
IIT Bombay, Perceptive Code LLC

Computer Vision 
Teaching cameras to “see”

Arjun Jain



IIT Bombay, Perceptive Code LLCLecture 1 | Course Overview 2

What is Computer Vision?

• Automatic understanding of images and video

• Measurement : Computing properties of the 3D world from 
visual data 

• Perception and interpretation: Algorithms and 
representations to allow a machine to recognize objects, 
people, scenes, and activities. 
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Computer Vision: Measurement
• Measurement

Real-time stereo Structure-from-motion Multi-view stereo for 
community photo collections
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Computer Vision: Perception
• Perception and interpretation 
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Related Disciplines

Scope of CS763

Computer Vision Robotics

Neuroscience

Graphics

Computation
al 

Photography

Machine 
Learning

Medical 
Imaging

Human 
Computer 
Interaction

Optics

Motion Tracking 
Reconstruction

Recognition
Deep Learning
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Computer Vision, Computer 
Graphics and Image Processing

2D Image(s) 3D World

Computer Vision
recovery of information 
about the 3D world from 

2D image(s)

Computer Graphics
representation of a 3D 
scene in 2D image(s)

Image Processing
operates on one image 

to produce another image 
(e.g. denoising, deblurring, 

enhancement, deconvolution
In particular in medical imaging).
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Why do Computer Vision?
• As image sources multiply, so do applications

• Relieve humans of boring, easy tasks

• Enhance human abilities: human computer 
interaction, visualization

• Perception for robotics / autonomous agents

• Organize and give access to visual content 
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Why Computer Vision?
Images are everywhere!

Personal Photo Albums Movies, News, Sports

Medical and Scientific ImagesSurveillance and Security
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Why is Computer Vision so Hard?

Consider Image Classification: a core task in Computer 
Vision

cat

(assume given set of discrete labels)

{dog, cat, truck, plane, ...}
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Why is Computer Vision so Hard?

Images are represented as 3D 
arrays of numbers, with integers 
between [0, 255].

E.g. 
300 x 100 x 3 

(3 for 3 color channels RGB)
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Challenges: Invariant to Illumination 
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Challenges: Invariant to Viewpoint
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Challenges: Deal with Occlusion
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Challenges: Invariant to Deformation
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Challenges: Deal with Background 
Clutter
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Challenges: Deal with Intra-class 
Variation
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Challenges: Deal with Scale Changes
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Challenges: Deal with Motion
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Challenges or Opportunities?
• Images are confusing, but they also reveal the structure of the 

world through numerous cues 

• Computer Vision: interpret the cues (the human visual system does 
this all the time!)

• E.g. we interpret depth in images using both physiological and 
psychological cues

• Physiological cues require both eyes to be open (binocular)
• Other cues are available also when looking at images with only 

one open eye (monocular). All psychological cues are 
monocular
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Depth Cues: Linear Perspective 

When looking down a straight level road we see the parallel sides of the road meet in the horizon 
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Depth Cues: Aerial Perspective 

The mountains in the horizon look always slightly bluish or hazy. The reason for this are small water 
and dust particles in the air between the eye and the mountains. The farther the mountains, the 
hazier they look.
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Depth Ordering Cues: Occlusion

When objects block each other out of our sight, we know that the object that blocks the other one is 
closer to us. The object whose outline pattern looks more continuous is felt to lie closer. 
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Depth Cues: Texture Gradient

The closer we are to an object the more detail we can see of its surface texture. So objects with 
smooth textures are usually interpreted being farther away.
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Depth Cues: Texture Gradient

When we know the location of a light source and see objects casting shadows on other objects, we 
learn that the object shadowing the other is closer to the light source. 



IIT Bombay, Perceptive Code LLCLecture 1 | Course Overview 26

Depth Cues
• Binocular Parallax: As our eyes see the world from slightly 

different locations, the images sensed by the eyes are slightly 
different. This difference in the sensed images is called binocular 
parallax. Human visual system is very sensitive to these 
differences, and binocular parallax is the most important depth 
cue for medium viewing distances. The sense of depth can be 
achieved using binocular parallax even if all other depth cues are 
removed. 

The closer the object, the larger the 
disparity. Far away objects will seem 
almost the same by both eyes.
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Depth Cues
• Monocular Movement Parallax: If we close one of our eyes, we 

can perceive depth by moving our head. This happens because 
human visual system can extract depth information in two similar 
images sensed after each other, in the same way it can combine 
two images from different eyes.

