
CS 344 (Spring 2018): Class Test 3

Instructor: Shivaram Kalyanakrishnan

11.05 a.m. – 12.00 p.m., March 28, 2018, 103 New CSE Building

Total marks: 15

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. Consider a regular polygon Pn with n ≥ 3 sides, each side of length a > 0. Assume
the polygon is centred at the origin, and one of its vertices lies on the positive x axis. This vertex
is named V1. The remaining vertices, visited in anticlockwise sequence, are named V2, V3, . . . , Vn.
The figure below shows P5, a regular pentagon.
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Given n, your task is to sample a point (x0, y0) uniformly at random from within Pn. In other
words, for every two regions R and R′ that are contained in Pn, such that R and R′ have an equal
area, the probability of returning a point from R must be equal to the probability of returning a
point from R′. Your only access to randomness is through an operator random(), which returns
a number drawn uniformly at random from the interval [0, 1]. Specify a procedure that uses this
operator in order to sample (x0, y0) uniformly at random from Pn.

You will get 3 marks if your procedure is correct. Contingent on correctness, a maximum of 2
additional marks will be awarded based on the number of times your procedure invokes random().
You should try to minimise this number. If your procedure makes at most 2 calls to random(), you
will receive the full 2 marks. If the number of calls exceeds 2, but is still upper-bounded by some
constant (independent of n and a), you will receive 1 mark. Otherwise, you will receive no marks
in addition to the 3 for correctness. [5 marks]



Question 2. Let X, Y , and Z be Boolean random variables. X takes values x and ¬x; Y takes
values y and ¬y; and Z takes values z and ¬z. The joint probability distribution of these random
variables is given by the Bayes Net shown below; a, b, c, d, e ∈ (0, 1).

X Y Z

X P (X)

x a
¬x 1 - a

X Y P (Y |X)

x y b
x ¬y 1− b
¬x y c
¬x ¬y 1− c

Y Z P (Z|Y )

y z d
y ¬z 1− d
¬y z e
¬y ¬z 1− e

2a. If we draw a sample s from the joint distribution—by first sampling X, then Y conditioned
on X, and then Z conditioned on Y , what is the probability that s = (x,¬y,¬z)? [1 mark]

2b. Suppose we draw the sample s as in 2a, but discard it if either X = ¬x or Z = ¬z. What is
the probability that s will be discarded? [2 marks]

2c. We draw samples from the Bayes Net and discard them as per the rule in 2b. Suppose the
first two samples that do not get discarded are s1 = (x1, y1, z1) and s2 = (x2, y2, z2). What
is the probability that y1 = y2? [2 marks]

Question 3. Consider the Perceptron Learning Algorithm as we discussed in class, but with the
single change that the initial weight vector w0 is not set to the zero vector. Rather, we take it to
be an arbitrary vector of finite length. Suppose, as assumed in our class discussion, that (1) the
positive and negative points are separable by a hyperplane passing through the origin, and (2) the
points are all of a finite length (at most R ∈ R). Is it guaranteed that this version of the Perceptron
Learning Algorithm (with w0 6= 0) will converge? Prove that your answer is correct.

If you claim convergence, your proof only needs to show convergence—unlike the proof in class,
you need not derive an explicit bound on the number of iterations.

If you claim non-convergence, it would suffice to show a numerical counterexample: a set of
points, choice of w0, and a rule for picking incorrectly classified points, such that the Perceptron
will classify at least one point incorrectly at every stage.

Any mathematical derivations you might undertake can include terms such as w0 and ||w0||.
You can also use γ and w⋆ with the same definitions they had in the class discussion. [5 marks]



Solutions

1. One natural approach is to draw a rectangle R that encloses Pn, and to apply rejection sampling:
that is, to (1) sample a point uniformly at random from R, (2) return the point if it also lies in Pn,
and if not (3) repeat the process. While this method guarantees uniform sampling from Pn, the
number of samples it will need from R can be arbitrarily large.

A contrasting approach, using the geometry of regular polygons, allows us to make do with two
calls to random(). Being a regular polygon, Pn can be partitioned into n triangular “slices” centred
at the origin and having as vertices Vi and V(i+1) mod n, for i ∈ {1, 2, . . . n}. Indeed each of these
(congruent) slices is an isosceles triangle, with the sides connecting to the origin being the same
length. If we drop a perpendicular from the origin to divide each slice into two right triangles, we
obtain a total of 2n right triangles: each with one side a/2, and the opposing angle π/n. The figure
below shows on the left a partitioning of P5 into 10 such triangles A through J.
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The 2n triangles obtained above can each be shifted, rotated, and (possibly) mirrored so that
they tile a rectangle Rn (shown in the figure on the right for n = 5). One side of this rectangle
is na

2 , and the other is a tan−1(π
n
). We are already familiar with the simple procedure to sample

a point (xR, yR) uniformly at random from Rn with two calls to random(). Since the rectangle is
obtained by piecing together portions of the original polygon (with no stretching involved), we can
transform (xR, yR) to a point (xP , yP ) inside Pn by undertaking the inverse mirroring, rotation, and
translation operations performed to the triangle containing it. This way, (xR, yR) will be obtained
uniformly at random from Pn.

While the strategy of transforming the polygon into a rectangle is an intuitive way to proceed
with this question, it is by no means the only way to sample uniformly from Pn with only two calls
to random().



2a. P (x)P (¬y|x)P (¬z|¬y) = a(1− b)(1− e).

2b. The sample s will not be discarded only if it is (x, y, z) or (x,¬y, z). Hence the probability of not
discarding the sample is abd+a(1−b)e. The probability of discarding the sample is 1−abd−a(1−b)e.

2c. The only samples that do not get discarded are (x, y, z) and (x,¬y, z). The probability that a
sample is (x, y, z), given it did not get discarded, is

P (x, y, z)

P (x, z)
=

abd

P (x, z)
.

The probability that a sample is (x,¬y, z), given it did not get discarded, is

P (x,¬y, z)

P (x, z)
=

a(1− b)e

P (x, z)
.

Normalising, the first probability is p = abd
abd+a(1−b)e , and the second probability is q = a(1−b)e

abd+a(1−b)e .

The required answer is p2 + q2.

3. If w0 6= 0, the Perceptron Learning Algorithm will still converge. If we follow the same line of
analysis as we did in class1, we obtain

||wk+1|| ≥ w0 ·w
⋆ + (k + 1)γ and ||wk+1||2 ≤ ||w0||

2 + (k + 1)R2,

which imply
(w0 ·w

⋆ + (k + 1)γ)2 ≤ ||w0||
2 + (k + 1)R2.

The LHS is a quadratic function of k, which is increasing in [max{0,−1− w0·w
⋆

γ
},∞). The RHS is

a linear function of k, which is increasing in [0,∞). Clearly the inequality can be satisfied only up
to a finite value of k.

1Note that our class discussion took the initial weight vector to be w1; here we take it to be w0.


