PAC Subset Selection in Stochastic Multi-armed Bandits

Shivaram Kalyanakrishnan

shivaram@csa.iisc.ernet.in

Department of Computer Science and Automation Indian Institute of Science

August 2014

Today's Talk

Relevant publications

Efficient Selection of Multiple Bandit Arms: Theory and Practice Shivaram Kalyanakrishnan and Peter Stone, *ICML* 2010.

PAC Subset Selection in Stochastic Multi-armed Bandits
Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone, ICML 2012.

Information Complexity in Bandit Subset Selection Emilie Kaufmann and Shivaram Kalyanakrishnan, COLT 2013.

Outline

- 1. Subset selection: PAC formulation
- Related work
- 3. Confidence bounds
- Algorithms and sample-complexity bounds
- Experiments
- 6. Future work

In an *n*-armed bandit:

In an n-armed bandit:

In an n-armed bandit:

In an *n*-armed bandit:

In an *n*-armed bandit:

In an *n*-armed bandit:

In an *n*-armed bandit:

In an *n*-armed bandit:

In an *n*-armed bandit:

find the m arms with the highest means with high probability

In an n-armed bandit:

find the *m* arms with the highest means with high probability using a *minimal* number of samples.

In an *n*-armed bandit:

find the *m* arms with the highest means with high probability using a *minimal* number of samples.

In an *n*-armed bandit:

find the *m* arms with the highest means with high probability using a *minimal* number of samples.

In an *n*-armed bandit:

find m (ϵ , m)-optimal arms with probability at least 1 $-\delta$ using a minimal number of samples.

In an *n*-armed bandit:

find m (ϵ , m)-optimal arms with probability at least 1 $-\delta$ using a minimal number of samples.

m = 1: Even-Dar *et al.* (2006)

Related Work

Us	Them
<i>m</i> arms	1 arm [Even-Dar, Mannor, and Mansour (2006)]
PAC	Regret [Robbins (1952)] [Auer, Cesa-Bianchi, and Fischer (2002)] Simple regret [Audibert, Bubeck, and Munos (2010)]
Stochastic rewards	Adversarial rewards [Auer, Cesa-Bianchi, Freund, and Schapire (2002)]
Independent arms	Dependent arms [Pandey, Chakrabarti, and Agarwal (2007)] [Kleinberg, Slivkins, and Upfal (2008)]

■ Hoeffding's inequality (Hoeffding, 1963): With probability at least $1 - \delta$:

True mean \geq Empirical average $-B\sqrt{\frac{1}{2u}\ln(\frac{1}{\delta})}$.

True mean \leq Empirical average $+B\sqrt{\frac{1}{2u}\ln(\frac{1}{\delta})}$.

■ Hoeffding's inequality (Hoeffding, 1963): With probability at least $1 - \delta$:

True mean \geq Empirical average $-B\sqrt{\frac{1}{2u}\ln(\frac{1}{\delta})}$.

True mean \leq Empirical average $+B\sqrt{\frac{1}{2u}\ln(\frac{1}{\delta})}$.

■ Hoeffding's inequality (Hoeffding, 1963): With probability at least $1 - \delta$:

$$\begin{split} & \text{True mean} \geq \text{Empirical average } -B\sqrt{\frac{1}{2u}\ln(\frac{1}{\delta})}. \\ & \text{True mean} \leq \text{Empirical average } +B\sqrt{\frac{1}{2u}\ln(\frac{1}{\delta})}. \end{split}$$

For simplicity assume B = 1; generalizes to distributions with known, finite range.

■ Hoeffding's inequality (Hoeffding, 1963): With probability at least 1 $-\delta$:

$$\begin{split} & \text{True mean} \geq \text{Empirical average } -B\sqrt{\frac{1}{2u}\ln(\frac{1}{\delta})}. \\ & \text{True mean} \leq \text{Empirical average } +B\sqrt{\frac{1}{2u}\ln(\frac{1}{\delta})}. \end{split}$$

- For simplicity assume B = 1; generalizes to distributions with known, finite range.
- We employ Hoeffding's inequality and a KL-divergence-based confidence bound.

Algorithms for Subset Selection

- DIRECT Algorithm:

```
Sample each arm \left\lceil \frac{2}{\epsilon^2} ln \left( \frac{n}{\delta} \right) \right\rceil times. Return m arms with highest empirical averages.
```

- Achieves PAC guarantee.
- Sample complexity: $O\left(\frac{n}{\epsilon^2}log\left(\frac{n}{\delta}\right)\right)$.

