
CS 344 (Spring 2018): Class Test 4

Instructor: Shivaram Kalyanakrishnan

11.05 a.m. – 12.00 p.m., April 18, 2018, 103 New CSE Building

Total marks: 15

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. In class we considered the sigmoid function g(α) = 1
1+e−α

for α ∈ R as an activation
function in neural networks. This question considers the use of the hyperbolic tangent (or tanh)
function for the same purpose. For α ∈ R, this function is defined as

h(α) =
eα − e−α

eα + e−α
.

1a. Draw a graph of h(α) against α. In their role as activation functions, what are the similarities
and differences between h and g? [2 marks]

1b. Consider the neural network shown in the figure below. For input (x1, x2), its output is
h(w1x1 + w2x2 + w3), where w1, w2, w3 ∈ R.

output

w
wx

x w

3

2

1 1

2

h

Suppose for input (x1, x2), the specified target label is y, which makes the squared prediction
error (y−h(w1x1+w2x2+w3))

2. How would w1 be updated if backpropagation is performed
based on this error, with learning rate α? Your answer must be in terms of x1, x2, y, w1, w2,
and w3, combined using the basic arithmetic operations, exponentiation, and h. [3 marks]

Question 2. We are given a set of n ≥ 2 points D = {x1,x2, . . . ,xn}, where xi ∈ R
d for

i ∈ {1, 2, . . . , n}, and d ≥ 1. Assume the n points are all distinct. Also, for every k ∈ {2, 3, . . . , n},
assume that there is a unique optimal k-clustering of D, denoted

(C⋆k , µ
⋆
k) = argmin

(C,µ)
SSE(C, µ,D).

The minimum is over clusterings C : {1, 2, . . . , n} → {1, 2, . . . , k} and sequences of cluster centres
µ = (µ1, µ2, . . . , µk), where for k′ ∈ {1, 2, . . . , k}, µk′ ∈ R

d;

SSE(C, µ,D) =
n
∑

i=1

||xi − µC(i)||
2.

In your answers to the questions below, you can use any results that were derived in class.

2a. For k ∈ {2, 3, . . . , n− 1}, show that

SSE(C⋆k+1, µ
⋆
k+1, D) < SSE(C⋆k , µ

⋆
k, D).

In other words, show that the sum squared error of the optimal (k + 1)-clustering will be
smaller than the sum squared error of the optimal k-clustering. [3 marks]

2b. Taking k = 2, note that (C⋆2 , µ
⋆
2) is the unique optimal 2-clustering of D. Let A ⊂ D be the

set of points assigned cluster 1 by (C⋆2 , µ
⋆
2), and let B = D \ A be the set of points assigned

cluster 2 by C⋆2 . Without loss of generality, assume |A| ≤ |B|: that is, A is the smaller cluster
(or the clusters are equal-sized). For a given number of points n and dimension d, What are

the minimum and maximum values of the ratio |A|
|B|? Justify your answer. [2 marks]

Question 3. This question tests your understanding of Q-learning.

3a. In which context—in other words, to solve which problem—would an agent apply Q-learning?
[1 mark]

3b. What are the main differences between Q-learning and value iteration? [1 mark]

3c. Describe the Q-learning algorithm, specifying its main step (the “update rule”) in 2–3 lines
of pseudocode. [2 marks]

3d. Is the version of Q-learning used in the AlphaGo program guaranteed to converge? Why, or
why not? [1 mark]

Solutions

1a. The plot of h(α) = tanh(α) is shown below.

-1

-0.5

 0

 0.5

 1

-4 -3 -2 -1 0 1 2 3 4

ta
nh

(α
)

α

We observe that for α ∈ R, h(α) = 1− 2g(−2α). Thus, h can be obtained by applying linear trans-
forms both to the input and the output of g, and vice versa. The functions are both monotonically
increasing, each with its maximum at ∞, minimum and −∞, and “mid-point” at 0. The main
difference is in their ranges. g takes values in (0, 1), and g(0) = 1/2. h takes values in (−1, 1), and
h(0) = 0.

1b. First we compute h′(α):

h′(α) =
d

dα

(

eα − e−α

eα + e−α

)

= −
(eα − e−α)2

(eα + e−α)2
+ 1 = 1− (h(α))2.

Taking Error = (y − h(w1x1 + w2x2 + w3))
2, we get

∂Error

∂w1
= 2(y − h(w1x1 + w2x2 + w3))h

′(w1x1 + w2x2 + w3)(−x1).

The weight w1 is set by the backpropagation operation to be w1−α
∂Error
∂w1

, which, upon substituting,
is obtained to be

w1 + 2αx1(y − h(w1x1 + w2x2 + w3))(1− (h(w1x1 + w2x2 + w3))
2).

