
Reinforcement Learning

Shivaram Kalyanakrishnan
shivaram@cse.iitb.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

February 2017

RoboCup Soccer

Objective of the RoboCup Federation :

“By the middle of the 21st century, a team of fully au-
tonomous humanoid robot soccer players shall win a soccer
game, complying with the official rules of FIFA, against the
winner of the most recent World Cup.”

Shivaram Kalyanakrishnan 1/25

RoboCup Soccer

Objective of the RoboCup Federation :

“By the middle of the 21st century, a team of fully au-
tonomous humanoid robot soccer players shall win a soccer
game, complying with the official rules of FIFA, against the
winner of the most recent World Cup.”

[RoboCup 2010: Nao video1]

1. https://www.youtube.com/watch?v=b6Zu5fLUa3c

Shivaram Kalyanakrishnan 1/25

https://www.youtube.com/watch?v=b6Zu5fLUa3c

Half Field Offense (KLS2007)

[Video of task1]

1. http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Random.swf

Shivaram Kalyanakrishnan 2/25

http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Random.swf

Half Field Offense (KLS2007)

[Video of task1]

Training

1. http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Random.swf

Shivaram Kalyanakrishnan 2/25

http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Random.swf

Half Field Offense (KLS2007)

[Video of task1]

Training

[Video of task after training2]

1. http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Random.swf
2. http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Communication.swf

Shivaram Kalyanakrishnan 2/25

http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Random.swf
http://www.cs.utexas.edu/~AustinVilla/sim/halffieldoffense/swfs/Communication.swf

Half Field Offense (KLS2007)

0 5,000 10,000 15,000 20,000 25,000 30,000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Learning Performance

Number of Episodes

A
ve

ra
ge

 G
oa

ls
 S

co
re

d
pe

r
E

pi
so

de
With Communication

Without Communication

UvA Offense

Handcoded

Random

Shivaram Kalyanakrishnan 3/25

Learning to Act Purposefully

Answer : Reinforcement Learning (RL).

Shivaram Kalyanakrishnan 4/25

Learning to Act Purposefully

ActSense

AGENT

Think

ENVIRONMENT

Answer : Reinforcement Learning (RL).

Shivaram Kalyanakrishnan 4/25

Learning to Act Purposefully

ActSense

AGENT

Think

ENVIRONMENT

state reward action

Answer : Reinforcement Learning (RL).

Shivaram Kalyanakrishnan 4/25

Learning to Act Purposefully

ActSense

AGENT

Think

ENVIRONMENT

state reward action

Question : How must an agent in an unknown environment act so as to
maximise its long-term reward?

Answer : Reinforcement Learning (RL).

Shivaram Kalyanakrishnan 4/25

Reinforcement Learning: Historical Foundations

NeuroscienceReinforcement
Learning

Psychology

Artificial Intelligence and
Computer Science

(Animal Behaviour)

Operations Research
(Dynamic Programming)

Control Theory

Shivaram Kalyanakrishnan 5/25

Reinforcement Learning: Historical Foundations

NeuroscienceReinforcement
Learning

Psychology

Artificial Intelligence and
Computer Science

(Animal Behaviour)

Operations Research
(Dynamic Programming)

Control Theory

B. F. Skinner

Shivaram Kalyanakrishnan 5/25

Reinforcement Learning: Historical Foundations

NeuroscienceReinforcement
Learning

Psychology

Artificial Intelligence and
Computer Science

(Animal Behaviour)

Operations Research
(Dynamic Programming)

Control Theory

B. F. Skinner

R. E. Bellman

Shivaram Kalyanakrishnan 5/25

Reinforcement Learning: Historical Foundations

NeuroscienceReinforcement
Learning

Psychology

Artificial Intelligence and
Computer Science

(Animal Behaviour)

Operations Research
(Dynamic Programming)

Control Theory

B. F. Skinner

D. P. BertsekasR. E. Bellman

Shivaram Kalyanakrishnan 5/25

Reinforcement Learning: Historical Foundations

NeuroscienceReinforcement
Learning

Psychology

Artificial Intelligence and
Computer Science

(Animal Behaviour)

Operations Research
(Dynamic Programming)

Control Theory

B. F. Skinner

D. P. Bertsekas

W. Schultz

R. E. Bellman

Shivaram Kalyanakrishnan 5/25

Reinforcement Learning: Historical Foundations

NeuroscienceReinforcement
Learning

Psychology

Artificial Intelligence and
Computer Science

(Animal Behaviour)

