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Abstract

In this note, we describe the principle behind Bayesian inference and illustrate it with
two examples: (1) modeling belief about the bias of a coin that is sequentially tossed, and
(2) modeling belief about a changing world that is observed regularly. As an application of
Bayesian reasoning, we present Thompson Sampling, which is an optimal sampling algorithm
for stochastic multi-armed bandits. We provide a brief description of the algorithm.

1 Bayesian Inference

Bayesian inference or Bayesian reasoning is a rigorous framework to model uncertainty. The
Bayesian thinker begins with a prior belief about the true world being any one from a possible
set of worlds. As evidence (produced by the real, unknown world) becomes available, the
Bayesian thinker applies his/her knowledge of the process by which evidence is produced by
each possible world—and accordingly refines his/her set of beliefs.

As a concrete example, suppose we have a coin whose bias is unknown to us. It is up to
us to have some prior belief about this unknown bias. For example, Janaki might be unwilling
to afford any bias a higher chance of being true than any other bias; in other words, Janaki’s
belief is distributed uniformly over r0, 1s, which is the set of all biases. Altamash, on the other
hand, might have a more worldly perspective, which leads him to believe that our particular
coin must “pretty much” be like other coins encountered in life. One way he may encode his
belief is to place it uniformly in, say, r0.48, 0.52s.

In general, prior beliefs can be arbitrary. However, as we might expect, the closer one’s
prior belief is to reality, the more accurate one’s reasoning based on that belief. In practice, one
often uses domain knowledge to encode prior beliefs. As a case in point, consider on-line ads,
which can be viewed as coins. When shown to a user (tossed), an ad either gets clicked (shows
up heads) or does not get clicked (shows up tails). It is rare for “click-through rates” to exceed
5%. Hence, Mrinalini, who places all of her belief in r0, 0.05s, will likely take better decisions
about a typical on-line ad than Janaki, who has distributed her belief uniformly in r0, 1s. In
turn, Janaki will do a lot better than Guru, who restricts his belief to the interval r0.99, 0.995s.

Bayesian inference does not stop with having a useful prior belief. At the core of Bayesian
reasoning is the operation of updating one’s belief based on evidence. Regardless of what their
initial beliefs are, Mrinalini, Janaki, Altamash, and Guru should presumably have relatively
similar beliefs (if they are rational, that is!) after they have seen a thousand independent
displays of the ad in question. After all, if the ad had a click-through rate of p, it precisely
means that the probability that the ad generates a click is p. If, in a thousand displays,
twelve yielded clicks and the remaining tails, shouldn’t Guru’s belief change significantly from
Uniform([0.99, 0.995])? How must Guru update his beliefs based on evidence? By applying
Bayes’ rule, of course!
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2 Belief Distribution

The Belief distribution (or simply Belief ) is taken to be a distribution over World, the random
variable denoting possible worlds, given the available evidence. Before any evidence is available
(at time 0), we take

Belief0 “ P pWorldq,

which is nothing but our prior belief. Belief0 will be a discrete probability distribution if the set
of possible worlds is discrete. Otherwise, as in our motivating example, wherein each world is a
coin bias, Belief0 can be represented using a probability density function (such as Uniform([0,
1])). For every t ě 1, we assume that a new piece of evidence Et becomes available. Having
observed events E1, E2, . . . , Et, we have

Belieft “ P pWorld|E1, E2, . . . , Etq.

We assume that evidence is generated sequentially through a process that is determined
by the world: that is, pieces of evidence are conditionally independent given the world. This
assumption is consistent with the Bayes Net shown in Figure 1.
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W

Figure 1: Bayes Net showing each unit of evidence Et being generated independently by the
world W .

The cornerstone of Bayesian inference is the fact that Belieft is a “sufficient statistic” of the
prior and of all the evidence seen thus far—in the sense that Belieft`1 can be obtained solely
from Belieft and Et`1. To see how, consider applying Bayes’ rule, and arguing that given a
world, evidence events are conditionally independent. We have:

P pW |E1, E2, . . . , Et`1q “
P pE1, E2, . . . , Et`1|W qP pW q

P pE1, E2, . . . , Et`1q

“
P pE1, E2, . . . , Et|W qP pEt`1|W qP pW q

P pE1, E2, . . . , Et`1q

“
P pE1, E2, . . . , Et,W qP pEt`1|W q

P pE1, E2, . . . , Et`1q

“
P pW |E1, E2, . . . , EtqP pE1, E2, . . . , EtqP pEt`1|W q

P pE1, E2, . . . , Et`1q

9P pW |E1, E2, . . . , EtqP pEt`1|W q.

