Computer Vision

Teaching cameras to “see”

Arjun Jain



What is Computer Vision?

* Automatic understanding of images and video

* Measurement : Computing properties of the 3D world from
visual data

* Perception and interpretation: Algorithms and
representations to allow a machine to recognize objects,
people, scenes, and activities.
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Computer Vision: Measurement
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Computer Vision: Perception

* Perception and interpretation
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Related Disciplines

Robotics

Computer Vision

Scope of CS76

Machine
Learning
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Computati
al I\
Photography
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Computer Vision, Computer
Graphics and Image Processing

@age(s)

Computer Vision

recovery of information

about the 3D world from
2D image(s)
3D World

Image Processing Computer Graphics
operates on one image representation of a 3D
to produce another image scene in 2D image(s)

(e.g. denoising, deblurring,
enhancement, deconvolution
In particular in medical imaging).
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Why do Computer Vision?

* Asimage sources multiply, so do applications
* Relieve humans of boring, easy tasks

* Enhance human abilities: human computer
interaction, visualization

* Perception for robotics / autonomous agents

* Organize and give access to visual content
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Why Computer Vision?

Images are everywhere!

Personal Photo Albums Movies, News, Sports

Google 1’) picasa. Flickr NG P@"am” You D
surveillance and Security Med|cal and SClent|f|c Images

A R 'Egﬂ ua.ua 30:02

T ””-.,‘. ‘ £

Lecture 1 | Course Overview [IT Bomigay, Perceptive Code LLC



Why is Computer Vision so Hard?

Consider Image Classification: a core task in Computer
Vision

(assume given set of discrete labels)

{dog, cat, truck, plane, ...}
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Why is Computer Vision so Hard?

81 9 42 92 3¢ %4
99 03 45 02 44 75 33 53

S 81 28 64 23 67 10 26 38 40 &7

Images are represented as 3D

arrays of numbers, with integers : 70 3733 30 23 7 33 47 33 34 08 40 04 ¢
between [0, 255]. ' i« SRR

E.g.
300 x 100 x 3 ;

(3 for 3 color channels RGB)
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Challenges: Invariant to [llumination
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Challenges: Invariant to Viewpoint
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Challenges: Deal with Occlusion
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Challenges: Invariant to Deformation
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Challenges: Deal with Background
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Challenges: Deal with Intra-class
Variation




Challenges: Deal with Scale Changes

This cat is small

(» 1 »

This cat is big

Lecture 1 | Course Overview IIT Bomiay, Perceptive Code LLC



Challenges: Deal with Motion

slide credit: Svetlana Lazebnik
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Challenges or Opportunities?

* Images are confusing, but they also reveal the structure of the
world through numerous cues

* Computer Vision: interpret the cues (the human visual system does
this all the time!)

* E.g. we interpret depth in images using both physiological and
psychological cues

* Physiological cues require both eyes to be open (binocular)

* Other cues are available also when looking at images with only
one open eye (monocular). All psychological cues are
monocular
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Depth Cues: Linear Perspective
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When looking down a straight level road we see the parallel sides of the road meet in the horizon
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Depth Cues: Aerial Perspective

The mountains in the horizon look always slightly bluish or hazy. The reason for this are small water
and dust particles in the air between the eye and the mountains. The farther the mountains, the
hazier they look.
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Depth Ordering Cues: Occlusion

When objects block each other out of our sight, we know that the object that blocks the other one is
closer to us. The object whose outline pattern looks more continuous is felt to lie closer.
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Depth Cues: Texture Gradient

The closer we are to an object the more detail we can see of its surface texture. So objects with
smooth textures are usually interpreted being farther away.
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Depth Cues: Texture Gradient
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When we know the location of a light source and see objects casting shadows on other objects, we
learn that the object shadowing the other is closer to the light source.
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Depth Cues

* Binocular Parallax: As our eyes see the world from slightly
different locations, the images sensed by the eyes are slightly
different. This difference in the sensed images is called binocular
parallax. Human visual system is very sensitive to these
differences, and binocular parallax is the most important depth
cue for medium viewing distances. The sense of depth can be
achieved using binocular parallax even if all other depth cues are
removed.

The closer the object, the larger the
disparity. Far away objects will seem
almost the same by both eyes.

