
An Introduction to Reinforcement Learning

Shivaram Kalyanakrishnan
shivaram@cse.iitb.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology Bombay

April 2018

What is Reinforcement Learning?

[Video1 of toddler learning to walk]

Learning to Drive a Bicycle using Reinforcement Learning and Shaping
Jette Randløv and Preben Alstrøm. ICML 1998.

Learning by trial and error to perform sequential decision making.

1. https://www.youtube.com/watch?v=jIzuy9fcf1k

Shivaram Kalyanakrishnan 1/21

https://www.youtube.com/watch?v=jIzuy9fcf1k

What is Reinforcement Learning?
[Video1 of toddler learning to walk]

Learning to Drive a Bicycle using Reinforcement Learning and Shaping
Jette Randløv and Preben Alstrøm. ICML 1998.

Learning by trial and error to perform sequential decision making.

1. https://www.youtube.com/watch?v=jIzuy9fcf1k

Shivaram Kalyanakrishnan 1/21

https://www.youtube.com/watch?v=jIzuy9fcf1k

What is Reinforcement Learning?
[Video1 of toddler learning to walk]

Learning to Drive a Bicycle using Reinforcement Learning and Shaping
Jette Randløv and Preben Alstrøm. ICML 1998.

Learning by trial and error to perform sequential decision making.

1. https://www.youtube.com/watch?v=jIzuy9fcf1k

Shivaram Kalyanakrishnan 1/21

https://www.youtube.com/watch?v=jIzuy9fcf1k

What is Reinforcement Learning?
[Video1 of toddler learning to walk]

Learning to Drive a Bicycle using Reinforcement Learning and Shaping
Jette Randløv and Preben Alstrøm. ICML 1998.

Learning by trial and error to perform sequential decision making.

1. https://www.youtube.com/watch?v=jIzuy9fcf1k

Shivaram Kalyanakrishnan 1/21

https://www.youtube.com/watch?v=jIzuy9fcf1k

What is Reinforcement Learning?
[Video1 of toddler learning to walk]

Learning to Drive a Bicycle using Reinforcement Learning and Shaping
Jette Randløv and Preben Alstrøm. ICML 1998.

Learning by trial and error to perform sequential decision making.

1. https://www.youtube.com/watch?v=jIzuy9fcf1k

Shivaram Kalyanakrishnan 1/21

https://www.youtube.com/watch?v=jIzuy9fcf1k

Our View of Reinforcement Learning

NeuroscienceReinforcement

Learning

Psychology

Artificial Intelligence and

Computer Science

(Animal Behaviour)

Operations Research

(Dynamic Programming)
Control Theory

Shivaram Kalyanakrishnan 2/21

Our View of Reinforcement Learning

NeuroscienceReinforcement

Learning

Psychology

Artificial Intelligence and

Computer Science

(Animal Behaviour)

Operations Research

(Dynamic Programming)
Control Theory

B. F. Skinner

Shivaram Kalyanakrishnan 2/21

Our View of Reinforcement Learning

NeuroscienceReinforcement

Learning

Psychology

Artificial Intelligence and

Computer Science

(Animal Behaviour)

Operations Research

(Dynamic Programming)
Control Theory

B. F. Skinner

R. E. Bellman

Shivaram Kalyanakrishnan 2/21

Our View of Reinforcement Learning

NeuroscienceReinforcement

Learning

Psychology

Artificial Intelligence and

Computer Science

(Animal Behaviour)

Operations Research

(Dynamic Programming)
Control Theory

B. F. Skinner

D. P. BertsekasR. E. Bellman

Shivaram Kalyanakrishnan 2/21

Our View of Reinforcement Learning

NeuroscienceReinforcement

Learning

Psychology

Artificial Intelligence and

Computer Science

(Animal Behaviour)

Operations Research

(Dynamic Programming)
Control Theory

B. F. Skinner

D. P. Bertsekas

W. Schultz

R. E. Bellman

Shivaram Kalyanakrishnan 2/21

Our View of Reinforcement Learning

NeuroscienceReinforcement

Learning

Psychology

Artificial Intelligence and

Computer Science

(Animal Behaviour)

Operations Research

(Dynamic Programming)
Control Theory

R. S. Sutton

B. F. Skinner

D. P. Bertsekas

W. Schultz

R. E. Bellman

Shivaram Kalyanakrishnan 2/21

Resources

Reinforcement Learning: A Survey.
Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. JAIR 1996.