In other words, we have

Belieft`1pW q9BelieftpW q ¨ P pEt`1|W q.

Informally, this expression is often described as “posterior is proportional to the product of
the prior and the likelihood”. The belief distribution is usually represented in some parametric
form: whenever evidence becomes available, the parameters of the distribution are updated.
We consider a concrete example for illustration.
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3 Belief Distribution over Coin Biases

We step into Janaki’s shoes. Recall that her prior belief over the set of coins is Uniform([0, 1]).
Let x P r0, 1s be an arbitrary bias; we have (Janaki’s)

Belief0pxq “ 1 ¨ dx,

where she represents belief as a probability density function over the interval r0, 1s (we multiply
by the differential dx to ensure that the belief is actually a probability). Now assume that the
coin gets tossed, and it shows up heads. We get

Belief1pxq9Belief0pxqP pHead|xq “ 1 ¨ dx ¨ x,

which yields

Belief1pxq “
xdx

ş1
y“0 ydy

“ 2x ¨ dx.

Suppose the second toss results in a tail. Janaki’s belief would now be updated to

Belief2pxq9Belief1pxqP pTail|xq “ 2x ¨ dx ¨ p1´ xq,

which yields

Belief2pxq “
2xp1´ xqdx

ş1
y“0 2yp1´ yqdy

“ 6xp1´ xq ¨ dx.

Observe that in keeping with intuition, Belief1 afforded higher probability to biases exceeding
0.5, since the first toss resulted in a head. However, after seeing a head and a tail, the belief
(Belief2) is symmetric about 0.5. Would this also be the case had we started with Mrinalini’s
prior belief instead of Janaki’s?

Interestingly, in the case of coin biases (Bernoulli variables whose draws constitute the
evidence), beliefs that start as uniform priors, and which are updated according to Bayes’ rule,
exactly correspond to Beta distributions1 with parameters α and β, wherein α is the number
of observed heads plus one, and β is the number of observed tails plus one. As a sanity check,
we must expect Betap1, 1q to be the uniform distribution, which it is! Another implication is
that our posterior belief after seeing h heads and t tails will be the same regardless of the actual
sequence in which the heads and tails were generated. This property also seems reasonable:
after all, we know that for every given bias, sequences that contain the same numbers of heads
and tails have the same probability of being generated.

It is convenient in the coin-bias world that if the prior belief is a Beta distribution, then so
is the posterior belief. Hence, all that needs to be done to keep an up-to-date belief distribution
is to keep count of the number of heads and tails! However, it is not generally true that the
prior and the posterior distribution will be from the same parametric family (that is, they need
not be conjugate).

4 Case Study: Thompson Sampling

What is the point of keeping a belief distribution over the set of possible worlds, and refining
it based on evidence?! An agent that has to act in an unknown world can potentially use its
belief distribution to good effect. Indeed there is a very relevant learning problem to solve with
coins, the domain we have used as a running example. As we observed, a coin can be a proxy
for an on-line ad. Imagine the situation facing an agent who has a library of n ads that he/she
can display on a particular web page. The agent is promised a payment of Rs. 10 every time

1See https://en.wikipedia.org/wiki/Beta_distribution.
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a click is registered on the ad that is displayed. If the agent gets a total of T time slots for
displaying an ad from among the n it has, which ad must it choose to display at each stage?

If, somehow, the agent already knew the click-through rate of each ad in its possession, its
optimal strategy would be to always display an ad with the highest click-through rate. Such
a strategy would maximise the expected number of clicks, and therefore the expected revenue.
On the other hand, assume that our agent has no pre-existing knowledge. The only way the
agent can gain knowledge is by displaying ads and observing whether a click occurs or not—a
perfect setting for applying Bayesian inference! (More abstractly, our agent is faced with the
problem of sampling the arms of a stochastic multi-armed bandit, so called for the name once
given to slot machines in Las Vegas that would dispense rewards probabilistically. In general,
rewards need not be binary; they can be real-valued, too.)

Starting with a blank slate, our agent necessarily has to explore: that is, display each ad a few
times to get a good estimate of its click-through rate. At the same time, the agent cannot afford
to explore too much (lest it displays unrewarding ads too many times); it needs to allocate more
traffic to ads that seem to have a high chance of being clicked. In other words, the agent must
exploit promising ads. There are several algorithms to optimise this “explore-exploit” trade-off.
It can be shown that in order to perform well on every possible problem instance (a problem
instance here is an element of r0, 1sn), an algorithm must necessarily display each suboptimal
ad at least ΩplogpT qq times. Optimal algorithms are ones that display each suboptimal ad
OplogpT qq times.