Operations Research
(Dynamic Programming)

Control Theory

R. S. Sutton

B. F. Skinner

D. P. Bertsekas

W. Schultz

R. E. Bellman

Shivaram Kalyanakrishnan 5/25

Reinforcement Learning: Historical Foundations

NeuroscienceReinforcement
Learning

Psychology

Artificial Intelligence and
Computer Science

(Animal Behaviour)

Operations Research
(Dynamic Programming)

Control Theory

R. S. Sutton

B. F. Skinner

D. P. Bertsekas

W. Schultz

R. E. Bellman

References: KLM1996, SB1998.
Shivaram Kalyanakrishnan 5/25

Outline

1. Markov Decision Problems

2. Bellman’s (Optimality) Equations, planning and learning

3. Challenges

4. RL in practice

5. Summary

Shivaram Kalyanakrishnan 6/25

Outline

1. Markov Decision Problems

2. Bellman’s (Optimality) Equations, planning and learning

3. Challenges

4. RL in practice

5. Summary

Shivaram Kalyanakrishnan 6/25

Markov Decision Problem

at

st+1

rt+1

st rt

S A

ENVIRONMENT

π :

action

LEARNING AGENT

T

R

state reward

S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S,∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.

Shivaram Kalyanakrishnan 7/25

Markov Decision Problem

at

st+1

rt+1

st rt

S A

ENVIRONMENT

π :

action

LEARNING AGENT

T

R

state reward

S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S,∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.

Trajectory over time: s0, a0, r1, s1, a1, r2, . . . , st , at , rt+1, st+1,

Shivaram Kalyanakrishnan 7/25

Markov Decision Problem

at

st+1

rt+1

st rt

S A

ENVIRONMENT

π :

action

LEARNING AGENT

T

R

state reward

S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S,∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.

Trajectory over time: s0, a0, r1, s1, a1, r2, . . . , st , at , rt+1, st+1,

Value, or expected long-term reward, of state s under policy π:
Vπ(s) = E[r1 + γr2 + γ

2r3 + . . . to∞|s0 = s, ai = π(si)].

Shivaram Kalyanakrishnan 7/25

Markov Decision Problem

at

st+1

rt+1

st rt

S A

ENVIRONMENT

π :

action

LEARNING AGENT

T

R

state reward

S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S,∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.

Trajectory over time: s0, a0, r1, s1, a1, r2, . . . , st , at , rt+1, st+1,

Value, or expected long-term reward, of state s under policy π:
Vπ(s) = E[r1 + γr2 + γ

2r3 + . . . to∞|s0 = s, ai = π(si)].

Objective: “Find π such that Vπ(s) is maximal ∀s ∈ S.”

Shivaram Kalyanakrishnan 7/25

Examples

What are the agent and environment? What are S, A, T , and R?

Shivaram Kalyanakrishnan 8/25

Examples

What are the agent and environment? What are S, A, T , and R?

1. http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif

Shivaram Kalyanakrishnan 8/25

http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif

Examples

What are the agent and environment? What are S, A, T , and R?

(ACQN2006)

1. http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif

2. http://scd.france24.com/en/files/imagecache/
france24_ct_api_bigger_169/article/image/101016-airbus-pologne-characal-m.jpg

Shivaram Kalyanakrishnan 8/25

http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif
http://scd.france24.com/en/files/imagecache/
france24_ct_api_bigger_169/article/image/101016-airbus-pologne-characal-m.jpg

Examples

What are the agent and environment? What are S, A, T , and R?

(ACQN2006)

[Video3 of Tetris]

1. http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif

2. http://scd.france24.com/en/files/imagecache/
france24_ct_api_bigger_169/article/image/101016-airbus-pologne-characal-m.jpg

3. https://www.youtube.com/watch?v=khHZyghXseE

Shivaram Kalyanakrishnan 8/25

http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif
http://scd.france24.com/en/files/imagecache/
france24_ct_api_bigger_169/article/image/101016-airbus-pologne-characal-m.jpg
https://www.youtube.com/watch?v=khHZyghXseE

Illustration: MDPs as State Transition Diagrams

s s

s s

1 2

34

Notation: "transition probability, reward" marked on each arrow

0.2, 0

0.8, 1
0.2, 1

0.8, −1

0.2, −1

0.8, 2
0.2, 2

0.8, 0

0.5, 1

0.5, −1

0.5, −1

0.5, 2

0.5, 2

0.5, 0

0.5, 0

0.5, 1

States : s1 , s2, s3, and s4 .