Algorithms for Subset Selection

- DIRECT Algorithm:

```
Sample each arm \left\lceil \frac{2}{\epsilon^2} ln \left( \frac{n}{\delta} \right) \right\rceil times.
Return m arms with highest empirical averages.
```

- Achieves PAC guarantee.
- Sample complexity: $O\left(\frac{n}{\epsilon^2}log\left(\frac{n}{\delta}\right)\right)$.
- HALVING Algorithm:

```
Sample each arm u_1(n, m, \epsilon, \delta) times. Discard half the arms with lower empirical averages. Sample each remaining arm u_2(n, m, \epsilon, \delta) times. Discard half the remaining arms with lower empirical averages.
```

Until *m* arms remain.

- Achieves PAC guarantee.
- Sequence (u_i) such that total number of samples is $O\left(\frac{n}{\epsilon^2}log\left(\frac{m}{\delta}\right)\right)$.

Algorithms for Subset Selection

- DIRECT Algorithm:

```
Sample each arm \left\lceil \frac{2}{\epsilon^2} \ln \left( \frac{n}{\delta} \right) \right\rceil times.
Return m arms with highest empirical averages.
```

- Achieves PAC guarantee.
- Sample complexity: $O\left(\frac{n}{e^2}log\left(\frac{n}{\delta}\right)\right)$.
- HALVING Algorithm:

```
Sample each arm u_1(n, m, \epsilon, \delta) times. Discard half the arms with lower empirical averages. Sample each remaining arm u_2(n, m, \epsilon, \delta) times. Discard half the remaining arms with lower empirical averages. \vdots
```

Ontil III arms remain.

- Achieves PAC guarantee.
- Sequence (u_i) such that total number of samples is $O\left(\frac{n}{\epsilon^2}log\left(\frac{m}{\delta}\right)\right)$.
- **Lower bound**: There exist bandit instances (with Bernoulli arms) on which any PAC algorithm needs at least $\Omega\left(\frac{n}{2}\log\left(\frac{m}{\delta}\right)\right)$ samples.

$$\Delta_{a} \stackrel{\text{def}}{=} \begin{cases} p_{a} - p_{m+1} & \text{if } 1 \leq a \leq m, \\ p_{m} - p_{a} & \text{if } m+1 \leq a \leq n. \end{cases}$$

$$\mathbf{H}^{\epsilon} = \sum_{a=1}^{n} \frac{1}{\max \left\{ \Delta_{a}, \frac{\epsilon}{2} \right\}^{2}}.$$

$$\Delta_{a} \stackrel{\text{def}}{=} \begin{cases} p_{a} - p_{m+1} & \text{if } 1 \leq a \leq m, \\ p_{m} - p_{a} & \text{if } m+1 \leq a \leq n. \end{cases}$$

$$\mathbf{H}^{\epsilon} = \sum_{a=1}^{n} \frac{1}{\max \left\{ \Delta_{a}, \frac{\epsilon}{2} \right\}^{2}}.$$

In practice: $H^{\epsilon} \ll \frac{n}{\epsilon^2}$.

Sample complexity on run

Achieves PAC guarantee.

Expected sample complexity of $\min \Big\{ O\left(H^{\epsilon} \log\left(\frac{H^{\epsilon}}{\delta}\right)\right), O\left(\frac{n}{\epsilon^{2}}log\left(\frac{m}{\delta}\right)\right) \Big\}.$

Achieves PAC guarantee.

Expected sample complexity of min $\left\{O\left(H^{\epsilon}\log\left(\frac{H^{\epsilon}}{\delta}\right)\right), O\left(\frac{n}{\epsilon^{2}}log\left(\frac{m}{\delta}\right)\right)\right\}$.

Stopping rule: Terminate iff

$$\overline{\left(\hat{\rho}_{l_*^t}^t + \beta(u_{l_*^t}^t, t)\right) - \left(\hat{\rho}_{h_*^t}^t - \beta(u_{h_*^t}^t, t)\right)} < \epsilon.$$

Sampling strategy:

On round t: sample arms h_*^t and l_*^t .

Achieves PAC guarantee.

Expected sample complexity of $\min \left\{ O\left(H^{\epsilon} \log\left(\frac{H^{\epsilon}}{\delta}\right)\right), O\left(\frac{n}{\epsilon^{2}}log\left(\frac{m}{\delta}\right)\right) \right\}.$

Bound novel even for m = 1.

$$\overline{\left(\hat{p}_{l_*^t}^t + \beta(u_{l_*^t}^t, t)\right) - \left(\hat{p}_{h_*^t}^t - \beta(u_{h_*^t}^t, t)\right)} < \epsilon.$$

Sampling strategy:

On round t: sample arms h_*^t and l_*^t .