Seen by left eye Seen by right eye
Chrocka Cole Pubhaterg Comparry TP

Lecture 1 | Course Overview IIT Bor@tlgay, Perceptive Code LLC



Depth Cues

* Monocular Movement Parallax: If we close one of our eyes, we
can perceive depth by moving our head. This happens because
human visual system can extract depth information in two similar
images sensed after each other, in the same way it can combine
two images from different eyes.

* Retinal Image Size: When the real size of the object is known,
our brain compares the sensed size of the object to this real size,
and thus acquires information about the distance of the object.
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Grouping Cues
(color, texture, proximity)
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Grouping Cues: “Common Fate”
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Bottom Line

* Perception is an inherently ambiguous and ill posed problem:
* Many different 3D scenes could have given rise to the same

2D picture

* Use prior knowledge about the structure of the world
* Need a combination of different methods!
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Every Picture Tells a Story

Goal of computer vision is to write computer programs that can
interpret images
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Computer Vision

* Has been around since the 1960s
* What has changed?

1. Increasing availability of cheap, powerful cameras (e.g. digital cameras,
webcams) and other sensors

2. Increasing availability of massive amounts of labeled and unlabeled
image and multimedia content on the web (e.g. face databases, etc.)

3. Increasing availability of cheap, powerful computers (processing speed
and memory capacity - 10 Tflops by 1 Titan X!). Anyone heard of Titan
V? Tesla V1007

4. Techniques from machine learning and statistics which lead to more
complex, data-driven models and algorithms (e.g. deep learning!)
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L. G. Roberts, Machine Perception of
Three Dimensional Solids, Ph.D. thesis,
MIT Department of Electrical
Engineering, 1963.

A computer program has been written which can process a
photograph inte a line drawing, transform the line drawing into a three-
dimensional representation, and finally, display the three-dimensional
structure with all the hidden lines removed, from any point of view. The
2-D to 3-D construction and 3-D to 2-D display processes are sufficiently
general to handle most collections of planar-surfaced objects and provide
a valuable starting point for future investigation of computer-aided three-
dimensional systems.

Line drawing. {d) Rotated view
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Human Perceptlon Has Issues

* Absolutely identical in
terms of nose, eyes,
mouth and their spatial
arrangements!

Sinha and Poggio, Nature, 1996
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Human Perception Has Issues
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Can Computers Beat Human Vision?

* Yes and no
* humans are usually much better at “generic” problems
e computers can be better at “specific” problems
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Vision in Robotics

NASA’ s Mars Spirit Rover http://www.r .or
http://en.wikipedia.org/wiki/Spirit_rover

Lecture 1 | Course Overview IIT BorBay, Perceptive Code LLC



Vision in Autonomous Cars

Stereo Multipurpose Camera*™
1,600-ft. range, with 3D capability over a
160-ft. range with a 45° spread '

Short-Range Radar

Ultrasonic Sensors
4-ft. to 15-ft. range

Rear View and Surround Cameras
Four wide-angle color cameras, processable
into a single overhead on-screen view
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AutoCars - Uber bought CMU’s lab
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Current State-of-the-Art

* Many of these applications are less than 5 years old
* Thisis a very active research area, and rapidly changing!

* Many new apps in the next 5 years
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A few important topics in CV

1. Camera geometry
2. Shape from X
3. Motion Estimation

4. Machine learning in computer vision
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A few important topics in CV

1. Camera geometry
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1. Camera Geometry

focal
distance

P

\ optical axis
P :

image : lens
plane center

focal
distance

P

p /
lens

center ) optical axis
image
X | plane

Relationship between object
coordinates (given by a vector P in
3D) and image coordinates (given by
vector p in 2D)

Effect of various intrinsic camera
parameters (focal length of lens,
nature of the lens, aspect ratio of
sensor array, etc.) on image formation

Effect of various extrinsic camera
parameters on image formation
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1. Camera Geometry

* Let’s say we take a picture of a simple
dsmce object of known geometry (example:

/ﬂ/}’ chessboard, cube, etc.).

o K * Given the 3D coordinates of N points
plene e on the object, and their corresponding
asmmnce 2D coordinates in the image plane,

P

/ can you determine the camera
parameters such as focal length?

lens

center ) optical axis z
image
b ! plane

v * Answer is YES we can! This process is
called as camera calibration.