Actions : Red (solid lines) and blue (dotted lines).

Transitions : Red action leads to same state with 20% chance, to next-clockwise state with
80% chance. Blue action leads to next-clockwise state or 2-removed-clockwise state with
equal (50%) probability.

Rewards : R(∗, ∗, s1) = 0, R(∗, ∗, s2) = 1, R(∗, ∗, s3) = −1, R(∗, ∗, s4) = 2.

Discount factor : γ = 0.9.

Shivaram Kalyanakrishnan 9/25

Outline

1. Markov Decision Problems

2. Bellman’s (Optimality) Equations, planning and learning

3. Challenges

4. RL in practice

5. Summary

Shivaram Kalyanakrishnan 10/25

Bellman’s Equations

Recall that

Vπ(s) = E[r1 + γr2 + γ
2r3 + . . . |s0 = s, ai = π(si)].

Bellman’s Equations (∀s ∈ S):

Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.

Shivaram Kalyanakrishnan 11/25

Bellman’s Equations

Recall that

Vπ(s) = E[r1 + γr2 + γ
2r3 + . . . |s0 = s, ai = π(si)].

Bellman’s Equations (∀s ∈ S):

Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.

Define (∀s ∈ S, ∀a ∈ A):

Qπ(s, a) =
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γVπ(s′)].

Qπ is called the action value function of π.

Vπ(s) = Qπ(s, π(s)).

Shivaram Kalyanakrishnan 11/25

Bellman’s Equations

Recall that

Vπ(s) = E[r1 + γr2 + γ
2r3 + . . . |s0 = s, ai = π(si)].

Bellman’s Equations (∀s ∈ S):

Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.

Define (∀s ∈ S, ∀a ∈ A):

Qπ(s, a) =
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γVπ(s′)].

Qπ is called the action value function of π.

Vπ(s) = Qπ(s, π(s)).

The variables in Bellman’s Equations are the Vπ(s). |S| linear equations
in |S| unknowns.

Shivaram Kalyanakrishnan 11/25

Bellman’s Equations

Recall that

Vπ(s) = E[r1 + γr2 + γ
2r3 + . . . |s0 = s, ai = π(si)].

Bellman’s Equations (∀s ∈ S):

Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.

Define (∀s ∈ S, ∀a ∈ A):

Qπ(s, a) =
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γVπ(s′)].

Qπ is called the action value function of π.

Vπ(s) = Qπ(s, π(s)).

The variables in Bellman’s Equations are the Vπ(s). |S| linear equations
in |S| unknowns.

Thus, given S, A, T , R, γ, and a fixed policy π, we can solve Bellman’s
Equations efficiently to obtain, ∀s ∈ S,∀a ∈ A, Vπ(s) and Qπ(s, a).

Shivaram Kalyanakrishnan 11/25

Bellman’s Optimality Equations
Let Π be the set of all policies. What is its cardinality?

Shivaram Kalyanakrishnan 12/25

Bellman’s Optimality Equations
Let Π be the set of all policies. What is its cardinality?

It can be shown that there exists a policy π
∗ ∈ Π such that

∀π ∈ Π ∀s ∈ S: Vπ
∗

(s) ≥ Vπ(s).

Vπ
∗

is denoted V ∗, and Qπ
∗

is denoted Q∗.
There could be multiple optimal policies π

∗, but V ∗ and Q∗ are unique.

Shivaram Kalyanakrishnan 12/25

Bellman’s Optimality Equations
Let Π be the set of all policies. What is its cardinality?

It can be shown that there exists a policy π
∗ ∈ Π such that

∀π ∈ Π ∀s ∈ S: Vπ
∗

(s) ≥ Vπ(s).

Vπ
∗

is denoted V ∗, and Qπ
∗

is denoted Q∗.
There could be multiple optimal policies π

∗, but V ∗ and Q∗ are unique.

Bellman’s Optimality Equations (∀s ∈ S):

V ∗(s) = maxa∈A
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γV ∗(s′)].

Shivaram Kalyanakrishnan 12/25

Bellman’s Optimality Equations
Let Π be the set of all policies. What is its cardinality?

