
CS 344 (Spring 2018): Mid-semester Examination

Instructor: Shivaram Kalyanakrishnan

11.00 a.m. – 1.00 p.m., March 1, 2018, 101/103, New CSE Building

Total marks: 20

Note. Provide brief justifications and/or calculations along with each answer to illustrate how you
arrived at the answer.

Question 1. The following question pertains to a turn-taking zero sum game played by a “max”
agent A and a “min” agent B. The game proceeds according to the tree shown below. The actions
available at each node are “left” (L) and “right” (R). Each leaf shows A’s utility (which is the
negative of B’s utility).
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Suppose that unfortunately, A has lost the ability to sense its state, and nor does it have any
memory (to remember previous actions). In other words, A is constrained to apply the same rule
for action-selection from every node in the tree. Your task is to show that A can do strictly better by
adopting a randomised strategy. Specifically, let A play L with probability p and R with probability
1− p from each of its nodes. Let minReward(p) denote the least expected reward that A will get
by playing this way. Note that B is not handicapped like A: it can follow different strategies at
each of its nodes. In fact, A obtains minReward(p) when it plays L with probability p and B plays
adversarially with respect to A’s strategy.

Answer the following questions. In your solutions, name your nodes by the path leading to
them from the root. For example, the root node is ∅, and the right-most leaf is R-R-R.

1a. What are minReward(0) and minReward(1)? [1 mark]

1b. What are p⋆ = argmaxp∈[0,1]minReward(p) and minReward(p⋆)? What are B’s actions to
restrict A when it plays L with probability p⋆? [4 marks]



Question 2. Write down pseudocode for an uninformed search algorithm that is complete, as well
as memory-efficient. Completeness implies that the algorithm is guaranteed to find a path to a
goal state should a finite-length path indeed exist. The state space can itself be infinite, though.
By memory-efficiency we mean that the algorithm only needs access to a data structure whose size
is linear in the (unknown) shortest distance to the goal. [3 marks]

Question 3. This question is about the Bayes Net shown below. Answer the two parts of the
question from first principles: that is, using only the basic semantics of Bayes Nets and the rules
of probability. In particular, do not directly use the rules for D-separation.
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3a. Is it guaranteed that X ⊥ Y ? Prove that your answer is correct. [2 marks]

3b. Is it guaranteed that (X ⊥ Y )|Z? Prove that your answer is correct. [2 marks]

Question 4. Consider an MDP M = (S,A, T,R, γ), with a set of states S = {s1, s2}; a set of
actions A = {a1, a2}; a transition function T and a reward function R as specified in the table and
figure below. The discount factor γ = 1

2 . In the figure, each transition is annotated with (action,
transition probability, reward). Transitions with zero probabilities are not shown.

Transition probabilities Rewards

T (s1, a1, s1) = 1 R(s1, a1, s1) = 1
T (s1, a1, s2) = 0 R(s1, a1, s2) = 0

T (s1, a2, s1) = 1/2 R(s1, a2, s1) = 0
T (s1, a2, s2) = 1/2 R(s1, a2, s2) = 2

T (s2, a1, s1) = 1 R(s2, a1, s1) = 2
T (s2, a1, s2) = 0 R(s2, a1, s2) = 0

T (s2, a2, s1) = 2/3 R(s2, a2, s1) = 0
T (s2, a2, s2) = 1/3 R(s2, a2, s2) = 1
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Let π12 be the deterministic policy that takes action a1 from state s1 and action a2 from state s2;
let π22 be the deterministic policy that takes action a2 from state s1 and action a2 from state s2.

4a. Consider an agent A that starts in state s1. The agent has decided to take action a2 the
very first time it acts (at t = 0), and thereafter (for t ≥ 1), to follow policy π12. What
is the expected long-term discounted reward that the agent will accrue? In other words, if
s0, a0, r0, s1, a1, r1, s2, a2, r2, . . . is A’s trajectory over time, what is

E[r0 + γr1 + γ2r2 + . . . |s0 = s1; a
0 = a2; for t ≥ 1, at = π12(st)]? [3 marks]

4b. Consider a second agent B that is known to follow π22. Unfortunately, it is not reliably known
to the observer in which state (s1 or s2) the agent currently resides. The only clues available
to the observer are messages that B broadcasts at each step, before it takes an action. In
these messages, B announces its state (as “I am in s1” or “I am in s2”). However, these
messages are not guaranteed to be correct. Precisely, they will be correct with probability
p ∈ [0.5, 1] and incorrect with probability 1− p. For example, one possible sequence of events
is as follows.