Lecture 1 | Course Overview IIT BordBay, Perceptive Code LLC



1. Camera Geometry (via Vanishing
Points)

ONE-POINT PERSPECTIVE

VANISHING POINT

HORIZON LINE

NOTICE DISTORTION
ASOBJECTS ARE

FURTHER FROM | | l
VANISHING POINT

PICTURE PLANE

http://www.atpm.com/9.09 /design.shtml
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Pin Hole Camera Model

Subject Box Screen

Light rays

Hole in the box

Upside down image

[IT Bombay, Perceptive Code LLC



Transformation from 3D world to image (sensor)

We want to compute the mapping

Sy — SHC CPk kHo

=
- N

in the image camera  object in the
sensor plane to to object
system to image camera  system

Sensor
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From the World to the Sensor

0

—>

-

object to camera

(3D)

—>

A

T

ideal projection
(3D to 2D)

Image to sensor

(2D)

deviation from

the linear model
(2D)

\==]
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1. Camera Geometry - Image
Mosaicing /Panoramas

Generating a panorama out of a
series of pictures of a scene from
different viewpoints.

http:/ /cs.bath.ac.uk /brown /autostitch /auto
stitch . html

Lecture 1 | Course Overview [IT Bordlgay, Perceptive Code LLC


http://cs.bath.ac.uk/brown/autostitch/autostitch.html

A few topics in CV

2. Shape from X

cture 1 | Course Overview [IT BorBlay, Perceptive Code LLC



2. Shape from “X”

* Animage is 2D. But most underlying objects are 3D.

* (Can you guess something about the 3D structure of the
underlying object just given the 2D image(s)?

* The human visual system does this all the time!

 We want to reproduce this effect computationally (the “holy
grail” of computer vision)
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2. Shape from “X”

Structure from Motion

| Resst | rowme

~ Seene

Fress capture button to build reconstruction

~
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2. Shape from “X”

Structure from Motion

1. Input: Video sequence of moving (translating + rotating) object

taken from a still camera
2. Solve: Tracks of some N 2D salient points from each frame of

the video sequence (correspondence problem)
3. Outputs: 3D coordinates of each of those N points in each

frame + 3D motion of the object!
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2. Shape from “X”

Depth from Stereo and Disparity

http://3dstereophoto.blogspot.in/2015/06/

nght Image Output Depth Map
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2. Shape from “X”

Shape from Shading

Shading influences shape. The image in (a) has the appearance
of mound of dirt with a small indentation. The image in (b)
appears to contain a crater with a mound at the top. Yet, the two
images are the same except for an up-down flip
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2. Shape from “X”

Shape from Shading
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2. Shape from “X”

Shape from Shading

BEFORE SHADING AFTER SHADING BEFORE SHADOWING AFTER SHADOWING
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2. Shape from “X”

Shape from Shading

Crater vs
mound?
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A few topics in CV

3. Motion Estimation
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3. Motion Estimation

* Avideo sequence is very rich in information content
* Movement brings in most of this information
 Movement allows objects identification
* |mage characteristics are coherent along motion trajectories

* Motion detection: binary decision (motion or no motion)

 Motion estimation: measure the movement
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3. Motion Estimation

IIT Bombay, Perceptive Code LLC



Other types of Motion Estimation:
1. Object Tracking
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Other types of Motion Estimation:
2. Multiple Object Tracking
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3. Motion Estimation

* Input: a video sequence

stabilization, etc.

* Typical assumptions: small motion between consecutive frames

e R

B
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A

Target: an estimate of the motion(2D) at all pixels in all frames
Applications of such an algorithm: object tracking, video
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3. Motion Estimation

* Sometimes the motion between two images can be represented
more compactly - e.g.: rotation, scaling, translation, etc.
* We will look at methods to estimate such “parametric motion”

NN
v, N
= %

/< 2N
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/
N
"N /! AR RRRS SN
\\g\‘\\\\l\\:;f;{///// ?;?Zg \\\\s\

Translation Rotation Scaling
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ptive Code LLC
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A few topics in CV

4. Machine learning in computer vision
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4. Machine Learning in Computer
Vision

* Why do we need to do machine learning?

Images are represented as 3D
arrays of numbers, with integers
between [0, 255].

E.g.
300x 100x 3

(3 for 3 color channels RGB)
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* Why do we need to do machine learning? No way to hand code
it!

