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In an n-armed bandit:
find the m arms with the highest means
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Stochastic Bandits and Subset Selection

L1 1+ 1 |

Fitness evaluations

RINER

Optimization Algorithm population———

In an n-armed bandit:
find the m arms with the highest means
with high probability
using a minimal number of samples.
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PAC Formulation

R €. me-optima X Not, m)-optimal
In an n-armed bandit:

find m (e, m)-optimal arms

with probability at least 1 — &

using a minimal number of samples.
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PAC Formulation

R v €, m)-optimal X Not €, m)-optimal

In an n-armed bandit:

find m (e, m)-optimal arms
(¢, m)-op ‘m = 1: Even-Dar et al. (2006)‘

with probability at least 1 — §
using a minimal number of samples.
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Confidence Bounds on the Mean

Empirical average

B Hoeffding’s inequality (Hoeffding, 1963): With probability at least 1 — §:

True mean > Empirical average —B/ 2 In(3$).
1
u

1
5
True mean < Empirical average +B/ 55 In(%).
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Confidence Bounds on the Mean

ucse

Empirical average .

LCB

B Hoeffding’s inequality (Hoeffding, 1963): With probability at least 1 — §:
True mean > Empirical average —B 4/ 4 In(%).
True mean < Empirical average +B/ & In(3).
B For simplicity assume B = 1; generalizes to distributions with known, finite range.

B We employ Hoeffding’s inequality and a KL-divergence-based confidence bound.
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Algorithms for Subset Selection
- DIRECT Algorithm:
Sample each arm L%In (%)W times.

Return m arms with highest empirical averages.

- Achieves PAC guarantee.
- Sample complexity: O (E%Iog (g))
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- Sample complexity: O (E%Iog (%))

- HALVING Algorithm:
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Algorithms for Subset Selection
- DIRECT Algorithm:
Sample each arm L%In (g)w times.

Return m arms with highest empirical averages.

- Achieves PAC guarantee.
- Sample complexity: O (E%Iog (%))

- HALVING Algorithm:
Sample each arm u;(n, m, ¢, §) times.
Discard half the arms with lower empirical averages.
Sample each remaining arm u,(n, m, ¢, §) times.
Discard half the remaining arms with lower empirical averages.

Until m arms remain.

- Achieves PAC guarantee.
- Sequence (u;) such that total number of samples is O (%Iog (%))

- Lower bound : There exist bandit instances (with Bernoulli arms) on which any
PAC algorithm needs at least  (log (7)) samples.

Shivaram Kalyanakrishnan (2014) PAC Subset Selection 7118



Problem Complexity
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Sample complexity on run

def pa_pm+l |f1§a§m,

Aa .
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LUCB Algorithm
Achieves PAC guarantee.
Expected sample complexity of min {O (HE log (“T)) ;O (Slog (F)) }
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LUCB Algorithm
Achieves PAC guarantee.

Expected sample complexity of min {O (Hf log (%)) ;O (Slog (F)) }
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LUCB Algorithm
Achieves PAC guarantee.

Expected sample complexity of min {O (Hf log (%)) ;O (Slog (F)) }
Bound novel even for m = 1.
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KL-LUCB Algorithm

LUCB upper bound = pg, + /5 In (¥5=).

LUCB lower bound = p} — ﬁ In (A22).

6

KL-LUCB upper bound = max {q € [Ps, 1] : uSKL(pS, q) < In (k“;a ) }

KL-LUCB lower bound = min {q € [0, pa] : USKL(PS, q) < In (%) }

KL-LUCB confidence bounds provably tighter (Pinsker’s Inequality).
Apply same stopping rule and sampling strategy as LUCB.
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KL-LUCB Algorithm

Delivers PAC guarantee.
Expected sample complexity =

min {o (H log (Hd)) ,0 (eﬂzlog (%))} where

n

H=min 1 —.
c€lPm1.Pml = max {d*(pa,c), %}

d*(x,y) is the Chernoff Information between Bernoulli distributions with means x
and y, defined as:

d*(x,y) = KL(z",x) = KL(z",y), where
z* is the unique z € [min{x,y}, max{x,y}] such that KL(z,x) = KL(z,y).
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H=min 1 —.
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d*(x,y) is the Chernoff Information between Bernoulli distributions with means x
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KL-LUCB Algorithm

Delivers PAC guarantee.
Expected sample complexity =

min {o (H" log (H(s )) ,0 (eﬂzmg (%)) } where

n

. 1
H = min —.
cE[Pm+17Pm] a—1 Max {d*(pa,C), %}

d*(x,y) is the Chernoff Information between Bernoulli distributions with means x
and y, defined as:

d*(x,y) = KL(z",x) = KL(z",y), where
z* is the unique z € [min{x,y}, max{x,y}] such that KL(z,x) = KL(z,y).