Reinforcement Learning: An Introduction
Richard S. Sutton and Andrew G. Barto. MIT Press, 1998. (2017-8 draft also now on-line).

Algorithms for Reinforcement Learning
Csaba Szepesvári. Morgan & Claypool, 2010.

Shivaram Kalyanakrishnan 3/21

Resources

Reinforcement Learning: A Survey.
Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. JAIR 1996.

Reinforcement Learning: An Introduction
Richard S. Sutton and Andrew G. Barto. MIT Press, 1998. (2017-8 draft also now on-line).

Algorithms for Reinforcement Learning
Csaba Szepesvári. Morgan & Claypool, 2010.

Shivaram Kalyanakrishnan 3/21

Today’s Class

1. Markov Decision Problems

2. Planning and learning

3. Deep Reinforcement Learning

4. Summary

Shivaram Kalyanakrishnan 4/21

Today’s Class

1. Markov Decision Problems

2. Planning and learning

3. Deep Reinforcement Learning

4. Summary

Shivaram Kalyanakrishnan 4/21

Markov Decision Problem

a
t

s
t+1

r
t+1

s
t

r
t

S A

ENVIRONMENT

π :

action

LEARNING AGENT

T

R

state reward

S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S, ∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.

Trajectory over time: s0, a0, r 0, s1, a1, r 1, . . . , st , at , r t , st+1,

Value, or expected long-term reward, of state s under policy π:
Vπ(s) = E[r 0 + γr 1 + γ2r 2 + . . . to∞|s0 = s, ai = π(si)].

Objective: “Find π such that Vπ(s) is maximal ∀s ∈ S.”

Shivaram Kalyanakrishnan 5/21

Markov Decision Problem

a
t

s
t+1

r
t+1

s
t

r
t

S A

ENVIRONMENT

π :

action

LEARNING AGENT

T

R

state reward

S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S, ∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.

Trajectory over time: s0, a0, r 0, s1, a1, r 1, . . . , st , at , r t , st+1,

Value, or expected long-term reward, of state s under policy π:
Vπ(s) = E[r 0 + γr 1 + γ2r 2 + . . . to∞|s0 = s, ai = π(si)].

Objective: “Find π such that Vπ(s) is maximal ∀s ∈ S.”

Shivaram Kalyanakrishnan 5/21

Markov Decision Problem

a
t

s
t+1

r
t+1

s
t

r
t

S A

ENVIRONMENT

π :

action

LEARNING AGENT

T

R

state reward

S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S, ∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.

Trajectory over time: s0, a0, r 0, s1, a1, r 1, . . . , st , at , r t , st+1,

Value, or expected long-term reward, of state s under policy π:
Vπ(s) = E[r 0 + γr 1 + γ2r 2 + . . . to∞|s0 = s, ai = π(si)].

Objective: “Find π such that Vπ(s) is maximal ∀s ∈ S.”

Shivaram Kalyanakrishnan 5/21

Markov Decision Problem

a
t

s
t+1

r
t+1

s
t

r
t

S A

ENVIRONMENT

π :

action

LEARNING AGENT

T

R

state reward

S: set of states.
A: set of actions.
T : transition function. ∀s ∈ S,∀a ∈ A, T (s, a) is a distribution over S.
R: reward function. ∀s, s′ ∈ S, ∀a ∈ A, R(s, a, s′) is a finite real number.
γ: discount factor. 0 ≤ γ < 1.

Trajectory over time: s0, a0, r 0, s1, a1, r 1, . . . , st , at , r t , st+1,

Value, or expected long-term reward, of state s under policy π:
Vπ(s) = E[r 0 + γr 1 + γ2r 2 + . . . to∞|s0 = s, ai = π(si)].

Objective: “Find π such that Vπ(s) is maximal ∀s ∈ S.”

Shivaram Kalyanakrishnan 5/21

Examples
What are the agent and environment? What are S, A, T , and R?

[Video3 of Tetris]

An Application of Reinforcement Learning to Aerobatic Helicopter Flight
Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. NIPS 2006.

1. http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif

2. http://www.aviationspectator.com/files/images/
SH-3-Sea-King-helicopter-191.preview.jpg

3. https://www.youtube.com/watch?v=khHZyghXseE

Shivaram Kalyanakrishnan 6/21

http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif
http://www.aviationspectator.com/files/images/
SH-3-Sea-King-helicopter-191.preview.jpg
https://www.youtube.com/watch?v=khHZyghXseE

Examples
What are the agent and environment? What are S, A, T , and R?