Image classification:

function predict(image)
-- 2222

return class_label
end

* Unlike e.g. sorting a list of numbers

* No obvious way to hard-code the algorithm for recognizing a cat, or other classes
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* People have attempted

* Image classification:

777
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The Data Driven Paradigm

1. Collect a dataset of images and labels
2. Use Machine Learning to train an image classifier

3. Evaluate the classifier on a withheld set of test images
Example Training Set

function train(train_images, train_labels) dog mug

-- Build model: images -> labels ﬂ!g !am ﬂj !

return model Js ==
ol =~ EEal
function predict(model, test images) ﬁ.. J.

-- Predict test_labels using the model p | :,.‘.: .gg I B

return test_labels “"’ ﬂ
i A seE

end
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4. Machine Learning in Computer
Vision (Deep Learning)

* Deep Learning == Al

At last — a computer program that
can beat a champion Go player pace 184
v
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4. Machine Learning in Computer
Vision (Deep Learning)

‘man in black shirt is playing ‘construction worker in orange “two young girls are playing with
guitar.” safety vest is working on road." lego toy."

“girl in pink dress is jJumping in "black and white dog jumps over "young girl in pink shirt is
air" bar." swinging on swing.'
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4. Machine Learning in Computer
Vision (Deep Learning)

L . LS

——Newell et al., ECCV'16 PCKh total, MPII
— Bulat&Tzimiropoulos, ECCV'16 100 -
- \Wei et al., CVPR'16
- |nsafutdinov et al., ECCV'16 90 -
-»-Rafi et al., BMVC'16
-~ ~Gkioxary et al., ECCV'16 80 |
~ -Lifshitz et al., ECCV'16 X
- =Belagiannis&Zisserman, arXiv'l€ ~ 70 -
= =Pishchulin et al., CVPR'16 8 -
— Hu&Ramanan, CVPR'16 o 60
——Tompson et al., CVPR'15 ~
- =Carreira et al., CVPR'16 C 50
——Tompson et al., NIPS'14 9
1=~ =Pishchulin et al., ICCV'13 O 40 B
Y
o 30
0O
20
10 -

0 \ L \ 1 1 j
0 0.050.10.150.20.250.30.350.40.450.5
Normalized distance
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Digital Image Processing
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Pin Hole Camera Model

Subject Box Screen

Light rays

Hole in the box

Upside down image
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Digital Pictures

* DIGITAL IMAGES are electronic snapshots taken of a scene or scanned from documents, such as
photographs, manuscripts, printed texts, and artwork.

* The digital image is sampled and mapped as a grid of dots or picture elements (pixels).

* The process transforming continuous space into discrete space is called digitization
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1D /2D Digitization / Sampling

Yy quantization sampling

y=f(t)
. . A\/\
one-dimensional

' » ¢
by 19 1g -
continuous signal —> digitized signal
f J :
2= J----M
1 .
2 :
two-dimensional I '
i [ My
: [ (4.7)
X N
F={f;;}
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3D Digitization / Sampling

f IXIXI—R

three-dimensional

RN

NENUNIIN
INEENENENGNEN

I e

F={f;r} (6.3:k)

continuous image digitized image
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Definition

A (2D) picture P is a function defined on a (finite) rectangular subset G of a regular planar
orthogonal array. G is called (2D) grid, and an element of G is called pixel. P assigns a value of
P(p)toeachp € G

(Horizontal) grid edge

b
- Grid vertex
J— X <— Grid square
<«—— Vertical grid edge

|
Grid point

[IT Bombay, Perceptive Code LLC



Definition

* Pictures are not only sampled, they are also quantized: they may have only a finite number of
possible values (i.e., 0 to 255, 0-1, ...)

(Horizontal) grid edge

b

- Grid vertex

—— Grid square

i p=

<«—— Vertical grid edge

Grid point
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Example

* Animage contains discrete number of pixels.
* In this example we have a “grayscale image”, with intensity values in [0,255]

75

231

148

IIT Bombay, Perceptive Code LLC



Example

* Animage contains discrete number of pixels.
* In this example we have a “color image”
* RGB [R,G,B]
« HSVIH, S, V]

90, 0, 53
 Lab|[L, a, b] : ]

[249, 215, 203]

[213, 60, 67] —
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Example: RGB Channels of a Color Image
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Image Derivatives and Filtering
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Derivative

df _ . fG)—f(x = 8x)

dx Alalcr—r}o Ax =) =f
ds dv ,
vV =— speed a = — acceleration

dt dt
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Discrete Derivative

af .. JX)-fx-Ax)
dx _hmAx—>O Ax _f (X)
I S@GD

X 1

df

oA CO I ot = f'(x)
X
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Discrete Derivative
Finite Difference

af _

dx

af _

dx

af _

dx

= fx)—-f(x=-D=f"(x)

