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Abstract

In this note, we introduce the Markov Decision Problem (MDP), which is a classical
abstraction of sequential decision making. Given an MDP, the planning problem is to find a
way to take actions so as to maximise expected long-term reward: in other words, to compute
an optimal policy. We present the Value Iteration algorithm, which is a commonly-used
method for MDP planning.

1 Introduction

The Markov Decision Problem (MDP) has been in use for several decades as a formal framework
for sequential decision making under uncertainty. An MDP models an agent whose actions result
in stochastic state transitions, while yielding associated rewards. The agent’s natural aim is to
consistently take actions that lead to high long-term reward. Thus, given an MDP, the central
computational question is that of determining an optimal way for the agent to act. This is the
problem of MDP planning.

Formally, an MDP M = (S, A, T, R,~) has a set of states S in which an agent can be, and
a set of actions A that the agent can execute. Upon taking action a from state s, the agent
is transported to a state s, selected from S at random with probability T'(s,a,s’). For this
transition, the agent receives a reward R(s,a,s’).

To fully specify M, we need to define an objective for the agent. A policy (assumed station-
ary, deterministic, and Markovian) is a mapping from S to A: when following a policy m, the
agent takes action m(s) when in state s. A natural objective is to find a policy that maximises
the agent’s expected long-term reward. Consider an agent that starts in some state s at time
0 and continually follows w. The agent thereby encounters a trajectory over time:
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The value of state s under policy 7 is given by

o
VT(s) = Zytrﬂso =s, fort >0:a" =n(s")|, (1)
t=0

where v € [0,1) is a discount factor. The discount factor specifies the relative importance of
long-term rewards. We need to have v < 1 in order that values remain well-defined. In special
MDPs that have terminal states, which are guaranteed to be reached under every policy, it is
okay to take vy =1. V™ : § — R is called the value function of =.

MDPs can be specified using state transition diagrams. Figure 1 provides an example of a
2-state, 2-action MDP.



Transition probabilities | Rewards |

T(317a1,s1)=1 R(817a1781)=0
T(s1,a1,82) =0 R(s1,a1,82) =0 (az, 1/2,2)

(a, 1/2,0)
T(s17a2,s1)=1/2 R(817a2781)=0
T(s17a2732)=1/2 R(817a2782)=2

%(32, 304, 1)
T(327a1,s1)=1 R(827a1781)=1
T(327a1,32) =0 R(827a1782)=0
(a, 1,0)

T(327a2,s1)=1/4 R(527a27s1):—1
T(327a2, 82) = 3/4 R(527a2732) =1

Figure 1: State transition diagram corresponding to an MDP with S = {s1,s2} and A =
{a1,as}. Each transition is annotated with (action, transition probability, reward). Transitions
with zero probabilities are not shown. The discount factor is v = %

Let II be the set of distinct policies corresponding to the MDP (S, A, T, R,~) (thus |II| =
|A|IS]). Tt is a key property of MDPs that this set contains a policy 7* such that Vs € S, Vr € 11,

V™ (s) > V™ (s). 2)

Such a policy 7* is called an optimal policy. The MDP planning problem is precisely that of
finding an optimal policy for a given MDP M = (S, A, T, R,~).

2 Policy Evaluation

Before we attempt a solution to the MDP planning problem, we take up the simpler problem
of computing the value function V™ of a given policy 7. From the definition of values in (1), it
can be shown that Vs € S,

V7T(s) = Z T(s,m(s),s") (R(s,m(s),s") +yVT(s)).
s'es

This definition implies that the value function of a policy can be computed efficiently by
solving a system of n linear equations, which are called Bellman’s Equations.

The four policies that apply to the MDP from Figure 1 are 7', 712, 72!, and 7?2, where for
i,5 € {1,2}, we denote by 7%/ that policy that takes action a; from state s; and action a; from
state so. Write down the two Bellman’s Equations that arise for each policy, and solve them.
You should obtain the following results.

V™ (s1) =0,V (s9) = 1.

3

VT (51) = 0,V (52) = >
2l 15 =21 9
Vv (81)—§,V (82)—4.

For this MDP, 7%! is the sole optimal policy. In general an MDP can have multiple optimal
policies. However, they will all have the same value function, which is denoted V*.



3 Finding an Optimal Policy

Policy evaluation provides us with an obvious method to find an optimal policy: evaluate every
policy, and compare value functions to identify an optimal policy. While simple and correct,
this approach can be inefficient in practice, since it requires the enumeration of an exponential
number of policies.

A more practical approach is to directly solve for the optimal value function, which is the
solution to another set of equations called Bellman’s Optimality Equations: for s € S,

* / / * /
V*(s) = max <S/§9T(S,a,5 ) (R(s,a,s") +V*(s ))) .

Unlike Bellman’s Equations, notice that Bellman’s Optimality Equations are not linear. A
common way to solve them (approximately) is through iteration: we begin with an arbitrary
guess Vg, which is updated by applying the non-linear Bellman Optimality Operator. In the
limit, the iteration converges to V*. In practice, the iteration is stopped when successive
iterates get within some small threshold of each other, which ensures that V* is also within a
small threshold of them. The procedure below is called Value Iteration.

Value Iteration

Vo < Arbitrary initial guess of V*.
t < 0.
Repeat
For s € S
Vig1(s) ¢ maxaea (D gegT(s,a,8) (R(s,a,s") + V() .
t<—t+1.
Until V; =~ V;_;.
Return V.

If V* is known, an optimal policy 7 can be obtained by taking, for s € S:

7*(s) + argmax <Z T(s,a,s") (R(s,a,s") + 7V*(5'))> .

a€A s'es