[Video3 of Tetris]

An Application of Reinforcement Learning to Aerobatic Helicopter Flight
Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. NIPS 2006.

1. http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif

2. http://www.aviationspectator.com/files/images/
SH-3-Sea-King-helicopter-191.preview.jpg

3. https://www.youtube.com/watch?v=khHZyghXseE

Shivaram Kalyanakrishnan 6/21

http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif
http://www.aviationspectator.com/files/images/
SH-3-Sea-King-helicopter-191.preview.jpg
https://www.youtube.com/watch?v=khHZyghXseE

Examples
What are the agent and environment? What are S, A, T , and R?

[Video3 of Tetris]

An Application of Reinforcement Learning to Aerobatic Helicopter Flight
Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. NIPS 2006.

1. http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif

2. http://www.aviationspectator.com/files/images/
SH-3-Sea-King-helicopter-191.preview.jpg

3. https://www.youtube.com/watch?v=khHZyghXseE

Shivaram Kalyanakrishnan 6/21

http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif
http://www.aviationspectator.com/files/images/
SH-3-Sea-King-helicopter-191.preview.jpg
https://www.youtube.com/watch?v=khHZyghXseE

Examples
What are the agent and environment? What are S, A, T , and R?

[Video3 of Tetris]

An Application of Reinforcement Learning to Aerobatic Helicopter Flight
Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. NIPS 2006.

1. http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif

2. http://www.aviationspectator.com/files/images/
SH-3-Sea-King-helicopter-191.preview.jpg

3. https://www.youtube.com/watch?v=khHZyghXseE

Shivaram Kalyanakrishnan 6/21

http://www.chess-game-strategies.com/images/kqa_chessboard_large-picture_2d.gif
http://www.aviationspectator.com/files/images/
SH-3-Sea-King-helicopter-191.preview.jpg
https://www.youtube.com/watch?v=khHZyghXseE

Today’s Class

1. Markov decision problems

2. Planning and learning

3. Deep Reinforcement Learning

4. Summary

Shivaram Kalyanakrishnan 7/21

Bellman’s Equations

Recall that

Vπ(s) = E[r 0 + γr 1 + γ2r 2 + . . . |s0 = s, ai = π(si)].

Bellman’s Equations (∀s ∈ S):

Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.

Define (∀s ∈ S,∀a ∈ A):

Qπ(s, a) =
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γVπ(s′)].

Qπ is called the action value function of π.

Vπ(s) = Qπ(s, π(s)).

The variables in Bellman’s Equations are the Vπ(s). |S| linear equations
in |S| unknowns.

Thus, given S, A, T , R, γ, and a fixed policy π, we can solve Bellman’s
equations efficiently to obtain, ∀s ∈ S,∀a ∈ A, Vπ(s) and Qπ(s, a).

Shivaram Kalyanakrishnan 8/21

Bellman’s Equations

Recall that

Vπ(s) = E[r 0 + γr 1 + γ2r 2 + . . . |s0 = s, ai = π(si)].

Bellman’s Equations (∀s ∈ S):

Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.

Define (∀s ∈ S,∀a ∈ A):

Qπ(s, a) =
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γVπ(s′)].

Qπ is called the action value function of π.

Vπ(s) = Qπ(s, π(s)).

The variables in Bellman’s Equations are the Vπ(s). |S| linear equations
in |S| unknowns.

Thus, given S, A, T , R, γ, and a fixed policy π, we can solve Bellman’s
equations efficiently to obtain, ∀s ∈ S,∀a ∈ A, Vπ(s) and Qπ(s, a).

Shivaram Kalyanakrishnan 8/21

Bellman’s Equations

Recall that

Vπ(s) = E[r 0 + γr 1 + γ2r 2 + . . . |s0 = s, ai = π(si)].

Bellman’s Equations (∀s ∈ S):

Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.

Define (∀s ∈ S,∀a ∈ A):

Qπ(s, a) =
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γVπ(s′)].

Qπ is called the action value function of π.

Vπ(s) = Qπ(s, π(s)).

The variables in Bellman’s Equations are the Vπ(s). |S| linear equations
in |S| unknowns.

Thus, given S, A, T , R, γ, and a fixed policy π, we can solve Bellman’s
equations efficiently to obtain, ∀s ∈ S,∀a ∈ A, Vπ(s) and Qπ(s, a).