– t = 0: B starts in state s2, broadcasts “I am in state s2.”, and takes action a2.

– t = 1: B is in state s1, broadcasts “I am in state s2.”, and takes action a2.

The first message is correct, while the second one is incorrect.

Draw a Dynamic Bayes Net with nodes Statet and Messaget for t ≥ 0, where these random
variables correspond to B’s true state at t and message broadcast at t, respectively. You
should show both the topology and the conditional probability tables (which may depend on
p). [1 mark]

4c. Continuing from 4b, suppose the observer believes that to begin, Agent B is equally likely to be
in state s1 or state s2. Also suppose that the observer receives messages exactly as in the trace
given in 4b: that is, two successive broadcasts of “I am in state s2”. If the observer performs
Bayesian inference, what is its belief about B’s state at t = 1, after it has heard the first two
messages? In other words, what is P{State1|Message0 = “I am in state s2”,Message1 =
“I am in state s2”}? [4 marks]



Solutions

1a. If A always plays L, B will play R from node L to restrict A’s reward to 2. If A always
plays R, B will play L from node R to restrict A’s reward to 1. Thus: minReward(0) = 1 and
minReward(1) = 2. In the next part, we provide the answer for general p ∈ [0, 1].

1b. From node L, B will play R to keep A’s reward down to 2. Assume that A plays L with
probability p. Then A’s expected reward from R-L is 4p + 1 − p = 3p + 1, and A’s expected
reward from R-R is 3p + 5(1 − p) = 5 − 2p. For p ∈ [0, 0.8], 3p + 1 ≤ 5 − 2p, and for p ∈ [0.8, 1],
3p+1 ≥ 5− 2p. Hence, if p < 0.8, B will play L from node R; for p > 0.8, B will play R from node
R. If p = 0.8, either choice yields the same expected reward for A, of 3.4.

A’s expected reward from playing L with probability p, assuming B plays adversarially for the
corresponding value of p is computed for two cases. When p ≤ 0.8, A’s expected reward is

p(2) + (1− p)(3p+ 1) = 1 + 4p− 3p2,

and when p ≥ 0.8, A’s expected reward is

p(2) + (1− p)(5− 2p) = 5− 5p+ 2p2.

We verify that we obtain the answers for 1a by setting p = 0 and p = 1.
The maximum A can assure itself with p ≤ 0.8 is achieved at p = 2

3 , and the maximum it can
achieve with p ≥ 0.8 is by taking p = 0.8. The first choice yields a reward of 1 + 4(23)− 3(23)

2 = 7
3 ,

while the second choice yields 5− 5(0.8) + 2(0.8)2 = 2.28.
Thus, p⋆ = 2

3 and minReward(p⋆) = 7
3 . When A plays L with probability p⋆, B’s adversarial

strategy is to play R from node L, and L from node R.

2. For achieving memory-efficiency, the natural choice is to use Depth First Search (DFS). However,
DFS is not complete. To ensure completeness, we can perform iterative deepening : that is, to
perform DFS within an outer loop that increments the depth d. Within each loop, DFS expands
paths up to a maximum depth of d. Hence, all 1-length paths get covered, then all 2-length paths,
and so on until at some depth d⋆, a goal state is encountered and the search terminates. The
memory requirement is linear in d. Below is pseudocode for a possible implementation.



DFSWithIterativeDeepening(startState)

For depth = 0, 1, 2, . . .
x← DFS(depth, startState, “′′).
If x 6= ∅

Return x.

DFS(depth, state, pathToState)

If isGoal(state)
Return pathToState.

If depth = 0
Return ∅.