It can be shown that there exists a policy π
∗ ∈ Π such that

∀π ∈ Π ∀s ∈ S: Vπ
∗

(s) ≥ Vπ(s).

Vπ
∗

is denoted V ∗, and Qπ
∗

is denoted Q∗.
There could be multiple optimal policies π

∗, but V ∗ and Q∗ are unique.

Bellman’s Optimality Equations (∀s ∈ S):

V ∗(s) = maxa∈A
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γV ∗(s′)].

Planning problem :

Given S, A, T , R, γ, how can we find an optimal policy π
∗? We need

to be computationally efficient.

Shivaram Kalyanakrishnan 12/25

Bellman’s Optimality Equations
Let Π be the set of all policies. What is its cardinality?

It can be shown that there exists a policy π
∗ ∈ Π such that

∀π ∈ Π ∀s ∈ S: Vπ
∗

(s) ≥ Vπ(s).

Vπ
∗

is denoted V ∗, and Qπ
∗

is denoted Q∗.
There could be multiple optimal policies π

∗, but V ∗ and Q∗ are unique.

Bellman’s Optimality Equations (∀s ∈ S):

V ∗(s) = maxa∈A
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γV ∗(s′)].

Planning problem :

Given S, A, T , R, γ, how can we find an optimal policy π
∗? We need

to be computationally efficient.

Learning problem :

Given S, A, γ, and the facility to follow a trajectory by sampling from T
and R, how can we find an optimal policy π

∗? We need to be sample-
efficient.

Shivaram Kalyanakrishnan 12/25

Planning

Given S, A, T , R, γ, how can we find an optimal policy π
∗?

Shivaram Kalyanakrishnan 13/25

Planning

Given S, A, T , R, γ, how can we find an optimal policy π
∗?

One method . We can pose Bellman’s Optimality Equations as a linear
program, solve for V ∗, derive Q∗, and induce π

∗(s) = argmaxa Q∗(s, a).

Shivaram Kalyanakrishnan 13/25

Planning

Given S, A, T , R, γ, how can we find an optimal policy π
∗?

One method . We can pose Bellman’s Optimality Equations as a linear
program, solve for V ∗, derive Q∗, and induce π

∗(s) = argmaxa Q∗(s, a).

Another method to find V ⋆. Value Iteration.

�Initialise V 0 : S → R arbitrarily.
� t ← 0.
�Repeat

�For all s ∈ S,
� V t+1(s) ← maxa∈A

∑

s′∈S T (s, a, s′)
[

R(s, a, s′) + γV t(s′)
]

.
� t ← t + 1.

�Until ‖V t − V t−1‖ is small enough.

Shivaram Kalyanakrishnan 13/25

Planning

Given S, A, T , R, γ, how can we find an optimal policy π
∗?

One method . We can pose Bellman’s Optimality Equations as a linear
program, solve for V ∗, derive Q∗, and induce π

∗(s) = argmaxa Q∗(s, a).

Another method to find V ⋆. Value Iteration.

�Initialise V 0 : S → R arbitrarily.
� t ← 0.
�Repeat

�For all s ∈ S,
� V t+1(s) ← maxa∈A

∑

s′∈S T (s, a, s′)
[

R(s, a, s′) + γV t(s′)
]

.
� t ← t + 1.

�Until ‖V t − V t−1‖ is small enough.

Other methods. Policy Iteration, and mixtures with Value Iteration.

Shivaram Kalyanakrishnan 13/25

Learning

Given S, A, γ, and the facility to follow a trajectory by sampling from T
and R, how can we find an optimal policy π

∗?

Shivaram Kalyanakrishnan 14/25

Learning

Given S, A, γ, and the facility to follow a trajectory by sampling from T
and R, how can we find an optimal policy π

∗?

Various classes of learning methods exist. We will consider a simple one
called Q-learning, which is a temporal difference learning algorithm.

� Let Q be our “guess” of Q∗: for every state s and action a, initialise
Q(s, a) arbitrarily. We will start in some state s0.
�For t = 0, 1, 2, . . .