‘ H'e = O(H¢); typically much smaller. ‘

Expected-sample-complexity lower bounds fresh off the press!
On the Complexity of Best Arm Identification in Multi-Armed Bandit Models
Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier, 2014.
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Experiments

B We compare (KL-)LUCB, (KL-)Racing, and (KL-)LSC.
B Racing algorithm (Heidrich-Meisner and Igel, 2009)

- Each arm is one of three sets: Selected, Discarded, Remaining.

- Initially, place all the arms in Remaining.

- In each phase, sample all the arms in Remaining. If some arm confidently exceeds
n — m others, move it to Selected. If some arm confidently is exceeded by m others,
move it to Discarded.

- Stop and return Selected if it has at least m arms; else go to next phase.

B LSC algorithm

- Akin to LUCB.

- At each time t, among the arms in Hight and Low! that collide, pick one that has been
sampled the least number of times.

- Stop if Hight and Low! do not collide.

B (KL-)LUCB and (KL-)LSC are “fully sequential”, whereas (KL-)Racing is not.
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Experiments
B Number of arms n varied.

B 1000 random instances; each arm’s mean drawn uniformly at random from [0, 1].

Bm=106=015=01

Expected sample complexity / 10000

12 | Racing —e—
KL-Racing
10 | LSC ——x—
KL-LSC —=—
LUCB —+——
8 | KL-LUCB — =
6
4
2
10 20
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Experiments

B Number of arms n varied.
B 1000 random instances; each arm’s mean drawn uniformly at random from [0, 1].
BEm=1e=015=0.1.

Expected sample complexity / 10000

12 + Racing —e—
KL-Racing
10r LSC —x— ;
KL-LSC —=—
LUCB —+—
8 " KL-LUCB = = /
6 P
4 /
"'1;:;;;;;:*
2
10 20 o p _ |

| (KL)LUCB > (KL-)LSC > (KL-)Racing. |
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Experiments
B Instance Bi:n=15,p; = 3;pa=3 — 3,a=2,3,...,N.
B m=3ec=0.040=0.1.

Empirical mistake probability during run

0.45 .

% Racing —e—
04 \ i

\\\ LSC ——

o KL-LSC -~
03 \ LUCB
0.25 | KL-LUCB = -
- \
0.15
01
0.05 ==

1 2 g ! ’ 6 7

Samples/ 1000
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Experiments
B Instance By:n=15,p; = ;pa = 3 —
B m=23=004,=0.1.

Empirical mistake probability during run

0.45 .
% Racing —e—
- | KL-Racing
\‘ LSC ——x—
o KL-LSC ——=—
03 LUCB ——
0.25 KL-LUCB = -
02
0.15
01
0.05 ==
1 2 g ! ; 6 7
Samples/ 1000

‘ (KL-)LUCB separates out arms more quickly. ‘
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Experiments
B Instance Bi: n =15,p; =

B Instance B,: n = 15,p;

...,n;e = 0.04.
...,nje=0.02.
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Experiments
B Instance Bi: n =15,p; =

B Instance B,: n = 15,p;

.....Me=0.04.
....,Me=0.02.
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Fraction of runs (in bins of width 1000)

0.16
B, rTmﬁiiiq

0.12 KL-LUCB s
0.08
0.04 '

0.16
0.12
0.08
0.04 |
0 HnJl“”H
8

B,

T

1 12 14 16 18 20
Samples/ 10000

‘ KL-ising especially economical when means are close to 0 or 1.
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Summary

PAC subset selection
n,m,e,é

Worst case sample complexity upper bound
O (&log (%))

Worst case sample complexity lower bound
Q(Zlog (7))

Expected sample complexity upper bound
LUCB: min {O (H" log (%)) ,0 (%log (%))}
KL-LUCB: min {O (Hlog (%)) ,0 (%log (%)) }

Experiments: (KL-)LUCB > (KL-)LSC > (KL-)Racing
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Summary

PAC subset selection
n,m,e,o

Worst case sample complexity upper bound
O (&log (%))

Worst case sample complexity lower bound
Q(Zlog (7))

Expected sample complexity upper bound
LUCB: min {O (H" log (%)) ,0 (%log (%))}
KL-LUCB: min {O (Hlog (%)) ,0 (%log (%)) }

Experiments: (KL-)LUCB > (KL-)LSC > (KL-)Racing

| Use KL-LUCB for PAC subset selection! |
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Future Work

B Generalized ranking and selection
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Future Work

B Generalized ranking and selection
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B Exploration in MDPs with instance-specific sample complexity bounds

O COO OO

Shivaram Kalyanakrishnan (2014) PAC Subset Selection 17/18



Future Work

B Generalized ranking and selection
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B Exploration in MDPs with instance-specific sample complexity bounds
B Sampling pairwise preferences to pick a winner (social choice).
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Future Work

B Generalized ranking and selection

J

A

a

o
©
©

B Exploration in MDPs with instance-specific sample complexity bounds
B Sampling pairwise preferences to pick a winner (social choice).

O COO OO

Thank you!
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