For a ∈ Actions(state)
x← DFS(depth− 1, nextState(state, a), append(pathToState, a)).
If x 6= ∅

Return x.
Return ∅.

3a. Yes: X ⊥ Y since

P{X,Y } =
∑

z∈Z

∑

w∈W

P{X,Y, z, w}

=
∑

z∈Z

∑

w∈W

P{X}P{Y }P{z}P{w|X,Y, z}

= P{X}P{Y }
∑

z∈Z

P{z}
∑

w∈W

P{w|X,Y, z}

= P{X}P{Y }
∑

z∈Z

P{z}

= P{X}P{Y }.

3b. Yes: (X ⊥ Y )|Z. First, observe that

P{X,Y |Z} =
P{X,Y, Z}

P{Z}

=

∑
w∈W P{X,Y, Z,w}

P{Z}

=

∑
w∈W P{X}P{Y }P{Z}P{w|X,Y, Z}

P{Z}

= P{X}P{Y }
∑

w∈W

P{w|X,Y, Z}

= P{X}P{Y }.



Now,

P{X|Z} =
P{X,Z}

P{Z}
=

∑

y∈Y

∑

w∈W

P{X, y, Z,w}

P{Z}
=

∑

y∈Y

∑

w∈W

P{X}P{y}P{Z}P{w|X, y, Z}

P{Z}
= P{X}

and

P{Y |Z} =
P{Y, Z}

P{Z}
=

∑

x∈X

∑

w∈W

P{x, Y, Z,w}

P{Z}
=

∑

x∈X

∑

w∈W

P{x}P{Y }P{Z}P{w|x, Y, Z}

P{Z}
= P{Y }.

Hence, we have shown P{X,Y |Z} = P{X|Z}P{Y |Z}, which completes the proof.

4a. Bellman’s Equations for π12 are

V π12

(s1) = 1 + γV π12

(s1) and V π12

(s2) =
2

3
{0 + γV π12

(s1}+
1

3
{1 + γV π12

(s2}),

which yields V π12

(s1) = 2 and V π12

(s2) = 6
5 . Since the agent takes action a2 from state s1, and

thereafter follows π12, its expected long-term discounted reward is

1

2
{0 + γV π12

(s1)}+
1

2
{2 + γV π12

(s2)} =
1

2
(1) +

1

2
(
13

5
) = 1.8.

4b. The figure below shows the Bayes Net modeling the interaction between agent and observer.
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P{State0 = s1} and P{State0 = s2} constitute the observer’s prior belief. These can be
arbitrary; in 4c they are assumed to each be 1

2 .
Since the agent follows policy π22, we obtain that for t ≥ 0, P{Statet+1|Statet} is as follows.

Statet Statet+1
P{Statet+1|Statet}

s1 s1 1/2
s1 s2 1/2
s2 s1 2/3
s2 s2 1/3

From the description of the problem, P{Messaget|Statet} is as follows for t ≥ 0.

Statet Messaget P{Messaget|Statet}

s1 s1 p
s1 s2 1− p
s2 s1 1− p
s2 s2 p



4c.

P{State1|Message0,Message1}

∝ P{State1,Message0,Message1}

=
∑

s∈State0

P{State0 = s, State1,Message0,Message1}

=
∑

s∈State0

P{State0 = s}P{State1|State0 = s}P{Message0|(State0 = s)}P{Message1|State1}

P{State1 = s1|Message0 = “I am in s2”,Message1 = “I am in s2”}

∝
1

2
·
1

2
· (1− p) · (1− p) +

1

2
·
2

3
· p · (1− p)

=
3(1− p)2 + 4p(1− p)

12
.

P{State1 = s2|Message0 = “I am in s2”,Message1 = “I am in s2”}

∝
1

2
·
1

2
· (1− p) · p+

1

2
·
1

3
· p · p

=
3p(1− p) + 2p2

12
.

Normalising, we get

P{State1 = s1|Message0 = “I am in s2”,Message1 = “I am in s2”} =
3− 2p− p2

3 + p− 2p2

and

P{State1 = s2|Message0 = “I am in s2”,Message1 = “I am in s2”} =
3p− p2

3 + p− 2p2
.


