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RoboCup Soccer

Objective of the RoboCup Federation :

“By the middle of the 21st century, a team of fully au-
tonomous humanoid robot soccer players shall win a soccer
game, complying with the official rules of FIFA, against the
winner of the most recent World Cup.”
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“By the middle of the 21st century, a team of fully au-
tonomous humanoid robot soccer players shall win a soccer
game, complying with the official rules of FIFA, against the
winner of the most recent World Cup.”

[RoboCup 2010: Nao video1]

1. https://www.youtube.com/watch?v=b6Zu5fLUa3c
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Half Field Offense (KLS2007)

[Video of task1]

1. http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Random.swf
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Half Field Offense (KLS2007)

[Video of task1]

Training

[Video of task after training2]

1. http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Random.swf
2. http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Communication.swf
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Half Field Offense (KLS2007)
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Learning to Act Purposefully

Answer : Reinforcement Learning (RL).
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Learning to Act Purposefully

ActSense

AGENT

Think

ENVIRONMENT

state reward action

Question : How must an agent in an unknown environment act so as to
maximise its long-term reward?

Answer : Reinforcement Learning (RL).
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Markov Decision Problem

at

st+1

rt+1

st rt

S A

ENVIRONMENT

π :

action

LEARNING AGENT

T

R

state reward

S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S,∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.
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π :
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S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S,∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.

Trajectory over time: s0, a0, r1, s1, a1, r2, . . . , st , at , rt+1, st+1, . . . .

Value, or expected long-term reward, of state s under policy π:
Vπ(s) = E[r1 + γr2 + γ

2r3 + . . . to∞|s0 = s, ai = π(si)].
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at
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st rt
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π :

action
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state reward

S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S,∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.

Trajectory over time: s0, a0, r1, s1, a1, r2, . . . , st , at , rt+1, st+1, . . . .

Value, or expected long-term reward, of state s under policy π:
Vπ(s) = E[r1 + γr2 + γ

2r3 + . . . to∞|s0 = s, ai = π(si)].

Objective: “Find π such that Vπ(s) is maximal ∀s ∈ S.”
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Examples

What are the agent and environment? What are S, A, T , and R?

(ACQN2006)

1. http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif

2. http://scd.france24.com/en/files/imagecache/
france24_ct_api_bigger_169/article/image/101016-airbus-pologne-characal-m.jpg
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Examples

What are the agent and environment? What are S, A, T , and R?

(ACQN2006)

[Video3 of Tetris]

1. http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif

2. http://scd.france24.com/en/files/imagecache/
france24_ct_api_bigger_169/article/image/101016-airbus-pologne-characal-m.jpg

3. https://www.youtube.com/watch?v=khHZyghXseE
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Illustration: MDPs as State Transition Diagrams
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Notation: "transition probability, reward" marked on each arrow
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States : s1 , s2, s3, and s4 .

Actions : Red (solid lines) and blue (dotted lines).

Transitions : Red action leads to same state with 20% chance, to next-clockwise state with
80% chance. Blue action leads to next-clockwise state or 2-removed-clockwise state with
equal (50%) probability.

Rewards : R(∗, ∗, s1) = 0, R(∗, ∗, s2) = 1, R(∗, ∗, s3) = −1, R(∗, ∗, s4) = 2.

Discount factor : γ = 0.9.
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Bellman’s Equations

Recall that

Vπ(s) = E[r1 + γr2 + γ
2r3 + . . . |s0 = s, ai = π(si)].

Bellman’s Equations (∀s ∈ S):

Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.
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2r3 + . . . |s0 = s, ai = π(si)].
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Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.

Define (∀s ∈ S, ∀a ∈ A):

Qπ(s, a) =
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γVπ(s′)].

Qπ is called the action value function of π.

Vπ(s) = Qπ(s, π(s)).

The variables in Bellman’s Equations are the Vπ(s). |S| linear equations
in |S| unknowns.

Thus, given S, A, T , R, γ, and a fixed policy π, we can solve Bellman’s
Equations efficiently to obtain, ∀s ∈ S,∀a ∈ A, Vπ(s) and Qπ(s, a).
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Bellman’s Optimality Equations
Let Π be the set of all policies. What is its cardinality?
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Let Π be the set of all policies. What is its cardinality?

It can be shown that there exists a policy π
∗ ∈ Π such that

∀π ∈ Π ∀s ∈ S: Vπ
∗

(s) ≥ Vπ(s).