LUCB upper bound = $\hat{p}_{a}^{t} + \sqrt{\frac{1}{2u_{a}^{t}}\ln\left(\frac{knt^{\alpha}}{\delta}\right)}$. LUCB lower bound = $\hat{p}_{a}^{t} - \sqrt{\frac{1}{2u_{a}^{t}}\ln\left(\frac{knt^{\alpha}}{\delta}\right)}$.

$$\begin{aligned} & \text{KL-LUCB upper bound} = \max \Big\{ q \in [\hat{p}_a^t, 1] : u_a^t \textit{KL}(\hat{p}_a^t, q) \leq \ln \Big(\frac{knt^\alpha}{\delta} \Big) \Big\}. \\ & \text{KL-LUCB lower bound} = \min \Big\{ q \in [0, \hat{p}_a^t] : u_a^t \textit{KL}(\hat{p}_a^t, q) \leq \ln \Big(\frac{knt^\alpha}{\delta} \Big) \Big\}. \end{aligned}$$

KL-LUCB confidence bounds provably tighter (Pinsker's Inequality). Apply same stopping rule and sampling strategy as LUCB.

LUCB upper bound =
$$\hat{p}_{a}^{t} + \sqrt{\frac{1}{2u_{a}^{t}}\ln\left(\frac{knt^{\alpha}}{\delta}\right)}$$
.
LUCB lower bound = $\hat{p}_{a}^{t} - \sqrt{\frac{1}{2u_{a}^{t}}\ln\left(\frac{knt^{\alpha}}{\delta}\right)}$.

$$\begin{aligned} & \text{KL-LUCB upper bound} = \max \Big\{ q \in [\hat{p}_a^t, 1] : u_a^t \textit{KL}(\hat{p}_a^t, q) \leq \ln \Big(\frac{knt^\alpha}{\delta} \Big) \Big\}. \\ & \text{KL-LUCB lower bound} = \min \Big\{ q \in [0, \hat{p}_a^t] : u_a^t \textit{KL}(\hat{p}_a^t, q) \leq \ln \Big(\frac{knt^\alpha}{\delta} \Big) \Big\}. \end{aligned}$$

KL-LUCB confidence bounds provably tighter (Pinsker's Inequality). Apply same stopping rule and sampling strategy as LUCB.

Delivers PAC guarantee.

Expected sample complexity =

$$\min \left\{ O\left(H'^{\epsilon} \log\left(\frac{H'^{\epsilon}}{\delta}\right)\right), O\left(\frac{n}{\epsilon^{2}} log\left(\frac{m}{\delta}\right)\right) \right\}, \text{ where}$$

$$H'^{\epsilon} = \min_{c \in [p_{m+1}, p_{m}]} \sum_{a=1}^{n} \frac{1}{\max\left\{d^{*}(p_{a}, c), \frac{\epsilon^{2}}{2}\right\}}.$$

 $d^*(x, y)$ is the Chernoff Information between Bernoulli distributions with means x and y, defined as:

$$d^*(x, y) = KL(z^*, x) = KL(z^*, y)$$
, where

 z^* is the unique $z \in [\min\{x, y\}, \max\{x, y\}]$ such that $\mathit{KL}(z, x) = \mathit{KL}(z, y)$.

Delivers PAC guarantee.

Expected sample complexity =

$$\begin{split} \min \left\{ O\left(H'^{\epsilon} \log\left(\frac{H'^{\epsilon}}{\delta}\right)\right), O\left(\frac{n}{\epsilon^{2}} log\left(\frac{m}{\delta}\right)\right) \right\}, \text{ where} \\ H'^{\epsilon} &= \min_{c \in [p_{m+1}, p_{m}]} \sum_{a=1}^{n} \frac{1}{\max\left\{d^{*}(p_{a}, c), \frac{\epsilon^{2}}{2}\right\}}. \end{split}$$

 $d^*(x, y)$ is the Chernoff Information between Bernoulli distributions with means x and y, defined as:

$$d^*(x, y) = KL(z^*, x) = KL(z^*, y)$$
, where

 z^* is the unique $z \in [\min\{x,y\}, \max\{x,y\}]$ such that $\mathit{KL}(z,x) = \mathit{KL}(z,y)$.

 $H^{\epsilon} = O(H^{\epsilon})$; typically much smaller.

Delivers PAC guarantee.