Thompson Sampling [1, 2] is one such optimal algorithm, which is based on the principle
of Bayesian inference. The algorithm begins with a uniform prior for each ad, and as the
outcomes of displays are observed, the algorithm updates its beliefs exactly as described in
Section 3. Thus, if an ad has been shown h ` t times, yielding h clicks and t no-clicks, the
belief distribution corresponding to the ad is Beta(h` 1, t` 1). At each stage, given the beliefs
over each ad, the decision to make is which ad to display next. Thompson Sampling makes
this decision randomly, but in accordance with the current belief distributions. Specifically, for
each ad i P t1, 2, . . . , nu a sample xi P r0, 1s is drawn from the corresponding belief distribution.
The ad selected to be displayed next is simply one that yielded the highest sample: namely
argmaxiPt1,2,...,nu xi (with ties broken arbitrarily).

The philosophy behind Thompson Sampling is as follows. At any stage, the agent has
a belief distribution over the set of possible worlds. In our particular example, this belief
distribution can be factored into belief distributions over the click-through rate of each ad. To
decide which ad to show next, a world px1, x2, . . . , xnq is sampled from the belief distribution.
Having drawn the sample, the agent takes an action as if this world is real (which would mean
argmaxiPt1,2,...,nu xi is indeed an ad with the highest click-through rate). Interestingly, it took
several decades after the algorithm was first introduced [1] to show that it is indeed optimal [3].

Thompson Sampling is not limited to the scenario that we have described above; it can also
be applied in problems in which each world is a more complex object (such as an MDP). The
underlying idea remains the same: (1) to maintain a belief distribution over the set of possible
worlds, (2) to sample a world at each stage, and (3) to act optimally for that world.

5 Updating Beliefs in a Changing World

So far, we have assumed that there is a fixed world (in our example, a coin) that is sequentially
generating evidence (outcomes of tosses). However, in general, the world itself can change with
time. As an example, consider the problem of tracking a tiger that is wearing a radio collar.
The “world” in this case would be the position of the tiger, and the periodic evidence it would
provide is the strength of the radio signal. Crucially, the world itself could change over time
(that is, the tiger could move around). However, we expect to have some knowledge about the
process according to which the tiger moves.
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The scenario above is best modeled using a Dynamic Bayes Net, an example of which is
provided in Figure 5.

E1 E E E
32 t

.  .  .
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Figure 2: Dynamic Bayes Net with hidden variables W1,W2, . . . ,Wt and observed variables
E1, E2, . . . , Et.

As before, we maintain Belieft “ P pWt|E1, E2, . . . , Etq and seek to obtain Belieft`1 based
on Belieft and Et`1. The only change from our previous working is that now, we also need
to use P pWt`1|Wtq—the transition model—which we assume is available based on our domain
knowledge. For example, we may estimate that a tiger will be found uniformly at random within
a 50km radius of its previous position. Our working yields:

P pWt`1|E1, E2, . . . , Et`1q

“
P pWt`1, E1, E2, . . . , Et`1q

P pE1, E2, . . . , Et`1q

“
P pEt`1|E1, E2, . . . , Et,Wt`1qP pE1, E2, . . . , Et,Wt`1q

P pE1, E2, . . . , Et`1q

“
P pEt`1|Wt`1qP pE1, E2, . . . , Et,Wt`1q

P pE1, E2, . . . , Et`1q

“
P pEt`1|Wt`1q

P pE1, E2, . . . , Et`1q

ÿ

wPWt

P pE1, E2, . . . , Et,Wt`1,Wt “ wq

“
P pEt`1|Wt`1q

P pE1, E2, . . . , Et`1q

ÿ

wPWt

P pWt`1|E1, E2, . . . , Et,Wt “ wqP pE1, E2, . . . , Et,Wt “ wq

“
P pEt`1|Wt`1q

P pE1, E2, . . . , Et`1q

ÿ

wPWt

P pWt`1|Wt “ wqP pE1, E2, . . . , Et,Wt “ wq

“
P pEt`1|Wt`1q

P pE1, E2, . . . , Et`1q

ÿ

wPWt

P pWt`1|Wt “ wqP pWt “ w|E1, E2, . . . , EtqP pE1, E2, . . . , Etq

9P pEt`1|Wt`1q
ÿ

wPWt

P pWt`1|Wt “ wqP pWt “ w|E1, E2, . . . , Etq.

Thus, Belieft`1 can be constructed from Belieft, Et`1, and P pWt`1|Wtq.
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