2a. In order to show that SSE(C⋆k+1, µ
⋆
k+1, D) < SSE(C⋆k , µ

⋆
k, D), it suffices to show that there

is some (k + 1)-clustering (C̄k+1, µ̄k+1) such that SSE(C̄k+1, µ̄k+1, D) < SSE(C⋆k , µ
⋆
k, D). The

inequality would follow since (C⋆k+1, µ
⋆
k+1, D) is the optimal (k + 1)-clustering.

We construct (C̄k+1, µ̄k+1) as follows. Take an arbitrary cluster i in C⋆k that has at least two
points (there must be some such cluster since k < n). At least one point p in i must be different
from the cluster centre (since the points are all distinct), which is also the cluster centroid.

We set C̄k+1 to be identical to C⋆k for all points other than p. The point p is assigned to
a new cluster k + 1, and is the only point in this cluster. µ̄k+1 is identical to µ⋆

k on clusters
1, 2, . . . , i− 1, i+1, . . . , k. The cluster centre µ̄k+1(i) is set to be the centroid of all the points C̄k+1

assigns to cluster i. The cluster centre cluster centre µ̄k+1(k + 1) is set to p.
By this construction, C̄k+1 has the same contribution to its sum squared error as C⋆k does from

clusters other than i and k + 1. Using the property that the centroid of a set of points minimises

the sum squared error, it follows that cluster i in C̄k+1 will have a lower sum squared error than
cluster i in C⋆k (since p has been removed and the centre readjusted). Cluster k + 1 in C̄k+1 has
a zero sum squared error. Thus, SSE(C̄k+1, µ̄k+1, D) < SSE(C⋆k , µ

⋆
k, D), which completes our proof.

2b. From the working in 2a, we notice that any optimal k-clustering must have at least one point
in each cluster: thus, |A| ≥ 1. Are there problem instances in which |A| = 1? Can |A| be as high
as ⌊n2 ⌋? We answer both questions in the affirmative.

Consider two spheres S1 and S2 in R
d, each of diameter 1, with centres at least 2n + 2 apart

(which implies any point P1 ∈ S1 is at least distance 2n away from any point P2 ∈ S2). Now consider
only data sets whose points all lie in S1 or S2, with each sphere containing at least one point. For a
given data set D, let there be m points inside S1 and n−m points inside S2, with 1 ≤ m ≤ ⌊n/2⌋.
Now imagine forming two clusters from D. Any cluster that includes one point each from S1 and S2

will have an SSE of at least n2, since at least one point will have a cluster centre n or more distance
away. However, the clustering that puts all the points in S1 into one cluster and those in S2 into an-
other (with optimised cluster centres) will have an aggregate SSE of at most n, since each point will
have its cluster centre within a distance of 1. Since this property holds for all 1 ≤ m ≤ ⌊n/2⌋, we
have essentially shown that there exist data sets for which |A| = 1, |A| = 2, . . . , |A| = ⌊n/2⌋. Thus
1/(n−1) ≤ |A|/|B| ≤ ⌊n/2⌋/⌈n/2⌉ (the latter quantity is 1 if n is even, and slightly less otherwise.)

3a. Q-learning is used by an agent to solve the reinforcement learning problem. In other words, the
agent is interacting sequentially with an MDP whose transition and reward functions are unknown.
For t ≥ 0: the agent, from state st and takes action at, to which the environment responds with a
reward rt and next state st+1. The next state and reward are drawn based on the environment’s
transition and reward functions, respectively. Q-learning can enable the agent to eventually take
actions that are optimal, in thee sense that they maximise the expected long-term discounted re-
ward.

3b. Q-learning is used by an agent to solve a learning problem (with the transition and reward
functions of the MDP not given), while value iteration solves the planning problem (computing an
optimal policy with the MDP given). Another distinction is that Q-learning maintains and updates
an estimate of the optimal action value function Q⋆, whereas value iteration typically updates an
estimate of the optimal value function V ⋆. This second distinction is more a matter of convention
than something intrinsic to the structure of value iteration (which, in principle, can also work with
an estimate of Q⋆).

3c. For Q-learning to converge to Q⋆, actions must be picked such that every state-action pair
is visited infinitely often in the limit. A common way to achieve this criterion is to pick actions
ǫ-greedily with respect to the running estimate Q, for some ǫ ∈ (0, 1]. If action at is taken from
state st, and results in reward rt and next state st+1, then Q is updated as follows.

Q(st, at)← Q(st, at) + αt(r
t + γmax

a∈A
Q(st+1, a)−Q(st, at)).

Here γ is the discount factor of the MDP and αt ∈ (0, 1] the learning rate.

3d. Q-learning is guaranteed convergence only when applied in “tabular form” on a small state-
action space. In AlphaGo, the Q function is approximated using a neural network, which generalises
across states, and thereby loses the assurance of convergence.