Expected sample complexity =

$$\begin{split} \min \left\{ O\left(H'^{\epsilon} \log\left(\frac{H'^{\epsilon}}{\delta}\right)\right), O\left(\frac{n}{\epsilon^{2}} log\left(\frac{m}{\delta}\right)\right) \right\}, \text{ where} \\ H'^{\epsilon} &= \min_{c \in [p_{m+1}, p_{m}]} \sum_{a=1}^{n} \frac{1}{\max\left\{d^{*}(p_{a}, c), \frac{\epsilon^{2}}{2}\right\}}. \end{split}$$

 $a^*(x, y)$ is the Chernoff Information between Bernoulli distributions with means x and y, defined as:

$$d^*(x,y) = KL(z^*,x) = KL(z^*,y)$$
, where

 z^* is the unique $z \in [\min\{x,y\}, \max\{x,y\}]$ such that KL(z,x) = KL(z,y).

$$H^{\prime \epsilon} = O(H^{\epsilon})$$
; typically much smaller.

Expected-sample-complexity lower bounds fresh off the press!

On the Complexity of Best Arm Identification in Multi-Armed Bandit Models Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier, 2014.

- We compare (KL-)LUCB, (KL-)Racing, and (KL-)LSC.
- Racing algorithm (Heidrich-Meisner and Igel, 2009)
 - Each arm is one of three sets: Selected, Discarded, Remaining.
 - Initially, place all the arms in Remaining.
 - In each phase, sample all the arms in Remaining. If some arm confidently exceeds
 n m others, move it to Selected. If some arm confidently is exceeded by m others,
 move it to Discarded.
 - Stop and return *Selected* if it has at least *m* arms; else go to next phase.

LSC algorithm

- Akin to LUCB.
- At each time t, among the arms in High^t and Low^t that collide, pick one that has been sampled the least number of times.
- Stop if *High*^t and *Low*^t do not collide.
- (KL-)LUCB and (KL-)LSC are "fully sequential", whereas (KL-)Racing is not.

- Number of arms *n* varied.
- 1000 random instances; each arm's mean drawn uniformly at random from [0, 1].
- $m = \frac{n}{5}, \epsilon = 0.1, \delta = 0.1.$

Expected sample complexity / 10000

- Number of arms *n* varied.
- 1000 random instances; each arm's mean drawn uniformly at random from [0, 1].
- $m = \frac{n}{5}, \epsilon = 0.1, \delta = 0.1.$

Expected sample complexity / 10000

(KL-)LUCB > (KL-)LSC > (KL-)Racing.

- Instance B_1 : n = 15, $p_1 = \frac{1}{2}$; $p_a = \frac{1}{2} \frac{a}{40}$, a = 2, 3, ..., n.
- $m = 3, \epsilon = 0.04, \delta = 0.1.$

Empirical mistake probability during run

- Instance B_1 : n = 15, $p_1 = \frac{1}{2}$; $p_a = \frac{1}{2} \frac{a}{40}$, $a = 2, 3, \dots, n$.
- $m = 3, \epsilon = 0.04, \delta = 0.1.$

(KL-)LUCB separates out arms more quickly.

- Instance B_1 : n = 15, $p_1 = \frac{1}{2}$; $p_a = \frac{1}{2} \frac{a}{40}$, a = 2, 3, ..., n; $\epsilon = 0.04$.
- Instance B_2 : n = 15, $p_1 = \frac{1}{4}$; $p_a = \frac{1}{4} \frac{a}{80}$, a = 2, 3, ..., n; $\epsilon = 0.02$.
- $m = 3, \delta = 0.1.$

Fraction of runs (in bins of width 1000)

- Instance B_1 : n = 15, $p_1 = \frac{1}{2}$; $p_a = \frac{1}{2} \frac{a}{40}$, a = 2, 3, ..., n; $\epsilon = 0.04$.
- Instance B_2 : n = 15, $p_1 = \frac{1}{4}$; $p_a = \frac{1}{4} \frac{a}{80}$, a = 2, 3, ..., n; $\epsilon = 0.02$.
- $m = 3, \delta = 0.1.$

Fraction of runs (in bins of width 1000)

KL-ising especially economical when means are close to 0 or 1.