= fX)—fx+D)=f'(x)

= f(x+1) fx=1)=f'(x)

Backward
difference

Forward
difference

Central
difference
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Example

fx)= 10 15 10 10 25 20 20 20
)= 0 5 =5 0 15 =5 0 O
f'x)= 0 5 —-10 5 15 20 5 O

Derivative Masks

 Backward difference [-1 1]
* Forward difference [1 -1]
* Central difference [-0.5 0 0.5]
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Derivatives in 2 Dimentions

Given function f(x, y)

Of (x,)) | 1
Gradientvector  Vf'(x,y) = 8f(8;,J’) :{fx}
R
gr:;riietztde ‘Vf (x,y )| - \/f;‘2 +fy2
Sy

Gradient direction 0 =tan ! 2=

y
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Derivatives of Images

Derivative masl f —
X

10

10
10

10
10
10

20
20
20

10
10

10
10

20
20

1

3

20
20
20
20
20

20
20
20
20
20

o O O

S w—Y

1

—1

1
0
—1

0 O

0 10 10 C
0 10 10 C

0

0 0

O 10 10 O

0 O

oS O O O O
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Derivatives of Images

Derivative masl f —
X

10
10
10
10
10

10
10
10
10
10

20
20
20
20
20

1

3

20
20
20
20
20

20
20
20
20
20

o O O

S w—Y

o O O O O

oS O O O O

o O O O O

oS O O O O
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Correlation

fh :Zklzl:f(k,l)h(i+k,j+l)

f =Image
/ =Kernel
4 h
i |6 |f h, |h, |h, f*h= fih + [0, + fihy
2 15 |fe |® |n, |n |n, | + fahy + fshs + fhg
t; fg f h, |hg |[hg + fohy + fehg + fohg
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Convolution

f*h=;gf(k,l)h(i—k,j—l)

X_ﬂl'p El h, E3

f =Image
h = Kernel
B £
f7 f8 f9

h7 h8 h9
h, |h; |h
h; |h 3
Y — flip
h9 h8 h7
h6 h5 4
3 2 hl

f*h:ﬁh9 +f2h8 +f3h7
+f4h6 +fshs +f6h4
+ fohs + fshy + foh,
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Convolution

f(x,y)*h=f(x+Ly+Dh(-L-D)+ f(x,y +Dh0,~1)+ f(x -1,y +DA(1,-1)+
J(x+1,y)A(=1,0) + £ (x, »)A(0,0) + f (x -1, )A(1,0)
f(x+1Ly=DA(-LD)+ f(x,y —DhO,1)+ f(x -1,y —DA(L])

h - g
f*h=ZZf(x—l,y—l)h(l,_])
X i=—1 j=-1
-1,0 0,0 1,0

Coordinates
-1-1 0,1 1,1
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Filtering

Modify pixels based on some function of the neighborhood

10 130 |10
20 il |20
ey

S0




Linear Filtering

The output is the linear combination of the neighborhood pixels

1 13 |0 1 10 |-1
10 |2 ® (1 ]0.1 [-1 =
4 |1 1 1 (0 |-1

Image Kernel
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Filtering Examples
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Filtering Examples
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Filtering Examples

1 11 |1
L1111 1 |=
9
1 11 |1
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Filtering Examples
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Blurring Examples

8
2.4
03 Lu
0
original pixel offset filtered
8 8
6
4 48
0.3
0
original pixel offset filtered
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Filtering Gaussian
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Gaussian Filter vs. Smoothing

Gaussian Smoothing Smoothing by Averaging
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Noise Filtering

After Averaging

Gaussian Noise

After Gaussian Smoothing
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Convolutional Neural Networks
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A bit of history:

Hubel & Wiesel,
1959

RECEPTIVE FIELDS OF SINGLE
NEURONES IN
THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR
INTERACTION

AND FUNCTIONAL ARCHITECTURE IN
THE CAT'S VISUAL CORTEX

1968...