�Take an action at , chosen uniformly at random with probability ǫ,
and to be argmaxa Q(st , a) with probability 1− ǫ.
�The environment will generate next state st+1 and reward rt+1.
�Update: Q(st , at)← Q(st , at) + αt (rt+1 + γ maxa∈A Q(st+1, a) − Q(st , at)).
[ǫ: parameter for “ǫ-greedy” exploration] [αt : learning rate]
[rt+1+γ maxa∈A Q(st+1, a)−Q(st , at): temporal difference prediction error]

Shivaram Kalyanakrishnan 14/25

Learning

Given S, A, γ, and the facility to follow a trajectory by sampling from T
and R, how can we find an optimal policy π

∗?

Various classes of learning methods exist. We will consider a simple one
called Q-learning, which is a temporal difference learning algorithm.

� Let Q be our “guess” of Q∗: for every state s and action a, initialise
Q(s, a) arbitrarily. We will start in some state s0.
�For t = 0, 1, 2, . . .

�Take an action at , chosen uniformly at random with probability ǫ,
and to be argmaxa Q(st , a) with probability 1− ǫ.
�The environment will generate next state st+1 and reward rt+1.
�Update: Q(st , at)← Q(st , at) + αt (rt+1 + γ maxa∈A Q(st+1, a) − Q(st , at)).
[ǫ: parameter for “ǫ-greedy” exploration] [αt : learning rate]
[rt+1+γ maxa∈A Q(st+1, a)−Q(st , at): temporal difference prediction error]

For ǫ ∈ (0, 1] and αt =
1
t , it can be proven that as t →∞, Q → Q∗.

(WD1992)

Shivaram Kalyanakrishnan 14/25

Outline

1. Markov decision problems

2. Bellman’s (Optimality) Equations, planning and learning

3. Challenges

4. RL in practice

5. Summary

Shivaram Kalyanakrishnan 15/25

Challenges

� Exploration

� Generalisation (over states and actions)

� State aliasing (partial observability)

� Multiple agents, nonstationary rewards and transitions

� Abstraction (over states and over time)

Shivaram Kalyanakrishnan 16/25

Challenges

� Exploration

� Generalisation (over states and actions)

� State aliasing (partial observability)

� Multiple agents, nonstationary rewards and transitions

� Abstraction (over states and over time)

My thesis question (K2011) :

“How well do different learning methods for sequential decision making
perform in the presence of state aliasing and generalization; can we de-
velop methods that are both sample-efficient and capable of achieving
high asymptotic performance in their presence?”

Shivaram Kalyanakrishnan 16/25

Practice =⇒ Imperfect Representations

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992) Absent Discrete Neural network (198)
Job-shop scheduling (ZD1995) Absent Discrete Neural network (20)
Tetris (BT1906) Absent Discrete Linear (22)
Elevator dispatching (CB1996) Present Continuous Neural network (46)
Acrobot control (S1996) Absent Continuous Tile coding (4)
Dynamic channel allocation (SB1997) Absent Discrete Linear (100’s)
Active guidance of finless rocket (GM2003) Present Continuous Neural network (14)
Fast quadrupedal locomotion (KS2004) Present Continuous Parameterized policy (12)
Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Dynamic bipedal locomotion (TZS2004) Present Continuous Feedback control policy (2)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
Robot soccer keepaway (SSK2005) Present Continuous Tile coding (13)
Robot obstacle negotiation (LSYSN2006) Present Continuous Linear (10)
Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
Blimp control (RPHB2007) Present Continuous Gaussian Process (2)
9 × 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Ms. Pac-Man (SL2007) Absent Discrete Rule list (10)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)

Shivaram Kalyanakrishnan 17/25

Practice =⇒ Imperfect Representations

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992) Absent Discrete Neural network (198)
Job-shop scheduling (ZD1995) Absent Discrete Neural network (20)
Tetris (BT1906) Absent Discrete Linear (22)
Elevator dispatching (CB1996) Present Continuous Neural network (46)
Acrobot control (S1996) Absent Continuous Tile coding (4)
Dynamic channel allocation (SB1997) Absent Discrete Linear (100’s)
Active guidance of finless rocket (GM2003) Present Continuous Neural network (14)
Fast quadrupedal locomotion (KS2004) Present Continuous Parameterized policy (12)
Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Dynamic bipedal locomotion (TZS2004) Present Continuous Feedback control policy (2)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
Robot soccer keepaway (SSK2005) Present Continuous Tile coding (13)
Robot obstacle negotiation (LSYSN2006) Present Continuous Linear (10)
Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
Blimp control (RPHB2007) Present Continuous Gaussian Process (2)
9 × 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Ms. Pac-Man (SL2007) Absent Discrete Rule list (10)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)