Shivaram Kalyanakrishnan 8/21

Bellman’s Equations

Recall that

Vπ(s) = E[r 0 + γr 1 + γ2r 2 + . . . |s0 = s, ai = π(si)].

Bellman’s Equations (∀s ∈ S):

Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.

Define (∀s ∈ S,∀a ∈ A):

Qπ(s, a) =
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γVπ(s′)].

Qπ is called the action value function of π.

Vπ(s) = Qπ(s, π(s)).

The variables in Bellman’s Equations are the Vπ(s). |S| linear equations
in |S| unknowns.

Thus, given S, A, T , R, γ, and a fixed policy π, we can solve Bellman’s
equations efficiently to obtain, ∀s ∈ S, ∀a ∈ A, Vπ(s) and Qπ(s, a).

Shivaram Kalyanakrishnan 8/21

Bellman’s Optimality Equations

Let Π be the set of all policies. What is its cardinality?

It can be shown that there exists a policy π∗ ∈ Π such that

∀π ∈ Π ∀s ∈ S: Vπ∗(s) ≥ Vπ(s).

Vπ∗ is denoted V ∗, and Qπ∗ is denoted Q∗.

There could be multiple optimal policies π∗, but V ∗ and Q∗ are unique.

Bellman’s Optimality Equations (∀s ∈ S):

V ∗(s) = maxa∈A
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γV ∗(s′)].

V ∗ can be computed up to arbitrary precision using Value Iteration.

Shivaram Kalyanakrishnan 9/21

Bellman’s Optimality Equations

Let Π be the set of all policies. What is its cardinality?

It can be shown that there exists a policy π∗ ∈ Π such that

∀π ∈ Π ∀s ∈ S: Vπ∗(s) ≥ Vπ(s).

Vπ∗ is denoted V ∗, and Qπ∗ is denoted Q∗.

There could be multiple optimal policies π∗, but V ∗ and Q∗ are unique.

Bellman’s Optimality Equations (∀s ∈ S):

V ∗(s) = maxa∈A
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γV ∗(s′)].

V ∗ can be computed up to arbitrary precision using Value Iteration.

Shivaram Kalyanakrishnan 9/21

Bellman’s Optimality Equations

Let Π be the set of all policies. What is its cardinality?

It can be shown that there exists a policy π∗ ∈ Π such that

∀π ∈ Π ∀s ∈ S: Vπ∗(s) ≥ Vπ(s).

Vπ∗ is denoted V ∗, and Qπ∗ is denoted Q∗.

There could be multiple optimal policies π∗, but V ∗ and Q∗ are unique.

Bellman’s Optimality Equations (∀s ∈ S):

V ∗(s) = maxa∈A
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γV ∗(s′)].

V ∗ can be computed up to arbitrary precision using Value Iteration.

Shivaram Kalyanakrishnan 9/21

Bellman’s Optimality Equations

Let Π be the set of all policies. What is its cardinality?

It can be shown that there exists a policy π∗ ∈ Π such that

∀π ∈ Π ∀s ∈ S: Vπ∗(s) ≥ Vπ(s).

Vπ∗ is denoted V ∗, and Qπ∗ is denoted Q∗.

There could be multiple optimal policies π∗, but V ∗ and Q∗ are unique.

Bellman’s Optimality Equations (∀s ∈ S):

V ∗(s) = maxa∈A
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γV ∗(s′)].

V ∗ can be computed up to arbitrary precision using Value Iteration.

Shivaram Kalyanakrishnan 9/21

Planning and Learning

Planning problem:

Given S, A, T , R, γ, how can we find an optimal policy π∗? We need
to be computationally efficient.

Learning problem:

Given S, A, γ, and the facility to follow a trajectory by sampling from T
and R, how can we find an optimal policy π∗? We need to be sample-
efficient.

Shivaram Kalyanakrishnan 10/21

Planning and Learning

Planning problem:

Given S, A, T , R, γ, how can we find an optimal policy π∗? We need
to be computationally efficient.

Learning problem:

Given S, A, γ, and the facility to follow a trajectory by sampling from T
and R, how can we find an optimal policy π∗? We need to be sample-
efficient.