Vπ
∗

is denoted V ∗, and Qπ
∗

is denoted Q∗.
There could be multiple optimal policies π

∗, but V ∗ and Q∗ are unique.
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It can be shown that there exists a policy π
∗ ∈ Π such that

∀π ∈ Π ∀s ∈ S: Vπ
∗

(s) ≥ Vπ(s).

Vπ
∗

is denoted V ∗, and Qπ
∗

is denoted Q∗.
There could be multiple optimal policies π

∗, but V ∗ and Q∗ are unique.

Bellman’s Optimality Equations (∀s ∈ S):

V ∗(s) = maxa∈A
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γV ∗(s′)].

Planning problem :

Given S, A, T , R, γ, how can we find an optimal policy π
∗? We need

to be computationally efficient.

Learning problem :

Given S, A, γ, and the facility to follow a trajectory by sampling from T
and R, how can we find an optimal policy π

∗? We need to be sample-
efficient.
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Planning

Given S, A, T , R, γ, how can we find an optimal policy π
∗?
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Planning

Given S, A, T , R, γ, how can we find an optimal policy π
∗?

One method . We can pose Bellman’s Optimality Equations as a linear
program, solve for V ∗, derive Q∗, and induce π

∗(s) = argmaxa Q∗(s, a).
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Planning

Given S, A, T , R, γ, how can we find an optimal policy π
∗?

One method . We can pose Bellman’s Optimality Equations as a linear
program, solve for V ∗, derive Q∗, and induce π

∗(s) = argmaxa Q∗(s, a).

Another method to find V ⋆. Value Iteration.

�Initialise V 0 : S → R arbitrarily.
� t ← 0.
�Repeat

�For all s ∈ S,
� V t+1(s) ← maxa∈A

∑

s′∈S T (s, a, s′)
[

R(s, a, s′) + γV t(s′)
]

.
� t ← t + 1.

�Until ‖V t − V t−1‖ is small enough.
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Planning

Given S, A, T , R, γ, how can we find an optimal policy π
∗?

One method . We can pose Bellman’s Optimality Equations as a linear
program, solve for V ∗, derive Q∗, and induce π

∗(s) = argmaxa Q∗(s, a).

Another method to find V ⋆. Value Iteration.

�Initialise V 0 : S → R arbitrarily.
� t ← 0.
�Repeat

�For all s ∈ S,
� V t+1(s) ← maxa∈A

∑

s′∈S T (s, a, s′)
[

R(s, a, s′) + γV t(s′)
]

.
� t ← t + 1.

�Until ‖V t − V t−1‖ is small enough.

Other methods. Policy Iteration, and mixtures with Value Iteration.
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Learning

Given S, A, γ, and the facility to follow a trajectory by sampling from T
and R, how can we find an optimal policy π

∗?
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Learning

Given S, A, γ, and the facility to follow a trajectory by sampling from T
and R, how can we find an optimal policy π

∗?

Various classes of learning methods exist. We will consider a simple one
called Q-learning, which is a temporal difference learning algorithm.

� Let Q be our “guess” of Q∗: for every state s and action a, initialise
Q(s, a) arbitrarily. We will start in some state s0.
�For t = 0, 1, 2, . . .

�Take an action at , chosen uniformly at random with probability ǫ,
and to be argmaxa Q(st , a) with probability 1− ǫ.
�The environment will generate next state st+1 and reward rt+1.
�Update: Q(st , at )← Q(st , at ) + αt (rt+1 + γ maxa∈A Q(st+1, a) − Q(st , at )).
[ǫ: parameter for “ǫ-greedy” exploration] [αt : learning rate]
[rt+1+γ maxa∈A Q(st+1, a)−Q(st , at ): temporal difference prediction error]
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Learning

Given S, A, γ, and the facility to follow a trajectory by sampling from T
and R, how can we find an optimal policy π

∗?

Various classes of learning methods exist. We will consider a simple one
called Q-learning, which is a temporal difference learning algorithm.

� Let Q be our “guess” of Q∗: for every state s and action a, initialise
Q(s, a) arbitrarily. We will start in some state s0.
�For t = 0, 1, 2, . . .

�Take an action at , chosen uniformly at random with probability ǫ,
and to be argmaxa Q(st , a) with probability 1− ǫ.
�The environment will generate next state st+1 and reward rt+1.
�Update: Q(st , at )← Q(st , at ) + αt (rt+1 + γ maxa∈A Q(st+1, a) − Q(st , at )).
[ǫ: parameter for “ǫ-greedy” exploration] [αt : learning rate]
[rt+1+γ maxa∈A Q(st+1, a)−Q(st , at ): temporal difference prediction error]

For ǫ ∈ (0, 1] and αt =
1
t , it can be proven that as t →∞, Q → Q∗.