Electrical signal
from brain

Recording electrode ——»

Visual area — '
of brain ’

“‘ .‘ ;.-~ ol - =
Stimulus : : ﬁ

, . ‘
= 3 s S 8
| L | L J

Neural response (spikes/sec)

=4

T Ll T T |
-40 -20 0 20 40
Stimulus orientation (deg)
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https://youtu.be/8VdFf3egwfg?t=1m10s
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A bit of history

Topographical mapping in the cortex:
nearby cells in cortex represented
nearby regions in the visual field
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Hierarchical organization

Hubel & Weisel featural hierarchy

topographical mapping
hnyer-compIex A
cells |

(o9 o>
complex cells A
simple cells A‘

high level

mid level

©
C

7 low level
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Brief History - The First ConvNet -

* Neocognitron: multiple convolutional and pooling
layers similar to modern networks, but the network
was trained by using a reinforcement scheme

* Did not still use backpropagation

* Translational invariant

1980

g—— visual area

retina — LGB — simple — complex —

L 5
U0 : US? ’UC1_J|

>ie association area —-

lower-order __ higher-order _ ., ___grandmother

hypercomplex  hypercomplex

cell ?

U] B =N
/ d
/

ﬁi
]
/

\

Kunihiko Fukushima
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A bit of history: &

Gradient-based learning Yann LeCun
applied to document 6 Py

recognition Cﬂp\r/p
[LeCun, Bottou, Bengio, Haffner T [
1998] p t

Interpretation
Graph

Recognition
Transformer

maps \ \ \
f lay | \
6 20 84
RIECR IR IR IR
g 1 I
'
‘ ) L | \‘ Segmentation
v ‘ SFULo Gs ' ‘ Graph
Subsampling Convolutions  Subsampling Full connection eg

LeNet-5
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Brief History - LeNet-5 In Action
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Brief History - So What Changed (since the 1970s)?

* Three things:
* Availability of large amounts of labeled data e.g. ImageNet
* Compute power - A single NVidia TITAN X card churns of 11 TFLOPS with ~3500 cores, TITAN V?
* Algorithms:
* RelU - Found to decrease training time

* Dropout - prevent overfitting to the training data
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Building Blocks:
Convolution
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Building Blocks - Convolution

Example: 200x200 image
40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..
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Building Blocks - Convolution

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good

face recognition).

when input image is registered (e.g., _

117 Deep Learning (for Computer Vision)
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Building Blocks - Convolution

Translational Invariance

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels
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High Level Computer Vision Tasks

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

GRASS, CAT, DOG, DOG, CAT  DOG, DOG, CAT

u TREE, SKY I N Y
Y Y Y
No objects, just pixels Single Object Multiple Object
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Semantic Segmentation

Semantic
Segmentation

GRASS, :
TREE, SKY

Y

No objects, just pixels
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Semantic Segmentation

* Label each pixel in the image
with a category label

 Don’t differentiate instances,
only care about pixels
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Classification + Localization

Classification Object Instance
+ Localization Detection Segmentation

Single Object Multiple Object
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Object Detection

.

Object
Detection

Multiple
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Region Proposals

e Find “blobby” image regions that are likely to contain objects — non DL based

algorithm
e Relatively fast to run; e.g. Selective Search gives 1000 region proposals in a

few seconds on CPU
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Instance Segmentation

Instance
Segmentation

AT

_/

&=

DOG. DOG, C

-
Object
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Sources

A lot of the material has been shamelessly and gratefully collected from:

e http://cs231n.stanford.edu/

e https://devblogs.nvidia.com/parallelforall /deep-learning-nutshell-history-training /

 https://adeshpanded3.github.io /adeshpande3.github.io /The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

e https://research.fb.com/learning-to-segment/

e https://research.fb.com/deep-learning-tutorial-at-cvpr-2014 /

e https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning /practicals /practical4.pdf

e http://torch.ch/docs/developer-docs.html
e https://github.com/torch/nn/blob/31d7d2bc86a914e2a9e6b3874c497¢c60517dc853 /doc/module.md

 https://web.stanford.edu/group/pdplab/pdphandbook /handbookché.html

e http://neuralnetworksanddeeplearning.com/chap?2.html
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http://cs231n.stanford.edu/
https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-history-training/
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://research.fb.com/learning-to-segment/
https://research.fb.com/deep-learning-tutorial-at-cvpr-2014/
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/practicals/practical4.pdf
http://torch.ch/docs/developer-docs.html
https://github.com/torch/nn/blob/31d7d2bc86a914e2a9e6b3874c497c60517dc853/doc/module.md
https://web.stanford.edu/group/pdplab/pdphandbook/handbookch6.html
http://neuralnetworksanddeeplearning.com/chap2.html

Thank you!