Shivaram Kalyanakrishnan 10/21

The Learning Problem

1 2

3

4

5

8
7

6

9
10

r 0 = −1.
r 1 = 2.
r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

The Learning Problem

1 2

3

4

5

8
7

6

9
10

1

0.35

0.5

0.15

r 0 = −1.
r 1 = 2.
r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

The Learning Problem

1 2

3

4

5

8
7

6

9
10

1

0.5

0.35

0.15

r 0 = −1.
r 1 = 2.
r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

The Learning Problem

1 2

3

4

5

8
7

6

9
10

r 0 = −1.
r 1 = 2.
r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

The Learning Problem

2

1

2

−1

2

3

4

5

8
7

6

9

−2

0

4

10
−6

3
−4

10

r 0 = −1.
r 1 = 2.
r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

The Learning Problem

1 2

3

4

5

8
7

6

9
10

r 0 = −1.
r 1 = 2.
r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

The Learning Problem

1

−1

2

3

4

5

8
7

6

9
10

r 0 = −1.

r 1 = 2.
r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

The Learning Problem

1

2

−1

2

3

4

5

8
7

6

9
10

r 0 = −1.
r 1 = 2.

r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

The Learning Problem

1

2

−1

2

3

4

5

8
7

6

9

10

10

r 0 = −1.
r 1 = 2.
r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

The Learning Problem

1

2

−1

2

3

4

5

8
7

6

9

10

10

r 0 = −1.
r 1 = 2.
r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

The Learning Problem

1

2

−1

2

3

4

5

8
7

6

9

10

10

r 0 = −1.
r 1 = 2.
r 2 = 10.

How to take actions so as to maximise expected long-term reward

E[r 0 + γr 1 + γ2r 2 + . . .]?

[Note that there exists an (unknown) optimal policy.]

Shivaram Kalyanakrishnan 11/21

Q-Learning
I Keep a running estimate of the expected long-term reward obtained by

taking each action from each state s, and acting optimally thereafter.
Q red green
1 -0.2 10
2 4.5 13
3 6 -8
4 0 0.2
5 -4.2 -4.2
6 1.2 1.6
7 10 6
8 4.8 9.9
9 5.0 -3.4
10 -1.9 2.3

I Update these estimates based on experience (st , at , r t , st+1):

Q(st , at)← Q(st , at) + αt{r t + maxa Q(st+1, a)−Q(st , at)}.

I Act greedily based on the estimates (exploit) most of the time, but still
I Make sure to explore each action enough times.

Q-learning will converge and induce an optimal policy!

Shivaram Kalyanakrishnan 12/21

Q-Learning
I Keep a running estimate of the expected long-term reward obtained by

taking each action from each state s, and acting optimally thereafter.
Q red green
1 -0.2 10
2 4.5 13
3 6 -8
4 0 0.2
5 -4.2 -4.2
6 1.2 1.6
7 10 6
8 4.8 9.9
9 5.0 -3.4
10 -1.9 2.3

I Update these estimates based on experience (st , at , r t , st+1):

Q(st , at)← Q(st , at) + αt{r t + maxa Q(st+1, a)−Q(st , at)}.

I Act greedily based on the estimates (exploit) most of the time, but still
I Make sure to explore each action enough times.

Q-learning will converge and induce an optimal policy!

Shivaram Kalyanakrishnan 12/21

Q-Learning
I Keep a running estimate of the expected long-term reward obtained by

taking each action from each state s, and acting optimally thereafter.
Q red green
1 -0.2 10
2 4.5 13
3 6 -8
4 0 0.2
5 -4.2 -4.2
6 1.2 1.6
7 10 6
8 4.8 9.9
9 5.0 -3.4
10 -1.9 2.3

I Update these estimates based on experience (st , at , r t , st+1):

Q(st , at)← Q(st , at) + αt{r t + maxa Q(st+1, a)−Q(st , at)}.

I Act greedily based on the estimates (exploit) most of the time, but still
I Make sure to explore each action enough times.

Q-learning will converge and induce an optimal policy!

Shivaram Kalyanakrishnan 12/21

Q-Learning
I Keep a running estimate of the expected long-term reward obtained by

taking each action from each state s, and acting optimally thereafter.
Q red green
1 -0.2 10
2 4.5 13
3 6 -8
4 0 0.2
5 -4.2 -4.2
6 1.2 1.6
7 10 6
8 4.8 9.9
9 5.0 -3.4
10 -1.9 2.3

I Update these estimates based on experience (st , at , r t , st+1):

Q(st , at)← Q(st , at) + αt{r t + maxa Q(st+1, a)−Q(st , at)}.

I Act greedily based on the estimates (exploit) most of the time, but still
I Make sure to explore each action enough times.

