre-computed, as in the
following linear-time algorithm.

To find an optimal clustering when k = 2
A1 ← x1;B1 ← (x1)2.
For i = 2, 3, . . . , n:

Ai ← Ai−1 + xi;Bi ← Bi−1 + (xi)2.
SSEmin ←∞.

rmin ← −1.
For r = 1, 2, . . . , n− 1:

SSEr ← Bn − r

(

(

Ar

n

)2
+
(

An−Ar

n−r

)2
)

.

If SSEr < SSEmin then:
SSEmin ← SSEr; rmin ← r.

For i ∈ {1, 2, . . . , rmin}:
C(i)← 1.

For i ∈ {rmin + 1, rmin + 2, . . . , n}:
C(i)← 2.

µ1 ←
Armin

rmin
;µ2 ←

An−Armin

n−rmin
.

Return C, (µ1, µ2).

(Observe that even B1, B2, . . . , Bn are not needed to for finding the optimal clustering.)

2. When we split on a categorical attribute A, each resulting child node inherits training data
points that all have the same value v of that attribute. In the child nodes and their descendants,
attribute A no longer provides any additional information about the label; splitting further on
A would result in one child with value v that inherits all the training data, and children with
no data for every other attribute value. Hence, if “A = v” is a split, the same split serves no
purpose downstream. (It is less common to split categorical variables, say, on disjunctions such
as “A = v1∨A = v2”. In such a case, a downstream split of the form “A = v1” would still be useful.)

4

3. The L1 loss is minimised when ŷ is the median of the 7 y-values, which, in this case, is 13.

4.

LL(w) =
∑

i∈{1,2,...,n}
yi=+1

log(σ(wxi)) +
∑

i∈{1,2,...,n},yi=−1

log(1− σ(wxi)).

d

dw
LL(w) =

∑

i∈{1,2,...,n}
yi=+1

σ′(wxi)xi

σ(wxi)
+

∑

i∈{1,2,...,n}
yi=−1

−σ′(wxi)xi

1− σ(wxi)

=
∑

i∈{1,2,...,n}
yi=+1

(1− σ(wxi))xi −
∑

i∈{1,2,...,n}
yi=−1

σ(wxi)xi.

d2

dw2
LL(w) = −

∑

i∈{1,2,...,n}
yi=+1

σ′(wxi)(xi)2 −
∑

i∈{1,2,...,n}
yi=−1

σ′(wxi)(xi)2

= −
∑

i∈{1,2,...,n}

σ(wxi)(1− σ(wxi))(xi)2.

lim
w→−∞

d

dw
LL(w) =

∑

i∈{1,2,...,n}
yi=+1
xi>0

xi +
∑

i∈{1,2,...,n}
yi=+1
xi=0

0 +
∑

i∈{1,2,...,n}
yi=+1
xi<0

0 +
∑

i∈{1,2,...,n}
yi=−1
xi>0

0 +
∑

i∈{1,2,...,n}
yi=−1
xi=0

0 +
∑

i∈{1,2,...,n}
yi=−1
xi<0

(−xi)

=
∑

i∈{1,2,...,n}
yi=+1
xi>0

xi −
∑

i∈{1,2,...,n}
yi=−1
xi<0

xi.

lim
w→∞

d

dw
LL(w) =

∑

i∈{1,2,...,n}
yi=+1
xi>0

0 +
∑

i∈{1,2,...,n}
yi=+1
xi=0

0 +
∑

i∈{1,2,...,n}
yi=+1
xi<0

xi +
∑

i∈{1,2,...,n}
yi=−1
xi>0

(−xi) +
∑

i∈{1,2,...,n}
yi=−1
xi=0

0 +
∑

i∈{1,2,...,n}
yi=−1
xi<0

0

=
∑

i∈{1,2,...,n}
yi=+1
xi<0

xi −
∑

i∈{1,2,...,n}
yi=−1
xi>0

xi.

We see limw→−∞
d
dw

LL(w) ≥ 0, and limw→∞
d
dw

LL(w) ≤ 0. Since there is at least one point in each

class, and the x-values are distinct, it follows that either limw→−∞
d
dw

LL(w) or limw→∞
d
dw

LL(w)

is not exactly equal to 0. Additionally, d2

dw2LL(w) < 0, which implies that d
dw

LL(w) monotonically
decreases, and so reaches 0 at exactly one point w⋆ ∈ R. We conclude that LL(w) has a unique
maximum. Since L(w) = exp(LL(w)), it must also have a unique maximum.

5