• Retinal Image Size: When the real size of the object is known, 
our brain compares the sensed size of the object to this real size, 
and thus acquires information about the distance of the object.
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Grouping Cues
(color, texture, proximity)
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Grouping Cues: “Common Fate”
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Bottom Line
• Perception is an inherently ambiguous and ill posed problem: 
• Many different 3D scenes could have given rise to the same 

2D picture 

• Possible solutions: Bring in more constraints (more images)
• Use prior knowledge about the structure of the world
• Need a combination of different methods!
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Every Picture Tells a Story

Goal of computer vision is to write computer programs that can 
interpret images 
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Computer Vision
• Has been around since the 1960s
• What has changed?

1. Increasing availability of cheap, powerful cameras (e.g. digital cameras, 
webcams) and other sensors

2. Increasing availability of massive amounts of labeled and unlabeled 
image and multimedia content on the web (e.g. face databases, etc.)

3. Increasing availability of cheap, powerful computers (processing speed 
and memory capacity - 10 Tflops by 1 Titan X!). Anyone heard of Titan 
V? Tesla V100?

4. Techniques from machine learning and statistics which lead to more 
complex, data-driven models and algorithms (e.g. deep learning!)
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L. G. Roberts, Machine Perception of 
Three Dimensional Solids, Ph.D. thesis, 
MIT Department of Electrical 
Engineering, 1963. 
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Human Perception Has Issues

Sinha and Poggio, Nature, 1996

• Absolutely identical in 
terms of nose, eyes, 
mouth and their spatial 
arrangements!
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Human Perception Has Issues
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Can Computers Beat Human Vision? 
• Yes and no
• humans are usually much better at “generic” problems
• computers can be better at “specific” problems
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Vision in Robotics
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Vision in Autonomous Cars
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AutoCars - Uber bought CMU’s lab
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Current State-of-the-Art
• Many of these applications are less than 5 years old

• This is a very active research area, and rapidly changing!

• Many new apps in the next 5 years
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A few important topics in CV
1. Camera geometry

2. Shape from X

3. Motion Estimation

4. Machine learning in computer vision
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1. Camera Geometry

• Relationship between object 
coordinates (given by a vector P in 
3D) and image coordinates (given by 
vector p in 2D) 

• Effect of various intrinsic camera 
parameters (focal length of lens, 
nature of the lens, aspect ratio of 
sensor array, etc.) on image formation

• Effect of various extrinsic camera 
parameters on image formation
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1. Camera Geometry

• Let’s say we take a picture of a simple 
object of known geometry (example: 
chessboard, cube, etc.).

• Given the 3D coordinates of N points 
on the object, and their corresponding 
2D coordinates in the image plane, 
can you determine the camera 
parameters such as focal length?

• Answer is YES we can! This process is 
called as camera calibration.
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1. Camera Geometry (via Vanishing 
Points)

http://www.atpm.com/9.09/design.shtml
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Pin Hole Camera Model
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We want to compute the mapping

in the 
sensor 
system

in the 
object
system

image
plane
to
sensor

camera
to
image

object
to
camera

Transformation from 3D world to image (sensor)
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ideal projection
(3D to 2D)

image to sensor 
(2D)

deviation from
the linear model
(2D)

object to camera 
(3D)

From the World to the Sensor
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1. Camera Geometry - Image 
Mosaicing/Panoramas

http://cs.bath.ac.uk/brown/autostitch/auto
stitch.html

Generating a panorama out of a 
series of pictures of a scene from 
different viewpoints.

http://cs.bath.ac.uk/brown/autostitch/autostitch.html
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A few topics in CV
1. Camera geometry

2. Shape from X

3. Motion Estimation

4. Machine learning in computer vision
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2. Shape from “X”
• An image is 2D. But most underlying objects are 3D.

• Can you guess something about the 3D structure of the 
underlying object just given the 2D image(s)?

• The human visual system does this all the time!