Q-learning will converge and induce an optimal policy!

Shivaram Kalyanakrishnan 12/21

Q-Learning
I Keep a running estimate of the expected long-term reward obtained by

taking each action from each state s, and acting optimally thereafter.
Q red green
1 -0.2 10
2 4.5 13
3 6 -8
4 0 0.2
5 -4.2 -4.2
6 1.2 1.6
7 10 6
8 4.8 9.9
9 5.0 -3.4
10 -1.9 2.3

I Update these estimates based on experience (st , at , r t , st+1):

Q(st , at)← Q(st , at) + αt{r t + maxa Q(st+1, a)−Q(st , at)}.

I Act greedily based on the estimates (exploit) most of the time, but still
I Make sure to explore each action enough times.

Q-learning will converge and induce an optimal policy!

Shivaram Kalyanakrishnan 12/21

Q-Learning
I Keep a running estimate of the expected long-term reward obtained by

taking each action from each state s, and acting optimally thereafter.
Q red green
1 -0.2 10
2 4.5 13
3 6 -8
4 0 0.2
5 -4.2 -4.2
6 1.2 1.6
7 10 6
8 4.8 9.9
9 5.0 -3.4
10 -1.9 2.3

I Update these estimates based on experience (st , at , r t , st+1):

Q(st , at)← Q(st , at) + αt{r t + maxa Q(st+1, a)−Q(st , at)}.

I Act greedily based on the estimates (exploit) most of the time, but still
I Make sure to explore each action enough times.

Q-learning will converge and induce an optimal policy!

Shivaram Kalyanakrishnan 12/21

Q-Learning Algorithm

� Let Q be our “guess” of Q∗: for every state s and action a, initialise
Q(s, a) arbitrarily. We will start in some state s0.
�For t = 0, 1, 2, . . .

�Take an action at , chosen uniformly at random with probability ε,
and to be argmaxa Q(st , a) with probability 1− ε.
�The environment will generate next state st+1 and reward r t+1.
�Update: Q(st , at)← Q(st , at) + αt (r t+1 + γ maxa∈A Q(st+1, a)− Q(st , at)).
[ε: parameter for “ε-greedy” exploration] [αt : learning rate]
[r t+1+γ maxa∈A Q(st+1, a)−Q(st , at): temporal difference prediction error]

For ε ∈ (0, 1] and αt = 1
t , it can be proven that as t →∞, Q → Q∗.

Q-Learning
Christopher J. C. H. Watkins and Peter Dayan. Machine Learning, 1992.

Shivaram Kalyanakrishnan 13/21

Q-Learning Algorithm

� Let Q be our “guess” of Q∗: for every state s and action a, initialise
Q(s, a) arbitrarily. We will start in some state s0.
�For t = 0, 1, 2, . . .

�Take an action at , chosen uniformly at random with probability ε,
and to be argmaxa Q(st , a) with probability 1− ε.
�The environment will generate next state st+1 and reward r t+1.
�Update: Q(st , at)← Q(st , at) + αt (r t+1 + γ maxa∈A Q(st+1, a)− Q(st , at)).
[ε: parameter for “ε-greedy” exploration] [αt : learning rate]
[r t+1+γ maxa∈A Q(st+1, a)−Q(st , at): temporal difference prediction error]

For ε ∈ (0, 1] and αt = 1
t , it can be proven that as t →∞, Q → Q∗.

Q-Learning
Christopher J. C. H. Watkins and Peter Dayan. Machine Learning, 1992.

Shivaram Kalyanakrishnan 13/21

Practice In Spite of the Theory!

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992) Absent Discrete Neural network (198)
Job-shop scheduling (ZD1995) Absent Discrete Neural network (20)
Tetris (BT1906) Absent Discrete Linear (22)
Elevator dispatching (CB1996) Present Continuous Neural network (46)
Acrobot control (S1996) Absent Continuous Tile coding (4)
Dynamic channel allocation (SB1997) Absent Discrete Linear (100’s)
Active guidance of finless rocket (GM2003) Present Continuous Neural network (14)
Fast quadrupedal locomotion (KS2004) Present Continuous Parameterized policy (12)
Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Dynamic bipedal locomotion (TZS2004) Present Continuous Feedback control policy (2)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
Robot soccer keepaway (SSK2005) Present Continuous Tile coding (13)
Robot obstacle negotiation (LSYSN2006) Present Continuous Linear (10)
Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
Blimp control (RPHB2007) Present Continuous Gaussian Process (2)
9× 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Ms. Pac-Man (SL2007) Absent Discrete Rule list (10)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)

Perfect representations (fully observable, enumerable states) are impractical.