Shivaram Kalyanakrishnan 17/25

Practice =⇒ Imperfect Representations

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992) Absent Discrete Neural network (198)
Job-shop scheduling (ZD1995) Absent Discrete Neural network (20)
Tetris (BT1906) Absent Discrete Linear (22)
Elevator dispatching (CB1996) Present Continuous Neural network (46)
Acrobot control (S1996) Absent Continuous Tile coding (4)
Dynamic channel allocation (SB1997) Absent Discrete Linear (100’s)
Active guidance of finless rocket (GM2003) Present Continuous Neural network (14)
Fast quadrupedal locomotion (KS2004) Present Continuous Parameterized policy (12)
Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Dynamic bipedal locomotion (TZS2004) Present Continuous Feedback control policy (2)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
Robot soccer keepaway (SSK2005) Present Continuous Tile coding (13)
Robot obstacle negotiation (LSYSN2006) Present Continuous Linear (10)
Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
Blimp control (RPHB2007) Present Continuous Gaussian Process (2)
9 × 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Ms. Pac-Man (SL2007) Absent Discrete Rule list (10)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)

Shivaram Kalyanakrishnan 17/25

Practice =⇒ Imperfect Representations

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992) Absent Discrete Neural network (198)
Job-shop scheduling (ZD1995) Absent Discrete Neural network (20)
Tetris (BT1906) Absent Discrete Linear (22)
Elevator dispatching (CB1996) Present Continuous Neural network (46)
Acrobot control (S1996) Absent Continuous Tile coding (4)
Dynamic channel allocation (SB1997) Absent Discrete Linear (100’s)
Active guidance of finless rocket (GM2003) Present Continuous Neural network (14)
Fast quadrupedal locomotion (KS2004) Present Continuous Parameterized policy (12)
Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Dynamic bipedal locomotion (TZS2004) Present Continuous Feedback control policy (2)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
Robot soccer keepaway (SSK2005) Present Continuous Tile coding (13)
Robot obstacle negotiation (LSYSN2006) Present Continuous Linear (10)
Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
Blimp control (RPHB2007) Present Continuous Gaussian Process (2)
9 × 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Ms. Pac-Man (SL2007) Absent Discrete Rule list (10)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)

Perfect representations (fully observable, enumerable states) are impractical.

Shivaram Kalyanakrishnan 17/25

Outline

1. Markov decision problems

2. Bellman’s (Optimality) Equations, planning and learning

3. Challenges

4. RL in practice

5. Summary

Shivaram Kalyanakrishnan 18/25

Typical Neural Network-based Representation of Q

1. http://www.nature.com/nature/journal/v518/n7540/carousel/nature14236-f1.jpg

Shivaram Kalyanakrishnan 19/25

http://www.nature.com/nature/journal/v518/n7540/carousel/nature14236-f1.jpg

Practical Implementation and Evaluation of Learning Algorithms

(HQS2010)

[Video1 of RL on a humanoid robot]

1. http://www.youtube.com/watch?v=mRpX9DFCdwI

Shivaram Kalyanakrishnan 20/25

http://www.youtube.com/watch?v=mRpX9DFCdwI

Practical Implementation and Evaluation of Learning Algorithms

(HQS2010)

[Video1 of RL on a humanoid robot]

1. http://www.youtube.com/watch?v=mRpX9DFCdwI

Shivaram Kalyanakrishnan 20/25

http://www.youtube.com/watch?v=mRpX9DFCdwI

ATARI 2600 Games (MKSRVBGRFOPBSAKKWLH2015)

[Breakout video1]

1. http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov

Shivaram Kalyanakrishnan 21/25

http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov

ATARI 2600 Games (MKSRVBGRFOPBSAKKWLH2015)

[Breakout video1]

1. http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov

Shivaram Kalyanakrishnan 21/25

http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov

AlphaGo (SHMGSDSAPLDGNKSLLKGH2016)
March 2016: DeepMind’s program beats Go champion Lee Sedol 4-1.