Summary

PAC subset selection

 n, m, ϵ, δ

Worst case sample complexity upper bound

$$O\left(\frac{n}{\epsilon^2}log\left(\frac{m}{\delta}\right)\right)$$

Worst case sample complexity lower bound

$$\Omega\left(\frac{n}{\epsilon^2}log\left(\frac{m}{\delta}\right)\right)$$

Expected sample complexity upper bound

$$\begin{aligned} & \text{LUCB: min}\left\{O\left(H^{\epsilon}\log\left(\frac{H^{\epsilon}}{\delta}\right)\right), O\left(\frac{n}{\epsilon^{2}}log\left(\frac{m}{\delta}\right)\right)\right\} \\ & \text{KL-LUCB: min}\left\{O\left(H'^{\epsilon}\log\left(\frac{H'^{\epsilon}}{\delta}\right)\right), O\left(\frac{n}{\epsilon^{2}}log\left(\frac{m}{\delta}\right)\right)\right\} \end{aligned}$$

Experiments: (KL-)LUCB > (KL-)LSC > (KL-)Racing

Summary

PAC subset selection

 n, m, ϵ, δ

Worst case sample complexity upper bound

$$O\left(\frac{n}{\epsilon^2}log\left(\frac{m}{\delta}\right)\right)$$

Worst case sample complexity lower bound

$$\Omega\left(\frac{n}{\epsilon^2}log\left(\frac{m}{\delta}\right)\right)$$

Expected sample complexity upper bound

$$\begin{aligned} & \text{LUCB: min}\left\{O\left(H^{\epsilon}\log\left(\frac{H^{\epsilon}}{\delta}\right)\right), O\left(\frac{n}{\epsilon^{2}}log\left(\frac{m}{\delta}\right)\right)\right\} \\ & \text{KL-LUCB: min}\left\{O\left(H'^{\epsilon}\log\left(\frac{H'^{\epsilon}}{\delta}\right)\right), O\left(\frac{n}{\epsilon^{2}}log\left(\frac{m}{\delta}\right)\right)\right\} \end{aligned}$$

Experiments: (KL-)LUCB > (KL-)LSC > (KL-)Racing

Use KL-LUCB for PAC subset selection!

Generalized ranking and selection

■ Exploration in MDPs with instance-specific sample complexity bounds

- Exploration in MDPs with instance-specific sample complexity bounds
- Sampling *pairwise* preferences to pick a winner (social choice).

Generalized ranking and selection

- Exploration in MDPs with instance-specific sample complexity bounds
- Sampling *pairwise* preferences to pick a winner (social choice).

Thank you!

References

Herbert Robbins, 1952. Some aspects of the sequential design of experiments. *Bulletin of the American Mathematical Society*, 58(5): 527–535, 1952.

Wassily Hoeffding, 1963. Probability Inequalities for Sums of Bounded Random Variables. *Journal of the American Statistical Association*, 58(301): 13–30, 1963.

Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer, 2002. Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning, 47(2–3):235–256, 2002.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire, 2002. The Nonstochastic Multiarmed Bandit Problem. SIAM Journal on Computing, 32(1):48–77, 2002.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour, 2006. Action Elimination and Stopping Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems. *Journal of Machine Learning Research*, 7: 1079–1105, 2006.

Sandeep Pandey, Deepayan Chakrabarti, and Deepak Agarwal, 2007. Multi-armed bandit problems with dependent arms. In Proceedings of the Twenty-Fourth International Conference on Machine Learning (ICML 2007), pp. 721–728, ACM, 2007.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal, 2008. Multi-armed bandits in metric spaces. In *Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC 2008)*, pp. 681–690, ACM, 2008.

Verena Heidrich-Meisner and Christian Igel, 2009. Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search. In *Proceedings of the Twenty-sixth International Conference on Machine Learning (ICML 2009)*, pp. 401–408. ACM, 2009.

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos, 2010. Best Arm Identification in Multi-Armed Bandits. In *Proceedings of the Twenty-third Conference on Learning Theory (COLT 2010)*, pp. 41–53, Omnipress, 2010.

Shivaram Kalyanakrishnan and Peter Stone, 2010. Efficient Selection of Multiple Bandit Arms: Theory and Practice. In Proceedings of the Twenty-seventh International Conference on Machine Learning (ICML 2010)., pp. 511–518, Omnipress, 2010.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone, 2012. PAC Subset Selection in Stochastic Multi-armed Bandits. In Proceedings of the Twenty-ninth International Conference on Machine Learning (ICML 2012), pp. 655–662, Omnipress, 2012.

Emilie Kaufmann and Shivaram Kalyanakrishnan, 2013. Information Complexity in Bandit Subset Selection. *JMLR Workshop and Conference Proceedings (Conference on Learning Theory, 2013)*, 30:228–251, 2013.

Emilie Kaufmann, Aurélien Garivier and Olivier Cappé, 2014. On the Complexity of Best Arm Identication in Multi-Armed Bandit Models. http://perso.telecom-paristech.fr/~kaufmann/KCG14.pdf, 2014.