• We want to reproduce this effect computationally (the “holy 
grail” of computer vision)
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2. Shape from “X”
Structure from Motion

1. Input: Video sequence of moving (translating + rotating) object 
taken from a still camera 

2. Solve: Tracks of some N 2D salient points from each frame of 
the video sequence (correspondence problem)

3. Outputs: 3D coordinates of each of those N points in each 
frame + 3D motion of the object!
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2. Shape from “X”
Depth from Stereo and Disparity

Left Image

Right Image Output Depth Map

http://3dstereophoto.blogspot.in/2015/06/
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2. Shape from “X”
Shape from Shading

Shading influences shape. The image in (a) has the appearance 
of mound of dirt with a small indentation. The image in (b) 
appears to contain a crater with a mound at the top. Yet, the two 
images are the same except for an up-down flip
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2. Shape from “X”
Shape from Shading
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2. Shape from “X”
Shape from Shading
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2. Shape from “X”
Shape from Shading

Crater vs 
mound?
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A few topics in CV
1. Camera geometry

2. Shape from X

3. Motion Estimation

4. Machine learning in computer vision
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3. Motion Estimation

• A video sequence is very rich in information content

• Movement brings in most of this information
• Movement allows objects identification
• Image characteristics are coherent along motion trajectories

• Motion detection: binary decision (motion or no motion)

• Motion estimation: measure the movement
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3. Motion Estimation
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Other types of Motion Estimation: 
1. Object Tracking
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Other types of Motion Estimation: 
2. Multiple Object Tracking
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3. Motion Estimation

• Input: a video sequence
• Target: an estimate of the motion(2D) at all pixels in all frames
• Applications of such an algorithm: object tracking, video 

stabilization, etc.
• Typical assumptions: small motion between consecutive frames

https://www.youtube.com/watch?v=KoMTYnlNNnc
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3. Motion Estimation

• Sometimes the motion between two images can be represented 
more compactly – e.g.: rotation, scaling, translation, etc.

• We will look at methods to estimate such “parametric motion”

Translation Rotation Scaling



IIT Bombay, Perceptive Code LLCLecture 1 | Course Overview 67

A few topics in CV
1. Camera geometry

2. Shape from X

3. Motion Estimation

4. Machine learning in computer vision
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4. Machine Learning in Computer 
Vision

Images are represented as 3D 
arrays of numbers, with integers 
between [0, 255].

E.g. 
300 x 100 x 3 

(3 for 3 color channels RGB)

• Why do we need to do machine learning? 
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Image classification:

function predict(image)
-- ????
return class_label

end

• Unlike e.g. sorting a list of numbers 

• No obvious way to hard-code the algorithm for recognizing a cat, or other classes

• Why do we need to do machine learning? No way to hand code 
it!
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• Image classification:

???

• People have attempted
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The Data Driven Paradigm

Deep Learning (for Computer Vision)71

1. Collect a dataset of images and labels

2. Use Machine Learning to train an image classifier

3. Evaluate the classifier on a withheld set of test images

Example Training Set

function train(train_images, train_labels)
-- Build model: images -> labels
return model

end

function predict(model, test_images)
-- Predict test_labels using the model
return test_labels

end



IIT Bombay, Perceptive Code LLCLecture 1 | Course Overview 72

4. Machine Learning in Computer 
Vision (Deep Learning)

• Deep Learning == AI
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4. Machine Learning in Computer 
Vision (Deep Learning)
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4. Machine Learning in Computer 
Vision (Deep Learning)
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Digital Image Processing
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Pin Hole Camera Model
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Digital Pictures

• DIGITAL IMAGES are electronic snapshots taken of a scene or scanned from documents, such as 
photographs, manuscripts, printed texts, and artwork. 

• The digital image is sampled and mapped as a grid of dots or picture elements (pixels). 

• The process transforming continuous space into discrete space is called digitization

Picture Sampling + 
Quantization

Digital 
Picture
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1D/2D Digitization / Sampling
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3D Digitization / Sampling
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Definition

• A (2D) picture ! is a function defined on a (finite) rectangular subset " of a regular planar 
orthogonal array. " is called (2D) grid, and an element of " is called pixel. ! assigns a value of 
!($) to each $ ∈ "
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Definition

• Pictures are not only sampled, they are also quantized: they may have only a finite number of 
possible values (i.e., 0 to 255, 0-1, …)
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Example 

• An image contains discrete number of pixels.
• In this example we have a “grayscale image”, with intensity values in [0,255]
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Example

• An image contains discrete number of pixels.
• In this example we have a “color image”