Shivaram Kalyanakrishnan 14/21

Practice In Spite of the Theory!

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992) Absent Discrete Neural network (198)
Job-shop scheduling (ZD1995) Absent Discrete Neural network (20)
Tetris (BT1906) Absent Discrete Linear (22)
Elevator dispatching (CB1996) Present Continuous Neural network (46)
Acrobot control (S1996) Absent Continuous Tile coding (4)
Dynamic channel allocation (SB1997) Absent Discrete Linear (100’s)
Active guidance of finless rocket (GM2003) Present Continuous Neural network (14)
Fast quadrupedal locomotion (KS2004) Present Continuous Parameterized policy (12)
Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Dynamic bipedal locomotion (TZS2004) Present Continuous Feedback control policy (2)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
Robot soccer keepaway (SSK2005) Present Continuous Tile coding (13)
Robot obstacle negotiation (LSYSN2006) Present Continuous Linear (10)
Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
Blimp control (RPHB2007) Present Continuous Gaussian Process (2)
9× 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Ms. Pac-Man (SL2007) Absent Discrete Rule list (10)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)

Perfect representations (fully observable, enumerable states) are impractical.

Shivaram Kalyanakrishnan 14/21

Practice In Spite of the Theory!

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992) Absent Discrete Neural network (198)
Job-shop scheduling (ZD1995) Absent Discrete Neural network (20)
Tetris (BT1906) Absent Discrete Linear (22)
Elevator dispatching (CB1996) Present Continuous Neural network (46)
Acrobot control (S1996) Absent Continuous Tile coding (4)
Dynamic channel allocation (SB1997) Absent Discrete Linear (100’s)
Active guidance of finless rocket (GM2003) Present Continuous Neural network (14)
Fast quadrupedal locomotion (KS2004) Present Continuous Parameterized policy (12)
Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Dynamic bipedal locomotion (TZS2004) Present Continuous Feedback control policy (2)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
Robot soccer keepaway (SSK2005) Present Continuous Tile coding (13)
Robot obstacle negotiation (LSYSN2006) Present Continuous Linear (10)
Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
Blimp control (RPHB2007) Present Continuous Gaussian Process (2)
9× 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Ms. Pac-Man (SL2007) Absent Discrete Rule list (10)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)

Perfect representations (fully observable, enumerable states) are impractical.

Shivaram Kalyanakrishnan 14/21

Practice In Spite of the Theory!

Task State State Policy Representation
Aliasing Space (Number of features)

Backgammon (T1992) Absent Discrete Neural network (198)
Job-shop scheduling (ZD1995) Absent Discrete Neural network (20)
Tetris (BT1906) Absent Discrete Linear (22)
Elevator dispatching (CB1996) Present Continuous Neural network (46)
Acrobot control (S1996) Absent Continuous Tile coding (4)
Dynamic channel allocation (SB1997) Absent Discrete Linear (100’s)
Active guidance of finless rocket (GM2003) Present Continuous Neural network (14)
Fast quadrupedal locomotion (KS2004) Present Continuous Parameterized policy (12)
Robot sensing strategy (KF2004) Present Continuous Linear (36)
Helicopter control (NKJS2004) Present Continuous Neural network (10)
Dynamic bipedal locomotion (TZS2004) Present Continuous Feedback control policy (2)
Adaptive job routing/scheduling (WS2004) Present Discrete Tabular (4)
Robot soccer keepaway (SSK2005) Present Continuous Tile coding (13)
Robot obstacle negotiation (LSYSN2006) Present Continuous Linear (10)
Optimized trade execution (NFK2007) Present Discrete Tabular (2-5)
Blimp control (RPHB2007) Present Continuous Gaussian Process (2)
9× 9 Go (SSM2007) Absent Discrete Linear (≈1.5 million)
Ms. Pac-Man (SL2007) Absent Discrete Rule list (10)
Autonomic resource allocation (TJDB2007) Present Continuous Neural network (2)
General game playing (FB2008) Absent Discrete Tabular (part of state space)
Soccer opponent “hassling” (GRT2009) Present Continuous Neural network (9)
Adaptive epilepsy treatment (GVAP2008) Present Continuous Extremely rand. trees (114)
Computer memory scheduling (IMMC2008) Absent Discrete Tile coding (6)
Motor skills (PS2008) Present Continuous Motor primitive coeff. (100’s)
Combustion Control (HNGK2009) Present Continuous Parameterized policy (2-3)

Perfect representations (fully observable, enumerable states) are impractical.