(WD1992)
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Challenges

� Exploration

� Generalisation (over states and actions)

� State aliasing (partial observability)

� Multiple agents, nonstationary rewards and transitions

� Abstraction (over states and over time)

Shivaram Kalyanakrishnan 16/25



Challenges

� Exploration

� Generalisation (over states and actions)

� State aliasing (partial observability)

� Multiple agents, nonstationary rewards and transitions

� Abstraction (over states and over time)

My thesis question (K2011) :

“How well do different learning methods for sequential decision making
perform in the presence of state aliasing and generalization; can we de-
velop methods that are both sample-efficient and capable of achieving
high asymptotic performance in their presence?”
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Practice =⇒ Imperfect Representations

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992) Absent Discrete Neural network (198)
Job-shop scheduling (ZD1995) Absent Discrete Neural network (20)
Tetris (BT1906) Absent Discrete Linear (22)
Elevator dispatching (CB1996) Present Continuous Neural network (46)
Acrobot control (S1996) Absent Continuous Tile coding (4)
Dynamic channel allocation (SB1997) Absent Discrete Linear (100’s)
Active guidance of finless rocket (GM2003) Present Continuous Neural network (14)
Fast quadrupedal locomotion (KS2004) Present Continuous Parameterized policy (12)
Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Dynamic bipedal locomotion (TZS2004) Present Continuous Feedback control policy (2)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
Robot soccer keepaway (SSK2005) Present Continuous Tile coding (13)
Robot obstacle negotiation (LSYSN2006) Present Continuous Linear (10)
Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
Blimp control (RPHB2007) Present Continuous Gaussian Process (2)
9 × 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Ms. Pac-Man (SL2007) Absent Discrete Rule list (10)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)
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Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
Blimp control (RPHB2007) Present Continuous Gaussian Process (2)
9 × 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Ms. Pac-Man (SL2007) Absent Discrete Rule list (10)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)
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Practice =⇒ Imperfect Representations
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Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Dynamic bipedal locomotion (TZS2004) Present Continuous Feedback control policy (2)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
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Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
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Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)

Perfect representations (fully observable, enumerable states) are impractical.
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Outline

1. Markov decision problems

2. Bellman’s (Optimality) Equations, planning and learning

3. Challenges

4. RL in practice

5. Summary

Shivaram Kalyanakrishnan 18/25



Typical Neural Network-based Representation of Q

1. http://www.nature.com/nature/journal/v518/n7540/carousel/nature14236-f1.jpg
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Practical Implementation and Evaluation of Learning Algorithms

(HQS2010)

[Video1 of RL on a humanoid robot]

1. http://www.youtube.com/watch?v=mRpX9DFCdwI
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ATARI 2600 Games (MKSRVBGRFOPBSAKKWLH2015)

[Breakout video1]

1. http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov
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AlphaGo (SHMGSDSAPLDGNKSLLKGH2016)
March 2016: DeepMind’s program beats Go champion Lee Sedol 4-1.

1. http://www.kurzweilai.net/images/AlphaGo-vs.-Sedol.jpg
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AlphaGo (SHMGSDSAPLDGNKSLLKGH2016)

1. http://static1.uk.businessinsider.com/image/56e0373052bcd05b008b5217-810-602/
screen%20shot%202016-03-09%20at%2014.png
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Learning Algorithm

1. Represent action value function Q as a neural network.

2. Gather data (on the simulator) by taking ǫ-greedy actions w.r.t. Q:

(s1, a1, r1, s2, a2, r2, s3, a3, r3, . . . sD , aD, rD, sD+1).

3. Train the network such that Q(st , at) ≈ rt + maxa Q(st+1, a).

Go to 2.
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Learning Algorithm

1. Represent action value function Q as a neural network.

AlphaGo: Use both a policy network and an action value network.

2. Gather data (on the simulator) by taking ǫ-greedy actions w.r.t. Q:

(s1, a1, r1, s2, a2, r2, s3, a3, r3, . . . sD , aD, rD, sD+1).

AlphaGo: Use Monte Carlo Tree Search for action selection

3. Train the network such that Q(st , at) ≈ rt + maxa Q(st+1, a).

Go to 2.

AlphaGo: Trained using self-play.
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Summary and Conclusion

Reinforcement Learning

Do not program behaviour! Rather, specify goals.

Rich history, at confluence of several fields of study, firm foundation.

Limited in practice by quality of the representation used.

Recent advances in deep learning have reinvigorated the field of RL.

Very promising technology that is changing the face of AI.
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