• RGB [R,G,B]
• HSV [H, S, V]
• Lab [L, a, b]
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Example: RGB Channels of a Color Image



IIT Bombay, Perceptive Code LLC

Image Derivatives and Filtering
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Derivative

!"
!# = lim∆)→+

" # − "(# − ∆#)
∆# = "/ # = ")

0 = !1
!2 3 = !0

!2speed acceleration
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Discrete Derivative
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Discrete Derivative
Finite Difference

2

Backward
difference

Forward
difference

Central
difference
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Example

Derivative Masks

• Backward difference     [-1  1]
• Forward difference       [1  -1]
• Central difference        [-0.5  0  0.5]
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Derivatives in 2 Dimentions

Given function

Gradient 
magnitude

Gradient vector

Gradient direction
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Derivatives of Images

Derivative masks
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Derivatives of Images

Derivative masks
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Correlation
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Convolution
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Convolution
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Filtering

Modify pixels based on some function of the neighborhood
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Linear Filtering

The output is the linear combination of the neighborhood pixels
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Filtering Examples
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Filtering Examples
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Filtering Examples
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Filtering Examples
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Blurring Examples
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Filtering Gaussian
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Gaussian Filter vs. Smoothing
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Noise Filtering
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Convolutional Neural Networks



IIT Bombay, Perceptive Code LLC



IIT Bombay, Perceptive Code LLC

https://youtu.be/8VdFf3egwfg?t=1m10s
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Brief History – The First ConvNet - 1980

Deep Learning (for Computer Vision)111

• Neocognitron: multiple convolutional and pooling

layers similar to modern networks, but the network 

was trained by using a reinforcement scheme

• Did not still use backpropagation

• Translational invariant

Kunihiko Fukushima
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Yann LeCun



IIT Bombay, Perceptive Code LLC

Brief History – LeNet-5 In Action

Deep Learning (for Computer Vision)113
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Brief History – So What Changed (since the 1970s)?

Deep Learning (for Computer Vision)114

• Three things:

• Availability of large amounts of labeled data e.g. ImageNet

• Compute power – A single NVidia TITAN X card churns of 11 TFLOPS with ~3500 cores, TITAN V? 

• Algorithms:

• ReLU - Found to decrease training time

• Dropout – prevent overfitting to the training data
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Building Blocks:
Convolution

Deep Learning (for Computer Vision)115
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Building Blocks - Convolution

Deep Learning (for Computer Vision)116
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Building Blocks - Convolution

Deep Learning (for Computer Vision)117
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Building Blocks - Convolution

Deep Learning (for Computer Vision)118

Translational Invariance
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High Level Computer Vision Tasks
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Semantic Segmentation
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Semantic Segmentation

• Label each pixel in the image 
with a category label 

• Don’t differentiate instances, 
only care about pixels
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Classification + Localization



IIT Bombay, Perceptive Code LLC

Object Detection
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Region Proposals
● Find “blobby” image regions that are likely to contain objects – non DL based 

algorithm
● Relatively fast to run; e.g. Selective Search gives 1000 region  proposals in a 

few seconds on CPU
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Instance Segmentation
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Sources

Deep Learning (for Computer Vision)126

A lot of the material has been shamelessly and gratefully collected from:

• http://cs231n.stanford.edu/

• https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-history-training/

• https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

• https://research.fb.com/learning-to-segment/

• https://research.fb.com/deep-learning-tutorial-at-cvpr-2014/

• https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/practicals/practical4.pdf

• http://torch.ch/docs/developer-docs.html

• https://github.com/torch/nn/blob/31d7d2bc86a914e2a9e6b3874c497c60517dc853/doc/module.md

• https://web.stanford.edu/group/pdplab/pdphandbook/handbookch6.html

• http://neuralnetworksanddeeplearning.com/chap2.html

http://cs231n.stanford.edu/
https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-history-training/
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
https://research.fb.com/learning-to-segment/
https://research.fb.com/deep-learning-tutorial-at-cvpr-2014/
https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/practicals/practical4.pdf
http://torch.ch/docs/developer-docs.html
https://github.com/torch/nn/blob/31d7d2bc86a914e2a9e6b3874c497c60517dc853/doc/module.md
https://web.stanford.edu/group/pdplab/pdphandbook/handbookch6.html
http://neuralnetworksanddeeplearning.com/chap2.html
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Thank you!