1. http://www.kurzweilai.net/images/AlphaGo-vs.-Sedol.jpg

Shivaram Kalyanakrishnan 22/25

http://www.kurzweilai.net/images/AlphaGo-vs.-Sedol.jpg

AlphaGo (SHMGSDSAPLDGNKSLLKGH2016)

1. http://static1.uk.businessinsider.com/image/56e0373052bcd05b008b5217-810-602/
screen%20shot%202016-03-09%20at%2014.png

Shivaram Kalyanakrishnan 22/25

http://static1.uk.businessinsider.com/image/56e0373052bcd05b008b5217-810-602/
screen%20shot%202016-03-09%20at%2014.png

Learning Algorithm

1. Represent action value function Q as a neural network.

2. Gather data (on the simulator) by taking ǫ-greedy actions w.r.t. Q:

(s1, a1, r1, s2, a2, r2, s3, a3, r3, . . . sD , aD, rD, sD+1).

3. Train the network such that Q(st , at) ≈ rt + maxa Q(st+1, a).

Go to 2.

Shivaram Kalyanakrishnan 23/25

Learning Algorithm

1. Represent action value function Q as a neural network.

AlphaGo: Use both a policy network and an action value network.

2. Gather data (on the simulator) by taking ǫ-greedy actions w.r.t. Q:

(s1, a1, r1, s2, a2, r2, s3, a3, r3, . . . sD , aD, rD, sD+1).

AlphaGo: Use Monte Carlo Tree Search for action selection

3. Train the network such that Q(st , at) ≈ rt + maxa Q(st+1, a).

Go to 2.

AlphaGo: Trained using self-play.

Shivaram Kalyanakrishnan 23/25

References

(For references on slide 17, see Kalyanakrishnan’s thesis (K2011).)

[WD1992] Christopher J. C. H. Watkins and Peter Dayan, 1992 . Q-Learning. Machine
Learning, 8(3–4):279–292, 1992.

[P1994] Martin L. Puterman . Markov Decision Processes. Wiley, 1994.

[KLM1996] Leslie Pack Kaelbling, Michael L. Littman, and An drew W. Moore, 1996 .
Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research, 4:237–285,
1996.

[SB1998] Richard S. Sutton and Andrew G. Barto, 1998 . Reinforcement Learning: An
Introduction. MIT Press, 1998.

[HOT2006] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh, 2006. A Fast
Learning Algorithm for Deep Belief Nets, Neural Computation, 18:1527–1554, 2006.

Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng , 2006. An Application of
Reinforcement Learning to Aerobatic Helicopter Flight. In Advances in Neural Information
Processing Systems 19, pp. 1–8, MIT Press, 2006.

Shivaram Kalyanakrishnan 24/25

References

[KLS2007] Shivaram Kalyanakrishnan, Yaxin Liu, and Peter S tone . Half Field Offense in
RoboCup Soccer: A Multiagent Reinforcement Learning Case Study. In RoboCup 2006:
Robot Soccer World Cup X, pp. 72–85, Springer, 2007.

Todd Hester, Michael Quinlan, and Peter Stone, 2010 . Generalized Model Learning for
Reinforcement Learning on a Humanoid Robot. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA 2010), pp. 2369–2374, IEEE, 2010.

[K2011] Shivaram Kalyanakrishnan . Learning Methods for Sequential Decision Making with
Imperfect Representations. Ph.D. Thesis, Department of Computer Science, The University
of Texas at Austin, 2011.

[MKSRVBGRFOPBSAKKWLH2015] Volodymyr Mnih, Koray Kavukcu oglu, David Silver,
Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Char les Beattie, Amir Sadik,
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wie rstra, Shane Legg, and
Demis Hassabis . Human-level control through deep reinforcement learning. Nature, 518:
529–533, 2015.

[SHMGSDSAPLDGNKSLLKGH2016] David Silver, Aja Huang, Chri s J. Maddison, Arthur
Guez, Laurent Sifre, George van den Driessche, Julian Schri ttwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Die leman, Dominik Grewe,
John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lilli crap, Madeleine Leach,
Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis, 2016 . Mastering the game of
Go with deep neural networks and tree search. Nature, 529: 484–489, 2016.

Shivaram Kalyanakrishnan 24/25

Summary and Conclusion

Reinforcement Learning

Do not program behaviour! Rather, specify goals.

Rich history, at confluence of several fields of study, firm foundation.

Limited in practice by quality of the representation used.

Recent advances in deep learning have reinvigorated the field of RL.

Very promising technology that is changing the face of AI.

Shivaram Kalyanakrishnan 25/25

	Introduction
	Markov Decision Problems
	Bellman, Planning, and Learning
	Challenges
	Practice