Shivaram Kalyanakrishnan 14/21

Today’s Class

1. Markov Decision Problems

2. Planning and learning

3. Deep Reinforcement Learning

4. Summary

Shivaram Kalyanakrishnan 15/21

Typical Neural Network-based Representation of Q

1. http://www.nature.com/nature/journal/v518/n7540/carousel/nature14236-f1.jpg

Shivaram Kalyanakrishnan 16/21

http://www.nature.com/nature/journal/v518/n7540/carousel/nature14236-f1.jpg

ATARI 2600 Games (MKSRVBGRFOPBSAKKWLH2015)
[Breakout video1]

1. http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov

Shivaram Kalyanakrishnan 17/21

http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov

ATARI 2600 Games (MKSRVBGRFOPBSAKKWLH2015)
[Breakout video1]

1. http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov

Shivaram Kalyanakrishnan 17/21

http://www.nature.com/nature/journal/v518/n7540/extref/nature14236-sv2.mov

AlphaGo (SHMGSDSAPLDGNKSLLKGH2016)
March 2016: DeepMind’s program beats Go champion Lee Sedol 4-1.

1. http://www.kurzweilai.net/images/AlphaGo-vs.-Sedol.jpg

Shivaram Kalyanakrishnan 18/21

http://www.kurzweilai.net/images/AlphaGo-vs.-Sedol.jpg

AlphaGo (SHMGSDSAPLDGNKSLLKGH2016)

1. http://static1.uk.businessinsider.com/image/56e0373052bcd05b008b5217-810-602/
screen%20shot%202016-03-09%20at%2014.png

Shivaram Kalyanakrishnan 18/21

http://static1.uk.businessinsider.com/image/56e0373052bcd05b008b5217-810-602/
screen%20shot%202016-03-09%20at%2014.png

Learning Algorithm: Batch Q-learning

1. Represent action value function Q as a neural network.

AlphaGo: Use both a policy network and an action value network.

2. Gather data (on the simulator) by taking ε-greedy actions w.r.t. Q:

(s1, a1, r1, s2, a2, r2, s3, a3, r3, . . . sD, aD, rD, sD+1).

AlphaGo: Use Monte Carlo Tree Search for action selection

3. Train the network such that Q(st , at) ≈ rt + maxa Q(st+1, a).

Go to 2.

AlphaGo: Trained using self-play.

Shivaram Kalyanakrishnan 19/21

Learning Algorithm: Batch Q-learning

1. Represent action value function Q as a neural network.

AlphaGo: Use both a policy network and an action value network.

2. Gather data (on the simulator) by taking ε-greedy actions w.r.t. Q:

(s1, a1, r1, s2, a2, r2, s3, a3, r3, . . . sD, aD, rD, sD+1).

AlphaGo: Use Monte Carlo Tree Search for action selection

3. Train the network such that Q(st , at) ≈ rt + maxa Q(st+1, a).

Go to 2.

AlphaGo: Trained using self-play.

Shivaram Kalyanakrishnan 19/21

Today’s Class

1. Markov Decision Problems

2. Planning and learning

3. Deep Reinforcement Learning

4. Summary

Shivaram Kalyanakrishnan 20/21

Summary

� Learning by trial and error to perform sequential decision making.

� Do not program behaviour! Rather, specify goals.

� Rich history, at confluence of several fields of study, firm foundation.

� Given an MDP (S,A,T ,R, γ), we have to find a policy π : S → A that
yields high expected long-term reward from states.

� An optimal value function V ∗ exists, and it induces an optimal policy π∗

(several optimal policies might exist).

� Under planning, we are given S,A,T ,R, and γ. We may compute V ∗

and π∗ using a dynamic programming algorithm such as policy iteration.

� In the learning context, we are given S,A, and γ: we may sample T and
R in a sequential manner. We can still converge to V ∗ and π∗ by
applying a temporal difference learning method such as Q-learning.

� Limited in practice by quality of the representation used.

� Deep neural networks address the representation problem in some
domains, and have yielded impressive results.

Shivaram Kalyanakrishnan 21/21

	Introduction
	Markov Decision Problems
	Markov Decision Problems
	Markov Decision Problems
	Markov Decision Problems

